397 research outputs found

    Multiframe Temporal Estimation of Cardiac Nonrigid Motion

    Get PDF
    A robust, flexible system for tracking the point to point nonrigid motion of the left ventricular (LV) endocardial wall in image sequences has been developed. This system is unique in its ability to model motion trajectories across multiple frames. The foundation of this system is an adaptive transversal filter based on the recursive least-squares algorithm. This filter facilitates the integration of models for periodicity and proximal smoothness as appropriate using a contour-based description of the object’s boundaries. A set of correspondences between contours and an associated set of correspondence quality measures comprise the input to the system. Frame-to-frame relationships from two different frames of reference are derived and analyzed using synthetic and actual images. Two multiframe temporal models, both based on a sum of sinusoids, are derived. Illustrative examples of the system’s output are presented for quantitative analysis. Validation of the system is performed by comparing computed trajectory estimates with the trajectories of physical markers implanted in the LV wall. Sample case studies of marker trajectory comparisons are presented. Ensemble statistics from comparisons with 15 marker trajectories are acquired and analyzed. A multiframe temporal model without spatial periodicity constraints was determined to provide excellent performance with the least computational cost. A multiframe spatiotemporal model provided the best performance based on statistical standard deviation, although at significant computational expense.National Heart, Lung, and Blood InstituteAir Force of Scientific ResearchNational Science FoundationOffice of Naval ResearchR01HL44803F49620-99-1-0481F49620-99-1-0067MIP-9615590N00014-98-1-054

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Structure from Recurrent Motion: From Rigidity to Recurrency

    Full text link
    This paper proposes a new method for Non-Rigid Structure-from-Motion (NRSfM) from a long monocular video sequence observing a non-rigid object performing recurrent and possibly repetitive dynamic action. Departing from the traditional idea of using linear low-order or lowrank shape model for the task of NRSfM, our method exploits the property of shape recurrency (i.e., many deforming shapes tend to repeat themselves in time). We show that recurrency is in fact a generalized rigidity. Based on this, we reduce NRSfM problems to rigid ones provided that certain recurrency condition is satisfied. Given such a reduction, standard rigid-SfM techniques are directly applicable (without any change) to the reconstruction of non-rigid dynamic shapes. To implement this idea as a practical approach, this paper develops efficient algorithms for automatic recurrency detection, as well as camera view clustering via a rigidity-check. Experiments on both simulated sequences and real data demonstrate the effectiveness of the method. Since this paper offers a novel perspective on rethinking structure-from-motion, we hope it will inspire other new problems in the field.Comment: To appear in CVPR 201

    Image-guided Simulation of Heterogeneous Tissue Deformation For Augmented Reality during Hepatic Surgery

    No full text
    International audienceThis paper presents a method for real-time augmentation of vas- cular network and tumors during minimally invasive liver surgery. Internal structures computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Com- pared to state-of-the-art methods, our method uses a real-time biomechanical model to compute a volumetric displacement field from partial three-dimensional liver surface motion. This permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Real-time augmentation results are presented on in vivo and ex vivo data and illustrate the benefits of such an approach for minimally invasive surgery

    Learning Human Motion Models for Long-term Predictions

    Full text link
    We propose a new architecture for the learning of predictive spatio-temporal motion models from data alone. Our approach, dubbed the Dropout Autoencoder LSTM, is capable of synthesizing natural looking motion sequences over long time horizons without catastrophic drift or motion degradation. The model consists of two components, a 3-layer recurrent neural network to model temporal aspects and a novel auto-encoder that is trained to implicitly recover the spatial structure of the human skeleton via randomly removing information about joints during training time. This Dropout Autoencoder (D-AE) is then used to filter each predicted pose of the LSTM, reducing accumulation of error and hence drift over time. Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists. The proposed protocols can be used to assess generated sequences of arbitrary length. Finally, we evaluate our proposed method on two of the largest motion-capture datasets available to date and show that our model outperforms the state-of-the-art on a variety of actions, including cyclic and acyclic motion, and that it can produce natural looking sequences over longer time horizons than previous methods

    Deformable Groupwise Registration Using a Locally Low-Rank Dissimilarity Metric for Myocardial Strain Estimation from Cardiac Cine MRI Images

    Full text link
    Objective: Cardiovascular magnetic resonance-feature tracking (CMR-FT) represents a group of methods for myocardial strain estimation from cardiac cine MRI images. Established CMR-FT methods are mainly based on optical flow or pairwise registration. However, these methods suffer from either inaccurate estimation of large motion or drift effect caused by accumulative tracking errors. In this work, we propose a deformable groupwise registration method using a locally low-rank (LLR) dissimilarity metric for CMR-FT. Methods: The proposed method (Groupwise-LLR) tracks the feature points by a groupwise registration-based two-step strategy. Unlike the globally low-rank (GLR) dissimilarity metric, the proposed LLR metric imposes low-rankness on local image patches rather than the whole image. We quantitatively compared Groupwise-LLR with the Farneback optical flow, a pairwise registration method, and a GLR-based groupwise registration method on simulated and in vivo datasets. Results: Results from the simulated dataset showed that Groupwise-LLR achieved more accurate tracking and strain estimation compared with the other methods. Results from the in vivo dataset showed that Groupwise-LLR achieved more accurate tracking and elimination of the drift effect in late-diastole. Inter-observer reproducibility of strain estimates was similar between all studied methods. Conclusion: The proposed method estimates myocardial strains more accurately due to the application of a groupwise registration-based tracking strategy and an LLR-based dissimilarity metric. Significance: The proposed CMR-FT method may facilitate more accurate estimation of myocardial strains, especially in diastole, for clinical assessments of cardiac dysfunction

    Real-World Repetition Estimation by Div, Grad and Curl

    Get PDF
    We consider the problem of estimating repetition in video, such as performing push-ups, cutting a melon or playing violin. Existing work shows good results under the assumption of static and stationary periodicity. As realistic video is rarely perfectly static and stationary, the often preferred Fourier-based measurements is inapt. Instead, we adopt the wavelet transform to better handle non-static and non-stationary video dynamics. From the flow field and its differentials, we derive three fundamental motion types and three motion continuities of intrinsic periodicity in 3D. On top of this, the 2D perception of 3D periodicity considers two extreme viewpoints. What follows are 18 fundamental cases of recurrent perception in 2D. In practice, to deal with the variety of repetitive appearance, our theory implies measuring time-varying flow and its differentials (gradient, divergence and curl) over segmented foreground motion. For experiments, we introduce the new QUVA Repetition dataset, reflecting reality by including non-static and non-stationary videos. On the task of counting repetitions in video, we obtain favorable results compared to a deep learning alternative

    Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information

    Get PDF
    In this paper we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view image sequence. In contrast to prior motion information based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology by a successive iterative merge process. The iterative merge process is guided by a skeleton distance function which is generated from a novel object boundary generation method from sparse points. Our main contributions can be summarised as follows: (i) Unsupervised complex articulated kinematic structure learning by combining motion and skeleton information. (ii) Iterative fine-to-coarse merging strategy for adaptive motion segmentation and structure smoothing. (iii) Skeleton estimation from sparse feature points. (iv) A new highly articulated object dataset containing multi-stage complexity with ground truth. Our experiments show that the proposed method out-performs state-of-the-art methods both quantitatively and qualitatively
    • …
    corecore