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Multiframe Temporal Estimation of Cardiac Nonrigid
Motion

John C. McEachen, IMember, IEEEArye Nehoraj Fellow, IEEE and James S. DuncaBenior Member, IEEE

Abstract—A robust, flexible system for tracking the point to  surfaces in images. This paper is considered a more thorough
point nonrigid motion of the left ventricular (LV) endocardial  extension of initial results presented in [2]. Although LV motion
wall in image sequences has been developed. This system igs strongly three-dimensional (3-D) in reality, we intentionally
unique in its ability to model_motlon trajectories across multiple constrain our efforts in this paper to two spatial dimensions
frames. The foundation of this system is an adaptive transversal “ pap s P
filter based on the recursive least-squares algorithm. This filter tO facilitate the development of multiframe temporal models
facilitates the integration of models for periodicity and proximal of LV motion. The effectiveness of this approach becomes
smoothness as appropriate using a contour-based description apparent when comparison is made between the estimated
of the object's boundaries. A set of correspondences between qiinn trajectories and the actual motion of markers implanted

contours and an associated set of correspondence quality measures the heart wall. To dat littl h has f d
comprise the input to the system. Frame-to-frame relationships in the heart wall. 10 date, very litie research has tocused on

from two different frames of reference are derived and analyzed the development of multiframe temporal models for the heart
using synthetic and actual images. Two multiframe temporal despite the desire to quantify wall motion over the complete
models, both based on a sum of sinusoids, are derived. lllustrative cardiac cycle and the availability efpriori knowledge of gen-

examples of the system's output are presented for quantitative 5| \ya|| motion characteristics, especially its approximately
analysis. Validation of the system is performed by comparing periodic nature

computed trajectory estimates with the trajectories of physical e o .
markers implanted in the LV wall. Sample case studies of marker Periodic nonrigid motion can be observed throughout our
trajectory comparisons are presented. Ensemble statistics from daily lives in both people-made and biological forms. Some typ-
comparisons with 15 marker trajectories are acquired and ana- jcal mechanical examples might be the deformation of a loaded
lyzed. A multiframe temporal model without spatial periodicity automobile tire as it rolls down a highway or the surface move-

constraints was determined to provide excellent performance with tofab ina ball. S biological les include th
the least computational cost. A multiframe spatiotemporal model MeNt 0 a bouncing ball. some biological éxamples include the

provided the best performance based on statistical standard €xpansion and contraction of the lungs during breathing and, of
deviation, although at significant computational expense. course, the beating of the heart. The periodic parameter of all of
Index Terms—Harmonic estimation, heart motion, nonrigid mo- .these examples is OinOUSIV dependent on some environmental
tion, recursive least squares (RLS) filtering, spatiotemporal anal- influences, however, in most cases when the event has reached
ysis. a steady state, a cyclostationary condition can be reasonably as-
sumed.
This is particularly true in the case of gated cardiac image
acquisitions, where the acquisition process is triggered by the
HIS PAPER describes a new multiframe technique feflectrocardiographic signal (ECG). Many acquisition cycles are
tracking and quantifying the motion of a contour repreaveraged together to produce one final image sequence. Hence,
senting the left ventricular (LV) endocardial boundary from although there may be slight variations in the actual periodic
sequence of two-dimensional (2-D) diagnostic medical imaggmrameter of the heart, the post-acquisition data does not contain
The approach emerged from research [1] into the more genearas information.
problem of understanding the nonrigid motion that might be
associated with deformable objects’ bounding contours apd potivation

I. INTRODUCTION

Measurement of physical parameters that aid in the analysis

. . . . of cardiac LV function are important in assessing regional my-
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Fig. 1. Depiction of how contours are taken from their respective images and stacked in a sequence, creating a 2-D manifoiylandicenfour spaca).

B. Related Efforts in Image Sequence Analysis series to find cardiac boundaries from ultrasound sequences. Pe-

The efforts conveyed in this paper were motivated largely bggdic models are also applied in the estimation of circular op-

cause of the obvious relationship of object motion to the stufg@! flow in [16]. , _ ,
of natural (e.g., anatomical and/or biological) objects. This con- 1 € major thrust of research in harmonic analysis has focused
tinues to be an area ripe for more attention [4], [5]. on one-dimensional (1-D) signals where the fundamental fre-

Snakes, or active contour models, have been the prim&@eNncy is unknown (e.g., [17], [18]). In contrast, the research

focus of many recent efforts (e.g., [6]-[11]). This method us this article deals with a known fundamental frequency. The

a physically based description of the contours to constrain ti&in contribution of this work, use of multidimensional comb
solution of movement to future frames. The physical modfi|tering to constrain the system solution, is a relatively new per-

requires detailed prior knowledge of stifiness and mass char§€Ctive.
teristics which are often not available. Generalizations are often
made to counter this problem, but this severely compromisgs
the premise of the method in the first place. Finally, all of The tracking of specific points on the deforming LV contour
these methods are frame-to-frame iterations and do not takeough a multiframe temporal sequence is an issue that has
advantage of any temporal trends, particularly periodicity. often been avoided by researchers within the medical imaging

Additional efforts in 2-D tracking related to the frame-tocommunity. For example, many LV motion quantification ap-
frame approach have been proposed [12]-[14]. The first typwoaches simply use information present in, or derived from,
approaches differ in the term used for regularization of the flothe end-diastolic (ED) and end-systolic (ES) image frames. The
vectors. Additionally, [12] uses an interpolation scheme to quallv actually goes through a temporal wave of contraction, with
tify shape between subsampled shape features. The worldiffierent types of deformation and movement occurring at each
[13] also optimizes a cost functional over the space of the cdieation on the heart wall. Each point effectively follows its own
tour, however the resulting minimization is highly nonlinear andnique (but locally coherent) trajectory within a 3-D Euclidean
significantly more complex due to the requirement for magspace over the time. This has been shown to be very importantin
ping shape-based contour correspondences back into Euclidstaidying coronary artery disease [19]. Despite this need, a fully
space values to compute the smoothing term of the functionalutomated, reproducible and robust approach to tracking and

The technique of harmonic analysis and enhancement usedirantifying visually-apparent point-wise trajectories of move-
this article is well established. While not specifically related tment on the heart wall from complete image sequences has not
motion tracking, the work of [15] uses periodicity with a Fouriebeen previously developed.

Related Efforts in Medical Imaging
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Interpolated Trajectories Matching with Nearest Euclidean Distance

Fig. 2. Comparison of exterior phantom trajectory estimates for various frame-to-frame tracking methods. Upper left: interpolated trajectaties f
landmark. Upper right: estimated trajectories using nearest Euclidean distance mapping. Lower left: estimated trajectories using thesjacdideettnod.
Bottom: trajectory estimates using the contour-space method.

An approach that is noninvasive and advantageously utilizége to the noise associated with nonhomogeneous material
the new imaging technology of magnetic resonance (MR) &dong boundaries. It does, however, provide a considerable
create markers or tags is termed “MR tagging” or “MR spin-taggmount of general information regarding global LV motion. An
ging” [20], [21]. This method has several drawbacks, includingttempt at incorporating phase contrast velocity information
the fact that the tags do not typically last over the entire camrith the methods of this paper is discussed further in [28].
diac cycle and that the more tags there are, the poorer the backfFhe study in [29] describes important research that attempts
ground image signal to noise (making it harder to see the watts track point trajectories over time using a sequence of im-
of the LV). Another key point is the denser the number of taggjes. These efforts were carefully validated using dog hearts,
in each image, the more difficult the correspondence problemanid are cited as a prominent supporting argument for the idea
matching tags between image frames in the temporal sequerddracking shape landmarks through time.
although an approach using deformable models has been prdseveral other approaches for tracking the nonrigid motion of
posed to address these issues [22]. The potential yield obtaicaddiac surfaces have been offered in recent years. Most notably
by integrating these methods with geometric models, such asthe work in [14], [30]-[32]. However, none of these methods
one of this paper, appears significant. addresses the requirement for a multiframe temporal model. The

Phase contrast approaches to MRI motion analysis hawerk in [14], specifically develops a 3-D shape-based tracking
shown promising gains over previous MR signal encoding tecimethod that is analogous to the 2-D shape matching method of
nigues such as spin tagging [23]. Van Dijk and others [24]-[2Bection II. The potential use of this 3-D shape-matching method
have suggested use of the MR phase to record cardiac wailhin the temporal framework of this article is explored further
velocity measurements using a spin echo gated MR imagiag a system extension in [33].
sequence. The phase-contrast method initself is does not appe&ome initial analysis examining the temporal aspects of car-
suitable for tracking point-wise trajectories along the LV wallliac motion has been done in [34] and [35]. While presenting
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Fig. 3. Comparison of exterior phantom trajectory estimates from different configurations of RLS filter. Left: trajectory estimates usingdiz teode!.
Right: Trajectory estimates using the spatiotemporal model.

novel approaches to modeling the temporal aspects of cardixed bym;,; € [0, N] that are established on the contour at
motion, neither of these efforts takes advantage oftpeiori  ¢;;. This mapping can be viewed as an the initial estimate of a
knowledge of periodicity in developing a global temporal corfinal mapping.
straint. One additional outcome of this process is match confidence
measures. The need for confidence measures is brought about
by notions of 1) how matches in any one region are treated in
This approach to tracking and quantifying nonrigid motion, ithe sense of their relative strength when compared with matches
based upon several important assumptions. First, it is assuneeghted in other local regions and 2) how decisions are handled
that the boundary of the endocardial wall must be extracteditpregions where there are many plausible matches. Thus, the
provide an estimate of its location in each image frame. Secoggrength and uniqueness of a match are used to help drive the so-
it is assumed that a set of reliable tokens—segments with digtion of the overall flow field. Guided by the work in [38], two
fined geometric properties—can be derived from the extractednfidence measures modeling these characteristics are defined,
boundaries. Third, the motion is such that the tokens changsth based upon the profile of the bending energy within each
only a small amount from frame to frame. Finally, the wall momatch search region. Details of the derivations of these values
tion is assumed to be approximately periodic. Given these age presented in.
sumptions an algorithm has been developed for computing NonThe objective at this juncture is to find a vector flow field that
rigid object motion from a sequence of images. corresponds points on two contours found from two consecutive
The object boundary is modeled as a closed deformable c&mporal frames in an image sequence by seeking a compro-
tour using a parametric model as discussed in [36]. A sequeRgRe between adhering to the points where the segments of the
of contours output from this method provides input for our mukontours best match and adhering to the model where adjacent
tiframe nonrigid motion tracking system. The presentation gfints on the contour move smoothly. Two possible approaches
this system begins with a review of previous methods [1], [3] fqf solving this problem have been proposed, each having po-
frame-to-frame motion tracking that led to the development @dnial advantages and disadvantages. These two approaches are
the present temporal models. Two temporal models are then ggscribed in greater detail in [3].

rived based on assumptions of periodicity. An adaptive filtering The first approach, referred to herein as the Euclidean space

framework is derived based on these models and our frame_ﬁ?()del, views the initial shape matched correspondences as a

frame prqugl relationship. Experiments on synthgtlc and aCollection of vectors in the Euclidean space of the image. Specif-
_tual me_dlcal mages are perfqrmed and quantitative Comp?(f'lly, the normal and tangential components of the vector asso-
isons with trajectories of actual implanted markers are evaluata ted with the shape match from point on the initial contour
for single cases as well as a small ensemble of sequences. to pointm?, ; on the displaced contour are stacked into a vector.
Combining this with a first order difference operator and a di-
agonal match confidence matrix, the solution of the resulting
In this approach, initial correspondences between points opgtimization problem yields a best compromise between shape
given contoulC; and points on a successive displaced contoaratch adherence and smooth proximal. Once the smooth flow
C;+1 inthe sequence are found by matching shape propertiediefd has been computed, the resulting vectors may or may not
contour segments surrounding each of the points as descrile&tend from the first contour to the second. This occurs because
in [37]. Two sets of corresponded points result: An originalljhe above functional contains no explicit constraint on the fea-
ordered, monotonically increasing set, indexed#dy= m = sible solution space. Currently, this is overcome by simply map-
[0, N] on the contour found &, and a corresponded set, in{ping each vector to its closest point on the second contour. Un-

D. Assumptions Used in this Work

Il. FRAME-TO-FRAME ESTIMATION
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Nearest Euclidean Distance —+—
5L Euclidean Space Frame-to-frame -&--
Contour Space Frame-to-frame -»--

Temporal Model -~#--
Spatiotemporal Model -

Average Frame-to-Frame Error Magnitude (Pixels)

(b)

Fig. 4. (a) Average error magnitude over all trajectory estimates at a given frame for the phantom experiment illustrated in Figs. 2 and 3. (bjp§amopieem
object in rigid motion used for initial verification of the tracking system. The bumps at 45, 135, 225, dhar8 ®nsidered landmarks for tracking. The overlaid
white vectors are the trajectories of the landmarks as they travel through the motion test sequence.
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fortunately, this occasionally results in awkward or physically TABLE |
implausible mappings. This characteristic and the associated ac- QUANTITATIVE COMPARISONS OF
. . . , - TRAJECTORY ESTIMATES MADE FROM NEAREST EUCLIDEAN DISTANCE
cumulated noise limit this method’s utility for further develop- corresponpENCEN), EUCLIDEAN SPACE REGULARIZATION (E), CONTOUR
ment with temporal models. SPACE REGULARIZATION (S), RECURSIVE FILTERING USING THE TEMPORAL
The second approach referred to as the contour space moM EL (T), AND RECURSIVEFILTERING USING THE SPATIOTEMPORAL MODEL
. ' ! L. . ) WITH TRAJECTORIESINTERPOLATED FROM THEFOUR LANDMARKS AS
constrains the solution space of the optimization problem to SHOWN IN FIGS. 2 AND 3
the displaced contour. The mapping from a given point, on
the initial contour to a pointy; , on the displaced contour iS  Method | Mean Err. | Std. Dev. | Avg. Temp. | Avg Mean | Std. Dev.
characterized by an increasing, monotonic functigiy,;) = of Mean Err. | Std. Dev. | Disp. Err. | Disp. Err.
m}, . Discrete values ab;(m;) are stacked to form a mapping N 2.72 1.36 1.89 0.603 0.626
vector, m*"?¢, Again, as described in [3], a diagonal confi- B 1.35 0.648 1.45 0.0531 0.472
dence matrix is defined?. In this S|tgat|oq¢i(mi) is encour- S a7 0.861 122 0.313 0.654
aged to adhere toaone-to-one reIatlon§h|p, .hence a sef:ond (o] (R 198 12 106 00153 0.648
difference matrix DD, is used wherd is a first order differ- ST 104 113 1.03 0.0a25 | 0.564

ence operator. The cost function for the best estimatg, of
the mapping vector is then

A. Modeling Temporal Periodicity

m* = arg Irgln [F] The continuous periodic mapping functiofi(s, t), refer-
enced above, can be viewed as a sum of sine waves whose

= are mi _ shape\T _ shape - ' )
e [(m m ) C(m —m ) frequencies are integral multiples of the lowest (or funda-

+m"D"D"DDm] . (1) mental) frequency. Such a function is said to be harmonic. The
trajectory of a single discrete poiry,, on this spatiotemporal
The global minimum of this convex function is manifold can be approximately modeled as follows:
T —1 h ¢(So, L) =m;
m* = (C+D'D'DD) ' Cm*"¥°, 2 R
= Z A, sin(rw,i + yi,.) 3)

The vectorm™ can be viewed as the nearest local minimum
on this optimization surface which qualitatively represents a
vector flow field that contains a compromise between 1) theherew, = (27 /T) is the fundamental frequency of the con-
best local matches for all points on the first contour to tHeur deformation over time. The indexrepresents harmonics
second contour, with each match being weighted accordingabw,. A, ands,. are the amplitude and phase of thgth har-
uniqueness of the shape in the match region and 2) requirimgnic component of;. R is assigned to represent the highest
each of these vectors to have a magnitude and direction te@nificant harmonic of,, and: represents a discrete time frame
smoothly agrees with its spatially neighboring vectors. Addwithin the range of.
tionally, posing the optimization problem in the contour space Through standard trigonometric manipulation, (3) can be ex-
implicitly constrains the displacement vectors to the contoupsessed as
themselves. It also forces the solution to be a linear filter.

r=1

R
m; = Z G cO8(Tw,t) + h,. sin(rw,i) 4)
IIl. M ULTIFRAME ESTIMATION r=1
The representation of endocardial motion of the previous S&fhereg, = A, sin(¢,.) andh, = A, cos(s),).
tion is periodic in both contour spacex{ € [0, N]) and time If we assign & = [cos(w,i) - - -cos(rwoi) - - -
(¢ € [0, T)). This is a unique aspect of the problem of trackingOS(Rwoi)’ Sin(w,i) - - - sin(rw,i) - - - sin( Rw,i)] and

LV wall motion in 2-D which has not been previously exploited,, — [91Gr- - gR, h1 - hn---hg]T (4) can be expressed

In both models presented in this section, all the frame-to-frarag a vector product

continuous mapping functions of an image sequence are con-

solidated into one 2-D functiony(s, t), representing the en- m; = EMm.- (5)

tire manifold (Fig. 1). With a spatial constraint (local smooth-

ness) incorporated into the frame-to-frame relationship of theNote that (5) represents a single trajectdiye [0, 77| (where
previous section, we first concentrate on modeling the tempof&ls the number of frames in the image sequence). We wish to
dimension alone using a sum of sinusoids. The next section eevelop an expression for each of tNetrajectories associated
amines an extended spatiotemporal version of this model cauith our frame-to-frame mapping vectan;, that will allow us
pling periodic trends over both contour space and time. The so-define a system equation in subsequent sections. Values of
perscripts(T) and (ST) are used in these two sections exclugs) Vm; € m; and a given framej, can be determined using
sively to delineate between variableg{?, =(*7) modeled after the following vector product:

the temporal dimension alone and variab${’, =(57)) em-

ploying spatiotemporal modeling. m; == p™ (6)
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wheren@ = [nF - pZ ... LT and={" is As in Section IlI-A, (5T) represents a parameterization of
the entire manifold suitable for use as a state vector. Itis impor-

[ & ] 0 - 0 - 0 tant to note that although we arrived at a definition &P

.. 4 : andn‘*?) in a manner similar to the definition & and,(™?,
0 o [ & ] o0 : : ) S .

_ _ 25T andn5T) of this section are a significantly different rep-
Lo o - 0 ([) e (]) resentation ofi(s, ¢) than those derived in the previous section.
0 ... 0 &

=) is of size N x 2RN and represents the cosine and sing' Adaptive Estimation

terms for a given. EET) can be viewed as a sinusoidal basis The design of a Wiener filter [39], which is optimum in the
transformation matrixy*’ is of size2RN x 1 and represents mean-square sense, requiagsriori information about the sta-
phases and amplitudes of harmonic componefifs. can be tistics of the data processed. Whepriori information is not
viewed as a sinusoidal parameterization of the entire manifaslailable, the Wiener filter design is either not possible or no

(i.e., all of the harmonic trajectory information is containetbnger optimum. An efficient alternative approach that may be

within 5(4). used in such situations is an adaptive filter.
_ _ o An adaptive filter is a self-designing device that relies on a re-
B. Modeling Spatiotemporal Periodicity cursive algorithm for its operation. The use of a recursive algo-

As stated at the beginning of this section, the representatior/§pm makes it possible for the filter to perform in environments
endocardial motion employed in this system is periodic in bo#here complete knowledge of the relevant signal characteristics
contour spacer; € [0, N]) and time ¢ € [0, 7). Section is not available. In a stationary environment, the recursive algo-
III-A presented a model focused solely on the temporal prior. [#hm actually converges to the optimum Wiener solution in a
this section, a model is constructed that is based on the periogftistical sense after successive iterations [40].
nature of both time and contour space. The classic method of least squares approach differs from

As before, all the continuous mapping functions are consdldiener filtering in that it is deterministic in its formulation from
idated into one 2-D functionj(s, t), and expressed as a sunihe start. The method of least squares minimizes an index of
of sinusoids. This time, however, a term dependent on contdiffformance consisting of the sum of weighted error squares,
spaces, is included. Recals represents arclength of a contoukvhere the error is defined as the difference between some ob-

that is typically closed, henceis periodic in nature. A more Served response and the actual filter output. The recursive least
general form of (3) is defined as squares (RLS) algorithm uses a transversal filter similar to a

Wiener filter as the structural basis of the adaptive filter.
AL ] The above reasoning supports the use of an RLS driven adap-
P(s, i) = Z Z Agr sin(quos +rwoi + ) (7)) tive filter for estimating pointwise cardiac motion trajectories.

g=1 r=1 To date, no statistical information is available or can be reason-
wherev, = (2r/N) is the fundamental frequency over th@blY approximated that accurately represent.s point\_/vise cardigc
space of the contour and, = (2r/T) is the fundamental fre- mot|on. Conseq_utlen'gly,. our approach Fo cardiac motlon analysis
quency of the cardiac cycle over time. The indesepresents 1S purely de_termlm_stlc in nature. Add|t|onally,_the linear models
harmonics ofi,,, and similarlyr indexesw,. A, , andy,_, are developed in Sections Il, llI-A, and 111-B facilitate the use of a
the amplitude and phase of the )th harmonic component of ransversal filter. S
(s, t), respectively() andR represent the highest significant "€ shape-based correspondence vectanp,“”"Vi €
harmonics ofy, andw,, respectively, andrepresents a discretell: 71, are viewed as the observed response in the RLS

time frame within the range df scheme. Eithem™ or »*T) may be substituted for in
Through standard trigonometric manipulation this can be 1€ following section depending on the choice of temporal
pressed as model from Section 1lI-A. Equation (2) established a re-

lationship that will define the observation equation. If we

Q assignH = (C + DTDTDD)~!C (recall thatC represents
P(s, i) = Z Z q,r €OS(qUoS + Tw,1) the correspondence confidence matrix ddds a first order
g=1 r=1 difference operator), and note thHt is positive definite, (2)
+ hy r SI(qUes + TW,1) (8) and (6) can be combined an®"*** = H;'Z; + v; where

v; represents observation error at frafrdue to the truncation

whereg,, » = Ag, sin(tg, ) andhy,» = Ag » c0s(¢q,»)- FOI ot harmonics, proximal smoothing and the accompanying
the purpose of developing a system equation, (8) can be cgetermined relationshipdim m; # dim 7). Recall thatS;

verted.i.nto a vector productin the following manner for a giveg the sinusoidal basis transformation matrix of Sections I1I-A
frames: and 1l1-B, where the choice betwe&i?’ and=(57) depends
—(ST) (sT on the selection of temporal model. For convenience we assign
m; = = )77( ) 9) 1 : : . .
¢ i G, = H, "E,. This provides us with the following:
where m; is the mapping function for frame, 1) =
[91,1- 91, Ry 92,1 92, R 9@, R, h1,1---hg,r]", and )
2(57) js the dimensioV x 2QR. 7°T) of dimensior2QR x 1. m" " = G;n+ v;. (10)

T
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Equation (10) is considered the observation equation becaus
relates the data-derived shape-based mapping to the state ve
The following development of the RLS filter is based upo
work in [41]. The difference between our observed value g
mf'“”’e, and the estimated mapping&;n, in (10) is the

observation errory;, hence the index of performance we wist
to minimize, T, is defined as follows:

N
T = Z [un |2 (11)
n=1

whereN remains thelim m. The optimum value of for which
the performance inde&;, attains its minimum value is obtained
by solving the classic least squares relationship

D5 =0, (12)

where the correlation matri®,, is of size2RN x 2RN or
2QR x 2QR, depending on the temporal modet{? or

=(5T)—R is the number of temporal harmoni¢g the number T
of spatial harmonics)p,, is defined by
2,=3 @ra, (13
=1
©,, represents the cross-correlationmf*?¢ andG as
e, = zn: GImhore, (14) ST
=1

A recursive relationship fo®,, may be derived by first iso-
lating the term corresponding fo= n from the rest of the sum-
mation, allowing (13) to be written as

Fig. 5. Qualitative comparison of trajectory estimates from all configurations
b —d + GG (15) for a typical image sequence. Clarity is achieved in this case by dividing the
n = *n-l n oo sequence in half-frames one through ten (on left) (ED to ES), and frames 11
. . through 16 (on right) (ES to ED). Note the divergence of trajectories estimated
Note that the matrixGZ G,, plays the role of a corrective term.uwith the frame-to-frame methods as compared to those from the RLS filter.

In a similar fashion, (14) can be used to derive the following
recursion for updating the deterministic cross-correlation

) The rightmost term of (19) is referred to as theriori es-
vector:

timation error and is defined as,, = m"?° — G, 7,_1.
O, = On_1 + G mere, (16) The producis,, 7,1 represents an estimate of the observed re-
sponse based on the old least squares estimate of the state vector,
To compute the least-square estimatejdbr G in accor- 7, that was made at time — 1.
dance with (12), the inverse of the correlation matfix, needs  The single constraint on the initial conditions of the RLS al-
to be determined. If we |&P, = ®_!, using basic inversion gorithm is imposed by (17}, must be chosen so that the co-

techniquesP,, can be expressed as variance matrix®g, is nonsingular. For the experiments of this
article, Po = AI whereA = 10000. This causes values of
P,=P, 1 —K.,GPn_ (17) K to be nearly 1, thus forming initial estimates based primarily

on the observed data until the system learns further information
about temporal trends. The choice for the initial value of the
state vectory, = 0, is illustrative of the initial lack of statis-
tical knowledge associated with this problem.

The final step in our RLS formulation is to develop a recursive The final state ofj is retrieved after successive iterations of
equation for updating the least-squares estimateatiteration the adaptive filter have satisfi¢dy,, —c(r—_1),| < 0.01 where

n. Using (12), (16), and (17) the new estimate of the state vectbriS the number of frames in the image sequence. The value
is formed 0.01 was chosen because it represents an average error of 0.1

pixels—enough to ensure no change occurs between cyclic iter-
Tin = 1 + Kn(m"% — G, 7, _1). (19) ations of discrete mapping function versions. The quafitity
incorporated to ensure the information from a complete image

whereK,, is the RLS gain matrix and is defined by

K,=P,_.G'(Iy+ G,P,_;G)™ . (18)
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an image sequence of simulated motion is analyzed to verify
basic intentions of system design and performance. Studies of

E e, . . .
N sample cardiac image sequences are then presented for qualita-
,(S tive evaluation. Validation comparisons are made with the mo-
S tion of physical markers actually implanted in the heart wall.

A Finally, an ensemble of cardiac image sequences is examined to
Lo obtain a statistical sense of system performance in general.
e S For brevity, the following abbreviations are used in tables and
S [ S figures throughout this section to denote the various filtering

‘ oy methods described in Sections Il and IIEY—Euclidean-space
frame-to-frame tracking; {)—Contour-space frame-to-frame
tracking; (")—RLS filtering employing the temporal model;
and (S7)—RLS filtering employing the spatiotemporal model.
- (¥ Ais not applicable). Rows of tables in boldface highlight the
B . ! best performance parameters of the group under consideration.

ST R — A. Evaluation

. ' ' The noninvasive requirement for tracking cardiac motion
makes verification of estimated trajectories particularly diffi-

] Lo : cult. Additionally, as we will see with the imaged phantom,

I even pointwise trajectories of a known global rigid motion
A are not entirely intuitive. A clearly visible implanted marker
may be used to provide a reference landmark on the LV wall,
however, this represents one trajectory of many along an
entire contour which by its very nature deforms differently in
different regions. Details of the marker implantation technique
can be found in [29]. Unfortunately, implanting more than a
few markers along the LV wall increases the amount of stress
the heart is under and causes the heart to function abnormally
or not at all.

Fig.6. Comparison of estimated trajectories for each tracking method with the COnsequently, both qualitative evaluation and marker com-
marker. Each graphic is divided into two temporal sections for clarity. Estimatgrgarison should be considered in appraising the performance of

trajectory is in black. Marker trajectory is in grey. As before, the graphics a ; : [ ;
divided into two temporal sections, frames 1-9 on the left and frames 10—16{(')2]ne methods of this article. Qualitative assessments prOVIde a

the right. Note how closely RLS filtering with the spatiotemporal model (STg€Neral idea of the shape-related motion for all points over the
estimates the true trajectory. image sequence. Marker comparisons provide a measure of lo-

cally specified motion.
TABLE I The magnitude of the difference between estimated corre-
QUANTITATIVE ANALYSIS OF THE TRAJECTORIESSHOWN IN FIG. 6 L . .
spondence and marker location in Euclidean space is the method

ST

Method | # Harmonics Max Err. | @ Frame | Mean Err. | Std. Dev. | Mean/Disp. Of error measurement Used predominantly throughOUt th|S Sec-
= - Py 5 o5 060 s tion. This error measure was chosen because knowing the corre-

s Na 3.00 15 0.98 087 118 spondence location at each point in time and the temporal corre-

T 16 137 1 0.61 0.50 0.70 spondence flow over the sequence are the primary objectives of
ST 16 1.32 5 0.55 0.40 0.65 the trajectory estimates and the most appropriate basis for fur-

ther strain analysis. Additionally, the standard deviation of the

rror is used as a significant measure of trajectory flow error be-

sequence cycle is considered before the filter iteration_is brou% tise it highlights consistency in the mean error measurement.
to a halt. In the_ case of the temporaQI mod_el,.sut.)stantlal Compu'Quantitative assessments of marker comparisons are pre-
tatlo_nal reductl_ons, on the order of multlpllcatlons, can be ented in tables throughout this section. Specific categories of
realized by taking advantage of the highly banded nature of tﬁgta examined are as follows

err_l?t: cov?rl[gnce matr')P’.“ determined b . t the fol Max Error Maximum single frame distance, in
lowi © solufion ma5P|rlg*|s_ i?fm#? fi y (I:arrymg outthe fol- pixels, between the marker correspon-
owing assignmenti: m; = Z;7. This final mapping repre- dence and the estimated correspon-

sents a shape-driven, spatially and temporally smooth, and pe- dence occurring over all frames of the

riodically constrained solution to the posed problem.

sequence.
@ Frame Frame at which the maximum single
IV. SYSTEM EXPERIMENTS frame error occurred.
The intent of this section is to provide a thorough examination Mean Error Mean distance between the marker

of the relevant critical parameters of system performance. First, correspondence and estimated corre-
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Fig. 7. Comparison of trajectory estimates with two corresponding implanted marker trajectories. The sequence is divided into three tempofal skity.
Top: trajectories estimated with the Euclidean space frame-to-frame approach (shown in black) compared with marker trajectories (showpjiegneigdle:
trajectories estimated with the contour space frame-to-frame approach (shown in black) compared with marker trajectories (shown in greyjdleovRirSni
filtered trajectories estimated with the temporal model (shown in black) compared with marker trajectories (shown in grey). Bottom: RLSdjéet@tes
estimated with the spatiotemporal model (shown in black) compared with marker trajectories (shown in grey).

Std. Dev.

Mean Disp. Error

spondence, in pixels, computed for all Mean/Disp. Mean of the single frame correspon-
frames of the sequence. dence error divided by marker displace-
o ment over all frames of the sequence.
Standard deviation of the correspon-
dence error, in pixels, computed for allB. Simulated Motion
frames of the sequence. To provide an initial testing environment, a cylindrical
Average difference in trajectory disPhantom Fig. 4(b) was imaged (512 x 512 pixels) as it un-
placement, in pixels, computed for aliderwent a periodic rigid arcing motion. The exterior of the
phantom had four distinct shape landmarks for use in verifying

frames of the sequence. | ' 3 T
tracking methods. Figs. 2 and 3 are provided to allow qualitative
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TABLE Il of the frame-to-frame methods on this study are presented in the
QUANTITATIVE ANALYSIS OF THE TRAJECTORIESSHOWN IN FIG. 7. MARKER 1 upper two rows of Fig. 5. The Euclidean space method is par-
REPRESENTS THEHJPPERTRAJECTORY INFIG. 7 . . . . .
ticularly erratic in this contour sequence, indicated by the lack

Marker 1: of trajectories in certain areas along the LV wall. Many of the
Method | # Harmonics | Max Err | © Frame | Mean Frr | Std. Dev. | Mean/Disp.  {rgjectories finish the cycle far from their original starting po-
E NA 3.97 10 2.36 1.22 3.26 sition. The contour space method fares much better, providing
5 Na 265 6 138 0.92 188 stable trajectories all around the LV wall. There are still frequent
T 15 2:30 i 087 067 095 instances of trajectories not returning to their origin, however,
T d 158 i o74 | 0%6 991 in general this condition does not appear to be as significant as
Marker 2: with the Euclidean space method.
Method | # Harmonics | Max Bir | © Frame | Mean Bir. | Std. Dev. | Mean/Disp. Trajectory estimates from various RLS filtering configura-
E NA 216 i 092 07 120 tions are presented in the lower half of Fig. 5. One immediately
S NA 2.36 11 0.72 0.66 1.10

notices how the RLS filter produces much smoother and realistic
trajectories. There does not appear to be very much difference
between the estimates employing the temporal model and spa-
tiotemporal model in this study.

evaluation of trajectory estimates around the entire cylinder.2) Marker Comparison:As discussed above, comparison
In this example, 32 trajectories are illustrated. Trajectoriggth implanted markers provides a means for validating es-
interpolated from the movement of the four landmarks are ustihated trajectories, even though the extent of its usefulness
as the defining standard. Trajectories estimated using neaiessomewhat limited due to the lack of representation for
Euclidean distance correspondence [42] are provided as a cother regions of the LV wall. This section will concentrate on
trol reference. We note how our methods using frame-to-fraregamining specific cases of implanted trajectories and the error
regularization in Euclidean space and contour space both aisociated with estimated trajectories.

a satisfactory job of capturing the rigid arcing motion of the A graphic comparison between the trajectory of a single im-
cylinder. This is in stark contrast to the trajectories estimat@hnted marker and trajectory estimates from all the tracking
with basic nearest Euclidean distance mapping. We also nategthods is presented in Fig. 6. The most immediate observa-
however, that both frame-to-frame filtering methods fail ttion is how well all the methods estimate the LV wall motion
return to their origin. This problem is solved using recursivever the first nine frames. Although the Euclidean space method
filtering with temporal models as shown in Fig. 3. The trajectcstarts to drift off, it still maintains the relative flow of the marker
ries in this instance appear to be somewhat smoother over titregectory. Unfortunately, the contour space method falls off the
as well. This distinction is further illuminated in Fig. 4. Notemarker trajectory significantly after the ninth frame.

how the error curves of all our estimation methods are fairly flat The performance of both RLS filtered approaches is out-
indicating a flow that approximates that of the actual vectorstanding. The spatiotemporal model estimate in particular
In contrast, the nearest Euclidean distance mapping shamsost exactly mimics the motion of the marker. Note that
two humps that indicate frames where the actual trajectatye gray levels of this marker—as with all markers in this
has moved away from the estimate. The recursive filteregiticle—were smoothed over before edges and boundaries
trajectories present the most consistent profile of all methodere detected eliminating any possible bias the marker’'s shape
as well as the lowest overall error. Table | provides quantitativeight have provided. Thus, the trajectory of the marker had
comparisons of the trajectory estimates for all five estimatiabsolutely nothing to do with the estimate of this trajectory.

T 15 1.44 5 0.66 0.50 1.03
ST 15 0.97 11 0.31 0.33 0.48

methods illustrated in Figs. 2 and 3. Error analysis of this marker comparison for each of the
] tracking methods is provided in Table Il. As anticipated from
C. Sample Studies Fig. 6, the spatiotemporal model offers the best performance in

The experiments of this section are intended to providerms of mean error and error standard deviation.
in-depth examinations of specific cardiac image sequencesFig. 7 depicts a two-marker sequence in a comparison with
The image sequences examined are gated MR short-aeé&h methods’ estimates with their associated markers. In the
acquisitions (256 x 256 pixels) of normal canine hearts. kase of the Euclidean space frame-to-frame approach, we ob-
general, image sequences are 16 frames long. serve that the trajectories diverge from the actual tracks soon

1) Qualitative: Qualitative assessments on trajectory estinto the sequence and complete the cycle far from their initial
mates are made by examining the trajectory set as a whole $tarting position. With the contour space approach, we note that
characteristics such as smoothness and plausibility. In genetia trajectories diverge as well though not as significantly.
vectors should not cross or drift together over time. General ad-Examination of the RLS filtered trajectory estimates versus
herence to prominent shape features with a smooth flow amahg marker trajectories in Fig. 7 leads to some interesting obser-
neighbors are the ideal characteristics. vations. Although the spatiotemporal model drifts slightly from

Fig. 5 illustrates the estimated trajectories of various systdmth marker trajectories over the cycle, the flow of the trajec-
configurations for a typical short-axis canine MR image sdery estimates is almost identical, even at sharp turns. The esti-
quence. The sequence begins showing the most expanded vigates for the temporal model are quite good as well, although
of the LV, end-diastole (ED), cycling through the most corthe flow of the trajectories does not match that produced by the
tracted frame, end-systole (ES), and returns to ED. The resdfatiotemporal model. Table Il reconfirms the accuracy of the
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Fig. 8. (a) Plot of all cases of mean versus maximum error for the RLS filtered approaches. The data points enclosed in the box, indicate trajattenyfesti
large error due to torsional motion missed by the local shape landmarks. (b) Plot of all cases of mean error versus standard deviation for tad &bBditenes.
The data points to the right of the dotted line, indicate trajectory estimates of large error due to torsional motion missed by the local shage landmark

RLS filtered estimates discussed in Fig. 7 especially in termsfof an ensemble of image sequences. Trajectory estimates from
the flow criteria given by the standard deviation. all four tracking approaches were collected and compared
with 15 marker trajectories in 12 image sequences from
seven normal canine hearts. MRI parameter settings remained
consistent throughout all studies.

The purpose of this section is to present a basic statisticaFig. 8(a) depicts cluster plots of the mean error over a se-
analysis of tracking performance based on marker comparisquence versus the maximum single frame error within the same

D. Ensemble Studies
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TABLE IV periodically constrained. The system is not restricted to any one

MARKER COMPARISON SUMMARY . COMPARISON OF PERFORMANCE ON i i i i i i

DIFFERENT TRAJECTORY ESTIMATION METHODS ALL VALUES ARE IN |mag|n_g mOd.a“ty and can be applied to any object undergoing
PIXELS. THE PHRASE “# BEST' Is USED TO INDICATE THE NUMBER nonrigid motion.

OUT OF THE 15 TOTAL MARKER TRAJECTORIES INWHICH A SPECIFIC This system has been validated using MR image sequences
METHOD OUTPERFORMED ALL OTHER METHODS FOR THATERROR containing MR contrast markers actually implanted in the LV
MEASURE (E—BEJCLIDEAN, S—®NTOUR T—TEMPORALMODEL, . . .

ST—SBATIOTEMPORALMODEL) wall. In most cases, this validation process has shown the system

to be quite accurate. For this reason, the use of segment shape
Method | # Best | Avg. Mean | Std. Dev. | #Best | Mean | Std. Dev. appears suitable for determining contour correspondence in this
Mean Err. | Brror | (Mean Err) | Std Dev. | Std Dev. | (Std. Dev)  gpplication. With four of the 15 compared markers, however,

E 0 187 0.81 0 106 0.37 input comprised solely of shape-based correspondences pro-
5 ¢ 137 0.84 0 0.92 0-30 duced estimates which completely missed the actual motion.
T 8 118 0.72 4 085 035 These four marker trajectories exhibited a strong component
ST 7 1.28 0.90 11 0.76 0.27

of torsional motion (most likely due to 3-D out-of-plane mo-
tion). Consequently, a limitation of shape matching in 2-D is

. . its inability to accurately capture torsional motion occasionally
sequence. Fig. 8(b) illustrates clusters of the mean error ver YSsent in 3-D heart motion. However, 2-D motion captured in

';_he standard d?watlpn oflerrto ' vae (rjatsegutehncel. In ge;nf(iral, b&u way might be useful as a metric to compare visual motion
lgures present a nice cluster of data in the lower feft qua ). image sequences for database searching/sorting.

rant, indicating positive and consistent performance. Four of.l.he heart is a 3-D object undergoing motion in three-dimen-

the 15 markers, however, yield very poor estimates. These ¢ &8s, our primary objective in this effort was to develop geo-

highlight situations where a torsional component of motion “Hetric techniques which could be extended to 3-D. The results

ists that was not reflected in the movement of a characterisgi;thiS work show considerable promise toward that end and

shape feature along the wall. This is most likely an example esent a strong argument for using an adaptive filter with a pe-

out-of-plane motion a.nd fu_rther JUSt'f'Ca.t'on for extending th jodic temporal model when estimating the trajectories of heart
temporal models of this article to analysis of 3-D surface move.. 1\ otion in 2-D or 3-D

meEnt. inati f1h hi f Fia. 8 al id di This system establishes a framework from which a system for
xamination ot the grapnics of F1g. © alone provides no dig tracking might be constructed. Such a system is analyzed in
cernible difference in positive performance between estima

of the temporal model and those of the spatiotemporal modtr‘?]%re detail in [33]. In this circumstance, we’re concerned with
When examining negative performance data points (those fi f—:correspondenge of surface shapg pa_tches beﬂveen su.rfaces at
thor from origin) ghowev%r the temporal mgdel actually aﬁ_{fferent temporal instances. The objecpve function combines a
pears to hold an eéjge over ,the spatiotemporal model Th@gt 01_‘ be_st-matched_, shape-based motion correspoqdence_s with
when the spatiotemporal model performs poorly, it per.for QWelghtl_ng constraint based on the_d|s'Fance frqm immediate,
very poorly. ' n.f§e|ghbor|ng surface patches. This objective function can be rep-

1) Performance SummaryTable IV provides a summary of resented as a vector relationship which can be applied in similar
- y 'V It . Y O t5shion to the temporal model of this paper. Work in this area is
the ensemble statistics analyzed in this section. Interestin

L . : ¥fgoing.
RLS filtering using the temporal model provides the lowest av- In general, use of the temporal model is a prudent choice

erage ensem_ble mean error. This can be reinterpreted to M&GARN implementing the RLS filter. Although use of a spatiotem-
estimates using the temporal model land closer to the marker : L
. . poral model may offer some increased performance in instances
trajectories than any other approach. . . . ! .
. . of high quality contours with prominent shape variations, the
Estimates from the spatiotemporal model clearly outperform

. S erformance gain does not seem so significant as to justify the
the other approaches in terms of standard deviation of error. % ditional computational cost.

stated above, stan.dar.d dey|at|on of erroris a good indicator o In the future, new sources of correspondence could be used to
flow, hence RLS filtering with the spatiotemporal model pro-

. ) mprove incorporation o priori knowledge, such as a method
duces estimates that more closely approximate the flow of the . - ! L :

. : combining MR spin tags, shape and phase velocity information.
marker trajectories.

Additionally, new applications of the system to analysis of other
image-derived nonrigid object motion associated with the lungs
and brain or microbic organizms present intriguing possibilities.

V. SUMMARY

A flexible system for tracking pointwise nonrigid motion
in image sequences has been presented, analyzed and shown
to be useful in the application of tracking LV wall motion.
This system takes as input a set of initial correspondencedDr. L. Staib’s methods were used in segmenting the majority
and accompanying descriptions of correspondence quality.contours used in experiments. Dr. A. Sinusas performed the
It processes them with an adaptive filtering scheme usisgrgery and supervised the imaging of the canine subjects used
models for spatial and temporal smoothness and periodicityour experiments. Dr. T. Constable conducted the imaging and
as appropriate, then produces a set of sinusoidal parametems/ided assistance in processing and handling the data. The
that are transformed into quantified motion trajectories. Thauthors thank and appreciate each of these individuals for their
resultant trajectories are spatially and temporally smooth aassistance and insightful discussions.
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