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Multiframe Temporal Estimation of Cardiac Nonrigid
Motion

John C. McEachen, II, Member, IEEE, Arye Nehorai, Fellow, IEEE, and James S. Duncan, Senior Member, IEEE

Abstract—A robust, flexible system for tracking the point to
point nonrigid motion of the left ventricular (LV) endocardial
wall in image sequences has been developed. This system is
unique in its ability to model motion trajectories across multiple
frames. The foundation of this system is an adaptive transversal
filter based on the recursive least-squares algorithm. This filter
facilitates the integration of models for periodicity and proximal
smoothness as appropriate using a contour-based description
of the object’s boundaries. A set of correspondences between
contours and an associated set of correspondence quality measures
comprise the input to the system. Frame-to-frame relationships
from two different frames of reference are derived and analyzed
using synthetic and actual images. Two multiframe temporal
models, both based on a sum of sinusoids, are derived. Illustrative
examples of the system’s output are presented for quantitative
analysis. Validation of the system is performed by comparing
computed trajectory estimates with the trajectories of physical
markers implanted in the LV wall. Sample case studies of marker
trajectory comparisons are presented. Ensemble statistics from
comparisons with 15 marker trajectories are acquired and ana-
lyzed. A multiframe temporal model without spatial periodicity
constraints was determined to provide excellent performance with
the least computational cost. A multiframe spatiotemporal model
provided the best performance based on statistical standard
deviation, although at significant computational expense.

Index Terms—Harmonic estimation, heart motion, nonrigid mo-
tion, recursive least squares (RLS) filtering, spatiotemporal anal-
ysis.

I. INTRODUCTION

T HIS PAPER describes a new multiframe technique for
tracking and quantifying the motion of a contour repre-

senting the left ventricular (LV) endocardial boundary from a
sequence of two-dimensional (2-D) diagnostic medical images.
The approach emerged from research [1] into the more general
problem of understanding the nonrigid motion that might be
associated with deformable objects’ bounding contours and
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surfaces in images. This paper is considered a more thorough
extension of initial results presented in [2]. Although LV motion
is strongly three-dimensional (3-D) in reality, we intentionally
constrain our efforts in this paper to two spatial dimensions
to facilitate the development of multiframe temporal models
of LV motion. The effectiveness of this approach becomes
apparent when comparison is made between the estimated
motion trajectories and the actual motion of markers implanted
in the heart wall. To date, very little research has focused on
the development of multiframe temporal models for the heart
despite the desire to quantify wall motion over the complete
cardiac cycle and the availability ofa priori knowledge of gen-
eral wall motion characteristics, especially its approximately
periodic nature.

Periodic nonrigid motion can be observed throughout our
daily lives in both people-made and biological forms. Some typ-
ical mechanical examples might be the deformation of a loaded
automobile tire as it rolls down a highway or the surface move-
ment of a bouncing ball. Some biological examples include the
expansion and contraction of the lungs during breathing and, of
course, the beating of the heart. The periodic parameter of all of
these examples is obviously dependent on some environmental
influences, however, in most cases when the event has reached
a steady state, a cyclostationary condition can be reasonably as-
sumed.

This is particularly true in the case of gated cardiac image
acquisitions, where the acquisition process is triggered by the
electrocardiographic signal (ECG). Many acquisition cycles are
averaged together to produce one final image sequence. Hence,
although there may be slight variations in the actual periodic
parameter of the heart, the post-acquisition data does not contain
this information.

A. Motivation

Measurement of physical parameters that aid in the analysis
of cardiac LV function are important in assessing regional my-
ocardial injury. Furthermore, locating regions of abnormal mo-
tion can only be done well by observing and characterizing
pointwise LV wall motion. To do this, one must first obtain local
point correspondences between two given frames from an image
sequence of the cardiac cycle. We have previously worked on
this problem using local LV shape to estimate landmarks useful
for tracking [3]. However, these frame correspondences must be
concatenated into a single point-tracked trajectory. The goal of
this paper is to improve the performance of this technique by
more coherently and elegantly taking advantage of known peri-
odic constraints associated with heart movement.

1057-7149/00$10.00 © 2000 IEEE
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Fig. 1. Depiction of how contours are taken from their respective images and stacked in a sequence, creating a 2-D manifold in time (t) and contour space (s).

B. Related Efforts in Image Sequence Analysis

The efforts conveyed in this paper were motivated largely be-
cause of the obvious relationship of object motion to the study
of natural (e.g., anatomical and/or biological) objects. This con-
tinues to be an area ripe for more attention [4], [5].

Snakes, or active contour models, have been the primary
focus of many recent efforts (e.g., [6]–[11]). This method uses
a physically based description of the contours to constrain the
solution of movement to future frames. The physical model
requires detailed prior knowledge of stiffness and mass charac-
teristics which are often not available. Generalizations are often
made to counter this problem, but this severely compromises
the premise of the method in the first place. Finally, all of
these methods are frame-to-frame iterations and do not take
advantage of any temporal trends, particularly periodicity.

Additional efforts in 2-D tracking related to the frame-to-
frame approach have been proposed [12]–[14]. The first two
approaches differ in the term used for regularization of the flow
vectors. Additionally, [12] uses an interpolation scheme to quan-
tify shape between subsampled shape features. The work in
[13] also optimizes a cost functional over the space of the con-
tour, however the resulting minimization is highly nonlinear and
significantly more complex due to the requirement for map-
ping shape-based contour correspondences back into Euclidean
space values to compute the smoothing term of the functional.

The technique of harmonic analysis and enhancement used in
this article is well established. While not specifically related to
motion tracking, the work of [15] uses periodicity with a Fourier

series to find cardiac boundaries from ultrasound sequences. Pe-
riodic models are also applied in the estimation of circular op-
tical flow in [16].

The major thrust of research in harmonic analysis has focused
on one-dimensional (1-D) signals where the fundamental fre-
quency is unknown (e.g., [17], [18]). In contrast, the research
of this article deals with a known fundamental frequency. The
main contribution of this work, use of multidimensional comb
filtering to constrain the system solution, is a relatively new per-
spective.

C. Related Efforts in Medical Imaging

The tracking of specific points on the deforming LV contour
through a multiframe temporal sequence is an issue that has
often been avoided by researchers within the medical imaging
community. For example, many LV motion quantification ap-
proaches simply use information present in, or derived from,
the end-diastolic (ED) and end-systolic (ES) image frames. The
LV actually goes through a temporal wave of contraction, with
different types of deformation and movement occurring at each
location on the heart wall. Each point effectively follows its own
unique (but locally coherent) trajectory within a 3-D Euclidean
space over the time. This has been shown to be very important in
studying coronary artery disease [19]. Despite this need, a fully
automated, reproducible and robust approach to tracking and
quantifying visually-apparent point-wise trajectories of move-
ment on the heart wall from complete image sequences has not
been previously developed.
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Fig. 2. Comparison of exterior phantom trajectory estimates for various frame-to-frame tracking methods. Upper left: interpolated trajectories from the
landmark. Upper right: estimated trajectories using nearest Euclidean distance mapping. Lower left: estimated trajectories using the Euclidean-space method.
Bottom: trajectory estimates using the contour-space method.

An approach that is noninvasive and advantageously utilizes
the new imaging technology of magnetic resonance (MR) to
create markers or tags is termed “MR tagging” or “MR spin-tag-
ging” [20], [21]. This method has several drawbacks, including
the fact that the tags do not typically last over the entire car-
diac cycle and that the more tags there are, the poorer the back-
ground image signal to noise (making it harder to see the walls
of the LV). Another key point is the denser the number of tags
in each image, the more difficult the correspondence problem of
matching tags between image frames in the temporal sequence,
although an approach using deformable models has been pro-
posed to address these issues [22]. The potential yield obtained
by integrating these methods with geometric models, such as the
one of this paper, appears significant.

Phase contrast approaches to MRI motion analysis have
shown promising gains over previous MR signal encoding tech-
niques such as spin tagging [23]. Van Dijk and others [24]–[27]
have suggested use of the MR phase to record cardiac wall
velocity measurements using a spin echo gated MR imaging
sequence. The phase-contrast method in itself is does not appear
suitable for tracking point-wise trajectories along the LV wall

due to the noise associated with nonhomogeneous material
along boundaries. It does, however, provide a considerable
amount of general information regarding global LV motion. An
attempt at incorporating phase contrast velocity information
with the methods of this paper is discussed further in [28].

The study in [29] describes important research that attempts
to track point trajectories over time using a sequence of im-
ages. These efforts were carefully validated using dog hearts,
and are cited as a prominent supporting argument for the idea
of tracking shape landmarks through time.

Several other approaches for tracking the nonrigid motion of
cardiac surfaces have been offered in recent years. Most notably
the work in [14], [30]–[32]. However, none of these methods
addresses the requirement for a multiframe temporal model. The
work in [14], specifically develops a 3-D shape-based tracking
method that is analogous to the 2-D shape matching method of
Section II. The potential use of this 3-D shape-matching method
within the temporal framework of this article is explored further
as a system extension in [33].

Some initial analysis examining the temporal aspects of car-
diac motion has been done in [34] and [35]. While presenting
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Fig. 3. Comparison of exterior phantom trajectory estimates from different configurations of RLS filter. Left: trajectory estimates using the temporal model.
Right: Trajectory estimates using the spatiotemporal model.

novel approaches to modeling the temporal aspects of cardiac
motion, neither of these efforts takes advantage of thea priori
knowledge of periodicity in developing a global temporal con-
straint.

D. Assumptions Used in this Work

This approach to tracking and quantifying nonrigid motion, is
based upon several important assumptions. First, it is assumed
that the boundary of the endocardial wall must be extracted to
provide an estimate of its location in each image frame. Second,
it is assumed that a set of reliable tokens—segments with de-
fined geometric properties—can be derived from the extracted
boundaries. Third, the motion is such that the tokens change
only a small amount from frame to frame. Finally, the wall mo-
tion is assumed to be approximately periodic. Given these as-
sumptions an algorithm has been developed for computing non-
rigid object motion from a sequence of images.

The object boundary is modeled as a closed deformable con-
tour using a parametric model as discussed in [36]. A sequence
of contours output from this method provides input for our mul-
tiframe nonrigid motion tracking system. The presentation of
this system begins with a review of previous methods [1], [3] for
frame-to-frame motion tracking that led to the development of
the present temporal models. Two temporal models are then de-
rived based on assumptions of periodicity. An adaptive filtering
framework is derived based on these models and our frame-to-
frame proximal relationship. Experiments on synthetic and ac-
tual medical images are performed and quantitative compar-
isons with trajectories of actual implanted markers are evaluated
for single cases as well as a small ensemble of sequences.

II. FRAME-TO-FRAME ESTIMATION

In this approach, initial correspondences between points on a
given contour and points on a successive displaced contour

in the sequence are found by matching shape properties of
contour segments surrounding each of the points as described
in [37]. Two sets of corresponded points result: An originally
ordered, monotonically increasing set, indexed by

on the contour found at , and a corresponded set, in-

dexed by that are established on the contour at
. This mapping can be viewed as an the initial estimate of a

final mapping.

One additional outcome of this process is match confidence
measures. The need for confidence measures is brought about
by notions of 1) how matches in any one region are treated in
the sense of their relative strength when compared with matches
created in other local regions and 2) how decisions are handled
in regions where there are many plausible matches. Thus, the
strength and uniqueness of a match are used to help drive the so-
lution of the overall flow field. Guided by the work in [38], two
confidence measures modeling these characteristics are defined,
both based upon the profile of the bending energy within each
match search region. Details of the derivations of these values
are presented in.

The objective at this juncture is to find a vector flow field that
corresponds points on two contours found from two consecutive
temporal frames in an image sequence by seeking a compro-
mise between adhering to the points where the segments of the
contours best match and adhering to the model where adjacent
points on the contour move smoothly. Two possible approaches
to solving this problem have been proposed, each having po-
tential advantages and disadvantages. These two approaches are
described in greater detail in [3].

The first approach, referred to herein as the Euclidean space
model, views the initial shape matched correspondences as a
collection of vectors in the Euclidean space of the image. Specif-
ically, the normal and tangential components of the vector asso-
ciated with the shape match from point on the initial contour
to point on the displaced contour are stacked into a vector.
Combining this with a first order difference operator and a di-
agonal match confidence matrix, the solution of the resulting
optimization problem yields a best compromise between shape
match adherence and smooth proximal. Once the smooth flow
field has been computed, the resulting vectors may or may not
extend from the first contour to the second. This occurs because
the above functional contains no explicit constraint on the fea-
sible solution space. Currently, this is overcome by simply map-
ping each vector to its closest point on the second contour. Un-
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(a)

(b)

Fig. 4. (a) Average error magnitude over all trajectory estimates at a given frame for the phantom experiment illustrated in Figs. 2 and 3. (b) Sample image of the
object in rigid motion used for initial verification of the tracking system. The bumps at 45, 135, 225, and 315� are considered landmarks for tracking. The overlaid
white vectors are the trajectories of the landmarks as they travel through the motion test sequence.
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fortunately, this occasionally results in awkward or physically
implausible mappings. This characteristic and the associated ac-
cumulated noise limit this method’s utility for further develop-
ment with temporal models.

The second approach, referred to as the contour space model,
constrains the solution space of the optimization problem to
the displaced contour. The mapping from a given point,, on
the initial contour to a point, , on the displaced contour is
characterized by an increasing, monotonic function,

. Discrete values of are stacked to form a mapping
vector, . Again, as described in [3], a diagonal confi-
dence matrix is defined, . In this situation, is encour-
aged to adhere to a one-to-one relationship, hence a second order
difference matrix, , is used where is a first order differ-
ence operator. The cost function for the best estimate,, of
the mapping vector is then

(1)

The global minimum of this convex function is

(2)

The vector can be viewed as the nearest local minimum
on this optimization surface which qualitatively represents a
vector flow field that contains a compromise between 1) the
best local matches for all points on the first contour to the
second contour, with each match being weighted according to
uniqueness of the shape in the match region and 2) requiring
each of these vectors to have a magnitude and direction that
smoothly agrees with its spatially neighboring vectors. Addi-
tionally, posing the optimization problem in the contour space
implicitly constrains the displacement vectors to the contours
themselves. It also forces the solution to be a linear filter.

III. M ULTIFRAME ESTIMATION

The representation of endocardial motion of the previous sec-
tion is periodic in both contour space ( ) and time
( ). This is a unique aspect of the problem of tracking
LV wall motion in 2-D which has not been previously exploited.
In both models presented in this section, all the frame-to-frame
continuous mapping functions of an image sequence are con-
solidated into one 2-D function, , representing the en-
tire manifold (Fig. 1). With a spatial constraint (local smooth-
ness) incorporated into the frame-to-frame relationship of the
previous section, we first concentrate on modeling the temporal
dimension alone using a sum of sinusoids. The next section ex-
amines an extended spatiotemporal version of this model cou-
pling periodic trends over both contour space and time. The su-
perscripts and are used in these two sections exclu-
sively to delineate between variables ( ) modeled after
the temporal dimension alone and variables ( ) em-
ploying spatiotemporal modeling.

TABLE I
QUANTITATIVE COMPARISONS OF

TRAJECTORYESTIMATES MADE FROM NEARESTEUCLIDEAN DISTANCE

CORRESPONDENCE(N), EUCLIDEAN SPACE REGULARIZATION (E), CONTOUR

SPACE REGULARIZATION (S), RECURSIVEFILTERING USING THE TEMPORAL

MODEL (T), AND RECURSIVEFILTERING USING THESPATIOTEMPORALMODEL

(ST) WITH TRAJECTORIESINTERPOLATED FROM THEFOUR LANDMARKS AS

SHOWN IN FIGS. 2 AND 3

A. Modeling Temporal Periodicity

The continuous periodic mapping function, , refer-
enced above, can be viewed as a sum of sine waves whose
frequencies are integral multiples of the lowest (or funda-
mental) frequency. Such a function is said to be harmonic. The
trajectory of a single discrete point,, on this spatiotemporal
manifold can be approximately modeled as follows:

(3)

where is the fundamental frequency of the con-
tour deformation over time. The indexrepresents harmonics
of . and are the amplitude and phase of theth har-
monic component of . is assigned to represent the highest
significant harmonic of and represents a discrete time frame
within the range of .

Through standard trigonometric manipulation, (3) can be ex-
pressed as

(4)

where and .
If we assign

and
(4) can be expressed

as a vector product

(5)

Note that (5) represents a single trajectory (where
is the number of frames in the image sequence). We wish to

develop an expression for each of thetrajectories associated
with our frame-to-frame mapping vector, , that will allow us
to define a system equation in subsequent sections. Values of
(5) and a given frame,, can be determined using
the following vector product:

(6)
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where and is

...
...

. . .
. . .

is of size and represents the cosine and sine
terms for a given . can be viewed as a sinusoidal basis
transformation matrix. is of size and represents
phases and amplitudes of harmonic components. can be
viewed as a sinusoidal parameterization of the entire manifold
(i.e., all of the harmonic trajectory information is contained
within ).

B. Modeling Spatiotemporal Periodicity

As stated at the beginning of this section, the representation of
endocardial motion employed in this system is periodic in both
contour space ( ) and time ( ). Section
III-A presented a model focused solely on the temporal prior. In
this section, a model is constructed that is based on the periodic
nature of both time and contour space.

As before, all the continuous mapping functions are consol-
idated into one 2-D function, , and expressed as a sum
of sinusoids. This time, however, a term dependent on contour
space, , is included. Recall represents arclength of a contour
that is typically closed, henceis periodic in nature. A more
general form of (3) is defined as

(7)

where is the fundamental frequency over the
space of the contour and is the fundamental fre-
quency of the cardiac cycle over time. The indexrepresents
harmonics of , and similarly indexes . and are
the amplitude and phase of the th harmonic component of

, respectively. and represent the highest significant
harmonics of and , respectively, andrepresents a discrete
time frame within the range of.

Through standard trigonometric manipulation this can be ex-
pressed as

(8)

where and . For
the purpose of developing a system equation, (8) can be con-
verted into a vector product in the following manner for a given
frame :

(9)

where is the mapping function for frame,
, and

is the dimension . of dimension .

As in Section III-A, represents a parameterization of
the entire manifold suitable for use as a state vector. It is impor-
tant to note that although we arrived at a definition for
and in a manner similar to the definition of and ,

and of this section are a significantly different rep-
resentation of than those derived in the previous section.

C. Adaptive Estimation

The design of a Wiener filter [39], which is optimum in the
mean-square sense, requiresa priori information about the sta-
tistics of the data processed. Whena priori information is not
available, the Wiener filter design is either not possible or no
longer optimum. An efficient alternative approach that may be
used in such situations is an adaptive filter.

An adaptive filter is a self-designing device that relies on a re-
cursive algorithm for its operation. The use of a recursive algo-
rithm makes it possible for the filter to perform in environments
where complete knowledge of the relevant signal characteristics
is not available. In a stationary environment, the recursive algo-
rithm actually converges to the optimum Wiener solution in a
statistical sense after successive iterations [40].

The classic method of least squares approach differs from
Wiener filtering in that it is deterministic in its formulation from
the start. The method of least squares minimizes an index of
performance consisting of the sum of weighted error squares,
where the error is defined as the difference between some ob-
served response and the actual filter output. The recursive least
squares (RLS) algorithm uses a transversal filter similar to a
Wiener filter as the structural basis of the adaptive filter.

The above reasoning supports the use of an RLS driven adap-
tive filter for estimating pointwise cardiac motion trajectories.
To date, no statistical information is available or can be reason-
ably approximated that accurately represents pointwise cardiac
motion. Consequently, our approach to cardiac motion analysis
is purely deterministic in nature. Additionally, the linear models
developed in Sections II, III-A, and III-B facilitate the use of a
transversal filter.

The shape-based correspondence vectors,
, are viewed as the observed response in the RLS

scheme. Either or may be substituted for in
the following section depending on the choice of temporal
model from Section III-A. Equation (2) established a re-
lationship that will define the observation equation. If we
assign (recall that represents
the correspondence confidence matrix andis a first order
difference operator), and note that is positive definite, (2)
and (6) can be combined as where

represents observation error at framedue to the truncation
of harmonics, proximal smoothing and the accompanying
ill-determined relationship ( ). Recall that
is the sinusoidal basis transformation matrix of Sections III-A
and III-B, where the choice between and depends
on the selection of temporal model. For convenience we assign

. This provides us with the following:

(10)
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Equation (10) is considered the observation equation because it
relates the data-derived shape-based mapping to the state vector.

The following development of the RLS filter is based upon
work in [41]. The difference between our observed values,

, and the estimated mappings, , in (10) is the
observation error, , hence the index of performance we wish
to minimize, , is defined as follows:

(11)

where remains the . The optimum value of for which
the performance index,, attains its minimum value is obtained
by solving the classic least squares relationship

(12)

where the correlation matrix is of size or
, depending on the temporal model ( or

— is the number of temporal harmonics,the number
of spatial harmonics). is defined by

(13)

represents the cross-correlation of and as

(14)

A recursive relationship for may be derived by first iso-
lating the term corresponding to from the rest of the sum-
mation, allowing (13) to be written as

(15)

Note that the matrix plays the role of a corrective term.
In a similar fashion, (14) can be used to derive the following

recursion for updating the deterministic cross-correlation
vector:

(16)

To compute the least-square estimate offor in accor-
dance with (12), the inverse of the correlation matrix,, needs
to be determined. If we let , using basic inversion
techniques, can be expressed as

(17)

where is the RLS gain matrix and is defined by

(18)

The final step in our RLS formulation is to develop a recursive
equation for updating the least-squares estimate ofat iteration

. Using (12), (16), and (17) the new estimate of the state vector
is formed

(19)

Fig. 5. Qualitative comparison of trajectory estimates from all configurations
for a typical image sequence. Clarity is achieved in this case by dividing the
sequence in half-frames one through ten (on left) (ED to ES), and frames 11
through 16 (on right) (ES to ED). Note the divergence of trajectories estimated
with the frame-to-frame methods as compared to those from the RLS filter.

The rightmost term of (19) is referred to as thea priori es-
timation error and is defined as .
The product represents an estimate of the observed re-
sponse based on the old least squares estimate of the state vector,
, that was made at time .
The single constraint on the initial conditions of the RLS al-

gorithm is imposed by (17). must be chosen so that the co-
variance matrix, , is nonsingular. For the experiments of this
article, , where 10 000. This causes values of

to be nearly 1, thus forming initial estimates based primarily
on the observed data until the system learns further information
about temporal trends. The choice for the initial value of the
state vector, , is illustrative of the initial lack of statis-
tical knowledge associated with this problem.

The final state of is retrieved after successive iterations of
the adaptive filter have satisfied where

is the number of frames in the image sequence. The value
0.01 was chosen because it represents an average error of 0.1
pixels—enough to ensure no change occurs between cyclic iter-
ations of discrete mapping function versions. The quantityis
incorporated to ensure the information from a complete image
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Fig. 6. Comparison of estimated trajectories for each tracking method with the
marker. Each graphic is divided into two temporal sections for clarity. Estimated
trajectory is in black. Marker trajectory is in grey. As before, the graphics are
divided into two temporal sections, frames 1–9 on the left and frames 10–16 on
the right. Note how closely RLS filtering with the spatiotemporal model (ST)
estimates the true trajectory.

TABLE II
QUANTITATIVE ANALYSIS OF THE TRAJECTORIESSHOWN IN FIG. 6

sequence cycle is considered before the filter iteration is brought
to a halt. In the case of the temporal model, substantial compu-
tational reductions, on the order of multiplications, can be
realized by taking advantage of the highly banded nature of the
error covariance matrix, .

The solution mapping is determined by carrying out the fol-
lowing assignment : . This final mapping repre-
sents a shape-driven, spatially and temporally smooth, and pe-
riodically constrained solution to the posed problem.

IV. SYSTEM EXPERIMENTS

The intent of this section is to provide a thorough examination
of the relevant critical parameters of system performance. First,

an image sequence of simulated motion is analyzed to verify
basic intentions of system design and performance. Studies of
sample cardiac image sequences are then presented for qualita-
tive evaluation. Validation comparisons are made with the mo-
tion of physical markers actually implanted in the heart wall.
Finally, an ensemble of cardiac image sequences is examined to
obtain a statistical sense of system performance in general.

For brevity, the following abbreviations are used in tables and
figures throughout this section to denote the various filtering
methods described in Sections II and III: ()—Euclidean-space
frame-to-frame tracking; ()—Contour-space frame-to-frame
tracking; ( )—RLS filtering employing the temporal model;
and ( )—RLS filtering employing the spatiotemporal model.
( is not applicable). Rows of tables in boldface highlight the
best performance parameters of the group under consideration.

A. Evaluation

The noninvasive requirement for tracking cardiac motion
makes verification of estimated trajectories particularly diffi-
cult. Additionally, as we will see with the imaged phantom,
even pointwise trajectories of a known global rigid motion
are not entirely intuitive. A clearly visible implanted marker
may be used to provide a reference landmark on the LV wall,
however, this represents one trajectory of many along an
entire contour which by its very nature deforms differently in
different regions. Details of the marker implantation technique
can be found in [29]. Unfortunately, implanting more than a
few markers along the LV wall increases the amount of stress
the heart is under and causes the heart to function abnormally
or not at all.

Consequently, both qualitative evaluation and marker com-
parison should be considered in appraising the performance of
the methods of this article. Qualitative assessments provide a
general idea of the shape-related motion for all points over the
image sequence. Marker comparisons provide a measure of lo-
cally specified motion.

The magnitude of the difference between estimated corre-
spondence and marker location in Euclidean space is the method
of error measurement used predominantly throughout this sec-
tion. This error measure was chosen because knowing the corre-
spondence location at each point in time and the temporal corre-
spondence flow over the sequence are the primary objectives of
the trajectory estimates and the most appropriate basis for fur-
ther strain analysis. Additionally, the standard deviation of the
error is used as a significant measure of trajectory flow error be-
cause it highlights consistency in the mean error measurement.

Quantitative assessments of marker comparisons are pre-
sented in tables throughout this section. Specific categories of
data examined are as follows.

Max Error Maximum single frame distance, in
pixels, between the marker correspon-
dence and the estimated correspon-
dence occurring over all frames of the
sequence.

@ Frame Frame at which the maximum single
frame error occurred.

Mean Error Mean distance between the marker
correspondence and estimated corre-
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Fig. 7. Comparison of trajectory estimates with two corresponding implanted marker trajectories. The sequence is divided into three temporal sections for clarity.
Top: trajectories estimated with the Euclidean space frame-to-frame approach (shown in black) compared with marker trajectories (shown in grey). Upper middle:
trajectories estimated with the contour space frame-to-frame approach (shown in black) compared with marker trajectories (shown in grey). Lower middle: RLS
filtered trajectories estimated with the temporal model (shown in black) compared with marker trajectories (shown in grey). Bottom: RLS filtered trajectories
estimated with the spatiotemporal model (shown in black) compared with marker trajectories (shown in grey).

spondence, in pixels, computed for all
frames of the sequence.

Std. Dev. Standard deviation of the correspon-
dence error, in pixels, computed for all
frames of the sequence.

Mean Disp. Error Average difference in trajectory dis-
placement, in pixels, computed for all
frames of the sequence.

Mean/Disp. Mean of the single frame correspon-
dence error divided by marker displace-
ment over all frames of the sequence.

B. Simulated Motion

To provide an initial testing environment, a cylindrical
phantom Fig. 4(b) was imaged (512 × 512 pixels) as it un-
derwent a periodic rigid arcing motion. The exterior of the
phantom had four distinct shape landmarks for use in verifying
tracking methods. Figs. 2 and 3 are provided to allow qualitative
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TABLE III
QUANTITATIVE ANALYSIS OF THETRAJECTORIESSHOWN IN FIG. 7. MARKER 1

REPRESENTS THEUPPERTRAJECTORY INFIG. 7

evaluation of trajectory estimates around the entire cylinder.
In this example, 32 trajectories are illustrated. Trajectories
interpolated from the movement of the four landmarks are used
as the defining standard. Trajectories estimated using nearest
Euclidean distance correspondence [42] are provided as a con-
trol reference. We note how our methods using frame-to-frame
regularization in Euclidean space and contour space both do
a satisfactory job of capturing the rigid arcing motion of the
cylinder. This is in stark contrast to the trajectories estimated
with basic nearest Euclidean distance mapping. We also note,
however, that both frame-to-frame filtering methods fail to
return to their origin. This problem is solved using recursive
filtering with temporal models as shown in Fig. 3. The trajecto-
ries in this instance appear to be somewhat smoother over time
as well. This distinction is further illuminated in Fig. 4. Note
how the error curves of all our estimation methods are fairly flat
indicating a flow that approximates that of the actual vectors.
In contrast, the nearest Euclidean distance mapping shows
two humps that indicate frames where the actual trajectory
has moved away from the estimate. The recursive filtered
trajectories present the most consistent profile of all methods
as well as the lowest overall error. Table I provides quantitative
comparisons of the trajectory estimates for all five estimation
methods illustrated in Figs. 2 and 3.

C. Sample Studies

The experiments of this section are intended to provide
in-depth examinations of specific cardiac image sequences.
The image sequences examined are gated MR short-axis
acquisitions (256 × 256 pixels) of normal canine hearts. In
general, image sequences are 16 frames long.

1) Qualitative: Qualitative assessments on trajectory esti-
mates are made by examining the trajectory set as a whole for
characteristics such as smoothness and plausibility. In general,
vectors should not cross or drift together over time. General ad-
herence to prominent shape features with a smooth flow among
neighbors are the ideal characteristics.

Fig. 5 illustrates the estimated trajectories of various system
configurations for a typical short-axis canine MR image se-
quence. The sequence begins showing the most expanded view
of the LV, end-diastole (ED), cycling through the most con-
tracted frame, end-systole (ES), and returns to ED. The results

of the frame-to-frame methods on this study are presented in the
upper two rows of Fig. 5. The Euclidean space method is par-
ticularly erratic in this contour sequence, indicated by the lack
of trajectories in certain areas along the LV wall. Many of the
trajectories finish the cycle far from their original starting po-
sition. The contour space method fares much better, providing
stable trajectories all around the LV wall. There are still frequent
instances of trajectories not returning to their origin, however,
in general this condition does not appear to be as significant as
with the Euclidean space method.

Trajectory estimates from various RLS filtering configura-
tions are presented in the lower half of Fig. 5. One immediately
notices how the RLS filter produces much smoother and realistic
trajectories. There does not appear to be very much difference
between the estimates employing the temporal model and spa-
tiotemporal model in this study.

2) Marker Comparison:As discussed above, comparison
with implanted markers provides a means for validating es-
timated trajectories, even though the extent of its usefulness
is somewhat limited due to the lack of representation for
other regions of the LV wall. This section will concentrate on
examining specific cases of implanted trajectories and the error
associated with estimated trajectories.

A graphic comparison between the trajectory of a single im-
planted marker and trajectory estimates from all the tracking
methods is presented in Fig. 6. The most immediate observa-
tion is how well all the methods estimate the LV wall motion
over the first nine frames. Although the Euclidean space method
starts to drift off, it still maintains the relative flow of the marker
trajectory. Unfortunately, the contour space method falls off the
marker trajectory significantly after the ninth frame.

The performance of both RLS filtered approaches is out-
standing. The spatiotemporal model estimate in particular
almost exactly mimics the motion of the marker. Note that
the gray levels of this marker—as with all markers in this
article—were smoothed over before edges and boundaries
were detected eliminating any possible bias the marker’s shape
might have provided. Thus, the trajectory of the marker had
absolutely nothing to do with the estimate of this trajectory.

Error analysis of this marker comparison for each of the
tracking methods is provided in Table II. As anticipated from
Fig. 6, the spatiotemporal model offers the best performance in
terms of mean error and error standard deviation.

Fig. 7 depicts a two-marker sequence in a comparison with
each methods’ estimates with their associated markers. In the
case of the Euclidean space frame-to-frame approach, we ob-
serve that the trajectories diverge from the actual tracks soon
into the sequence and complete the cycle far from their initial
starting position. With the contour space approach, we note that
the trajectories diverge as well though not as significantly.

Examination of the RLS filtered trajectory estimates versus
the marker trajectories in Fig. 7 leads to some interesting obser-
vations. Although the spatiotemporal model drifts slightly from
both marker trajectories over the cycle, the flow of the trajec-
tory estimates is almost identical, even at sharp turns. The esti-
mates for the temporal model are quite good as well, although
the flow of the trajectories does not match that produced by the
spatiotemporal model. Table III reconfirms the accuracy of the
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(a)

(b)

Fig. 8. (a) Plot of all cases of mean versus maximum error for the RLS filtered approaches. The data points enclosed in the box, indicate trajectory estimates of
large error due to torsional motion missed by the local shape landmarks. (b) Plot of all cases of mean error versus standard deviation for the RLS filtered approaches.
The data points to the right of the dotted line, indicate trajectory estimates of large error due to torsional motion missed by the local shape landmarks.

RLS filtered estimates discussed in Fig. 7 especially in terms of
the flow criteria given by the standard deviation.

D. Ensemble Studies

The purpose of this section is to present a basic statistical
analysis of tracking performance based on marker comparison

for an ensemble of image sequences. Trajectory estimates from
all four tracking approaches were collected and compared
with 15 marker trajectories in 12 image sequences from
seven normal canine hearts. MRI parameter settings remained
consistent throughout all studies.

Fig. 8(a) depicts cluster plots of the mean error over a se-
quence versus the maximum single frame error within the same
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TABLE IV
MARKER COMPARISONSUMMARY . COMPARISON OFPERFORMANCE ON

DIFFERENTTRAJECTORYESTIMATION METHODS. ALL VALUES ARE IN

PIXELS. THE PHRASE “# BEST” IS USED TO INDICATE THE NUMBER

OUT OF THE15 TOTAL MARKER TRAJECTORIES INWHICH A SPECIFIC

METHOD OUTPERFORMED ALL OTHER METHODS FOR THATERROR

MEASURE. (E—EUCLIDEAN, S—CONTOUR, T—TEMPORALMODEL,
ST—SPATIOTEMPORALMODEL)

sequence. Fig. 8(b) illustrates clusters of the mean error versus
the standard deviation of error over a sequence. In general, both
figures present a nice cluster of data in the lower left quad-
rant, indicating positive and consistent performance. Four of
the 15 markers, however, yield very poor estimates. These cases
highlight situations where a torsional component of motion ex-
ists that was not reflected in the movement of a characteristic
shape feature along the wall. This is most likely an example of
out-of-plane motion and further justification for extending the
temporal models of this article to analysis of 3-D surface move-
ment.

Examination of the graphics of Fig. 8 alone provides no dis-
cernible difference in positive performance between estimates
of the temporal model and those of the spatiotemporal model.
When examining negative performance data points (those fur-
ther from the origin), however, the temporal model actually ap-
pears to hold an edge over the spatiotemporal model. Thus,
when the spatiotemporal model performs poorly, it performs
very poorly.

1) Performance Summary:Table IV provides a summary of
the ensemble statistics analyzed in this section. Interestingly,
RLS filtering using the temporal model provides the lowest av-
erage ensemble mean error. This can be reinterpreted to mean
estimates using the temporal model land closer to the marker
trajectories than any other approach.

Estimates from the spatiotemporal model clearly outperform
the other approaches in terms of standard deviation of error. As
stated above, standard deviation of error is a good indicator of
flow, hence RLS filtering with the spatiotemporal model pro-
duces estimates that more closely approximate the flow of the
marker trajectories.

V. SUMMARY

A flexible system for tracking pointwise nonrigid motion
in image sequences has been presented, analyzed and shown
to be useful in the application of tracking LV wall motion.
This system takes as input a set of initial correspondences
and accompanying descriptions of correspondence quality.
It processes them with an adaptive filtering scheme using
models for spatial and temporal smoothness and periodicity
as appropriate, then produces a set of sinusoidal parameters
that are transformed into quantified motion trajectories. The
resultant trajectories are spatially and temporally smooth and

periodically constrained. The system is not restricted to any one
imaging modality and can be applied to any object undergoing
nonrigid motion.

This system has been validated using MR image sequences
containing MR contrast markers actually implanted in the LV
wall. In most cases, this validation process has shown the system
to be quite accurate. For this reason, the use of segment shape
appears suitable for determining contour correspondence in this
application. With four of the 15 compared markers, however,
input comprised solely of shape-based correspondences pro-
duced estimates which completely missed the actual motion.
These four marker trajectories exhibited a strong component
of torsional motion (most likely due to 3-D out-of-plane mo-
tion). Consequently, a limitation of shape matching in 2-D is
its inability to accurately capture torsional motion occasionally
present in 3-D heart motion. However, 2-D motion captured in
this way might be useful as a metric to compare visual motion
in image sequences for database searching/sorting.

The heart is a 3-D object undergoing motion in three-dimen-
sions. Our primary objective in this effort was to develop geo-
metric techniques which could be extended to 3-D. The results
of this work show considerable promise toward that end and
present a strong argument for using an adaptive filter with a pe-
riodic temporal model when estimating the trajectories of heart
wall motion in 2-D or 3-D.

This system establishes a framework from which a system for
3-D tracking might be constructed. Such a system is analyzed in
more detail in [33]. In this circumstance, we’re concerned with
the correspondence of surface shape patches between surfaces at
different temporal instances. The objective function combines a
set of best-matched, shape-based motion correspondences with
a weighting constraint based on the distance from immediate,
neighboring surface patches. This objective function can be rep-
resented as a vector relationship which can be applied in similar
fashion to the temporal model of this paper. Work in this area is
ongoing.

In general, use of the temporal model is a prudent choice
when implementing the RLS filter. Although use of a spatiotem-
poral model may offer some increased performance in instances
of high quality contours with prominent shape variations, the
performance gain does not seem so significant as to justify the
additional computational cost.

In the future, new sources of correspondence could be used to
improve incorporation ofa priori knowledge, such as a method
combining MR spin tags, shape and phase velocity information.
Additionally, new applications of the system to analysis of other
image-derived nonrigid object motion associated with the lungs
and brain or microbic organizms present intriguing possibilities.

ACKNOWLEDGMENT

Dr. L. Staib’s methods were used in segmenting the majority
of contours used in experiments. Dr. A. Sinusas performed the
surgery and supervised the imaging of the canine subjects used
in our experiments. Dr. T. Constable conducted the imaging and
provided assistance in processing and handling the data. The
authors thank and appreciate each of these individuals for their
assistance and insightful discussions.



664 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 4, APRIL 2000

REFERENCES

[1] J. S. Duncan, R. L. Owen, L. H. Staib, and P. Anandan, “Measurement of
nonrigid motion using contour shape descriptors,” inProc. IEEE Com-
puter Vision Pattern Recognition, Maui, HI, June 1991, pp. 318–324.

[2] J. C. McEachen, A. Nehorai, and J. S. Duncan, “Estimating cardiac mo-
tion from image sequences using recursive comb filtering,” inIEEE
Int. Conf. Image Processing, vol. 2, Washington, DC, Oct. 1995, pp.
496–499.

[3] J. C. McEachen and J. S. Duncan, “Shape-based tracking of left ventric-
ular wall motion,”IEEE Trans. Med. Imag., vol. 16, pp. 270–283, June
1997.

[4] IEEE Nonrigid and Articulated Motion Workshop, J. K. Aggarwal and
N. I. Badler, Eds. San Juan, PR, 1997.

[5] J. K. Aggarwal and N. I. Badler, “Articulated and elastic nonrigid mo-
tion: A review,” in IEEE Workshop Mot. Nonrigid Art. Obj., Austin, TX,
Nov. 1994, pp. 2–14.

[6] D. Metaxas and D. Terzopoulos, “Shape and nonrigid motion estimation
through physics-based synthesis,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 15, pp. 580–591, June 1993.

[7] T. McInerney and D. Terzopoulos, “A dynamic finite element surface
model for segmentation and tracking in multidimensional medical im-
ages with application to cardiac 4d image analysis,”Comput. Med. Imag.
Graph., vol. 19, pp. 69–83, Jan. 1995.

[8] D. Terzopoulos and R. Szeliski, “Tracking with kalman snakes,” inAc-
tive Vision, A. Blake and A. Yuille, Eds. Cambridge, MA: MIT Press,
1992, pp. 3–20.

[9] S. Benayoun, C. Nastar, and N. Ayache, “Dense nonrigid motion esti-
mation in sequences of 3d images using differential constraints,” inLec-
ture Notes in Computer Science: Computer Vision, Virtual Reality and
Robotics in Medicine. Berlin, Germany: Springer-Verlag, Apr. 1995,
pp. 309–318.

[10] F. Leymarie and M. D. Levine, “Tracking deformable objects in the
plane using an active contour model,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 15, pp. 617–634, June 1993.

[11] E. Bardinet, L. Cohen, and N. Ayache, “Superquadrics and free-form
deformations: A global model to fit and track 3d medical data,” inLec-
ture Notes in Computer Science: Computer Vision, Virtual Reality and
Robotics in Medicine. Berlin, Germany: Springer-Verlag, Apr. 1995,
pp. 319–326.

[12] M. Demi, R. Calamai, G. Coppini, and G. Valli, “A visual framework
for the study of cardiac motion,”Comput. Cardiol., 1990.

[13] I. Cohen, N. Ayache, and P. Sulger,Tracking Points on De-
formable Objects Using Curvature Information. Berlin, Germany:
Springer-Verlag, 1992.

[14] P. Shi, G. Robinson, A. Chakraborty, L. Staib, R. Constable, A. Sinusas,
and J. Duncan, “A unified framework to assess myocardial function from
4D images,” inCVRMed ’95. Nice, France, Apr. 1995, pp. 327–337.

[15] R. B. Schudy, “Harmonic surfaces and parametric image operators,”
Ph.D. dissertation, Univ. Rochester, Rochester, NY, 1981.

[16] W. Chen, G. B. Giannakis, and N. Nandhakumar, “Spatio-temporal ap-
proach for time-varying image motion estimation,” inIEEE Int. Conf.
Image Processing, vol. 2, Nov. 1994, pp. 232–236.

[17] A. Nehorai and B. Porat, “Adaptive comb filtering for harmonic signal
enhancement,”IEEE Trans. Acoust., Speech, Signal Process., vol. 34,
pp. 1124–1138, Oct. 1986.

[18] S. M. Seitz and C. R. Dyer, “Detecting irregularities in cyclic motion,”
IEEE Works. Mot. Nonrigid Art. Obj., pp. 178–185, Nov. 1994.

[19] D. Gibson, T. Prewitt, and D. Brown, “Analysis of left ventricular wall
movement during isovolumic relaxation and its relation to coronary
artery disease,”Brit. Heart J., vol. 38, p. 1010, 1976.

[20] L. Axel and L. Dougherty, “MR imaging of motion with spatial modu-
lation of magnetization,”Radiol., vol. 171, pp. 841–845, 1989.

[21] E. Zerhouni, “Tagging of the human heart by multiplanar selective RF
saturation for the analysis of myocardial contraction,”Abstr. Annu.
Meeting Soc. MR Imaging, p. 10, 1988.

[22] J. Park, D. Metaxas, A. Young, and L. Axel, “Deformable models with
parameter functions for cardiac motion analysis from tagged MRI data,”
IEEE Trans. Med. Imag., vol. 15, pp. 278–289, June 1996.

[23] N. J. Pelc, A. Shimakawa, and G. H. Glover, “Phase contrast cine MRI,”
in Proc. 8th Annu. SMRM, Amsterdam, The Netherlands, 1989, p. 101.

[24] P. Van Dijk, “Direct cardiac nmr imaging of heart wall and blood flow
velocity,” J. Comput. Assist. Tomogr., vol. 8, pp. 429–436, 1984.

[25] G. L. Nayler, D. N. Firmin, and D. B. Longmore, “Blood flow imaging
by cine magnetic resonance,”J. Comput. Assist. Tomogr., vol. 10, pp.
715–722, 1986.

[26] N. J. Pelc, “Mycardial motion analysis with phase contrast cine mri,”
SMRM, 10th Annu. Meeting, p. 17, Aug. 1991.

[27] R. T. Constable, K. M. Rath, A. J. Sinusas, and J. C. Gore, “Develop-
ment and evaluation of tracking algorithms for cardiac wall motion anal-
ysis using phase velocity mr imaging,”Magn. Reson. Med., vol. 32, pp.
33–42, 1994.

[28] J. McEachen, F. Meyer, R. Constable, A. Nehorai, and J. Duncan, “A re-
cursive filter for phase velocity assisted shape-based tracking of cardiac
nonrigid motion,” in5th Int. Conf. Computer Vision, E. Grimson, Ed.,
Boston, MA, June 1995, pp. 653–658.

[29] P. Shi, “Image analysis of 3D cardiac motion using physical and geo-
metrical models,” Ph.D. dissertation, Yale Univ., New Haven, CT, May
1996.

[30] L. D. Cohen and I. Cohen, “A finite element method applied to new
active contour models and 3D reconstruction from cross sections,” in
Proc. 2nd Int. Conf. Computer Vision, Tokyo, Japan, 1990, pp. 587–591.

[31] T. McInerney and D. Terzopolous, “A finite element model for 3d shape
reconstruction and nonrigid motion tracking,” inProc. 4th Int. Conf.
Computer Vision, Berlin, Germany, 1993, pp. 518–523.

[32] W. C. Huang and D. Goldgof, “Adaptive-size meshes for rigid and non-
rigid shape analysis and synthesis,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 15, pp. 611–616, June 1993.

[33] J. C. McEachen, “Multiframe estimation of nonrigid motion from image
sequences,” Ph.D. dissertation, Yale Univ., New Haven, CT, May 1996.

[34] P. Clarysse, D. Friboulet, and I. E. Magnin, “Tracking geometrical de-
scriptors on 3-D deformable surfaces: Application to the left-ventricular
surface of the heart,”IEEE Trans. Med. Imag., vol. 16, pp. 392–404,
Aug. 1997.

[35] G. J. Klein and R. H. Huesman, “A 3-D optical flow approach to addition
of deformable pet volumes,”IEEE Work. Mot. Nonrigid Art. Obj., pp.
136–143, June 1997.

[36] L. H. Staib and J. S. Duncan, “Boundary finding with parametrically
deformable models,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14,
pp. 1061–1074, Nov. 1992.

[37] J. S. Duncan, F. A. Lee, A. W. M. Smeulders, and B. L. Zaret, “A bending
energy model for measurement of cardiac shape deformity,”IEEE Trans.
Med. Imag., vol. 10, pp. 307–319, Sept. 1991.

[38] P. An, “A computational framework and an algorithm for the measure-
ment of visual motion,”Int. J. Comput. Vis., vol. 2, pp. 283–310, 1989.

[39] N. Levinson, “The Wiener rms (root-mean-square) error criterion in
filter design and prediction,”J. Math. Phys., vol. 25, pp. 261–278, 1947.

[40] S. S. Haykin,Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1986.

[41] T. Soderstrom and P. Stoica,System Identification. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

[42] E. C. Hildreth,The Measurement of Visual Motion. Cambridge, MA:
MIT Press, 1984.

John C. McEachen, II (S’95–M’97) was born
in Los Angeles, CA, on September 14, 1963. He
received the B.S.E.E. degree from the University
of Notre Dame, Notre Dame, IN, in 1985, the
M.S.E.E. degree from the University of Virginia,
Charlottesville, in 1990, and the M.Phil. and Ph.D.
degrees from Yale University, New Haven, CT, in
1992 and 1995, respectively.

From 1985 to 1990, he served as a Cryptologic Of-
ficer in the U.S. Navy working with communications
systems aboard submarines and surface ships. He was

a National Library of Medicine Research Fellow from 1992 to 1995. In 1995,
he was awarded a National Institutes of Health Post-Doctoral fellowship that
he performed at Yale University. In 1996, he joined the civilian faculty of the
Naval Postgraduate School, Monterey, CA, as an Assistant Professor of elec-
trical and computer engineering. His teaching interests include image and video
processing, computer networks, and communications systems. His research in-
terests include video bitstream modeling and analysis in asynchronous transfer
mode (ATM) environments, image sequence analysis using geometric models
and adaptive estimation techniques, and ATM traffic modeling, monitoring and
understanding.

Dr. McEachen is a member of Eta Kappa Nu and Tau Beta Pi.



MCEACHEN et al.: MULTIFRAME TEMPORAL ESTIMATION OF CARDIAC NONRIGID MOTION 665

Arye Nehorai (S’80–M’83–SM’90–F’94) received
the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion—Israel Institute of Technology,
Haifa, in 1976 and 1979, respectively, and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1983.

After graduation, he was a Research Engineer for
Systems Control Technology, Inc., Palo Alto, CA.
From 1985 to 1995, he was with the Department
of Electrical Engineering, Yale University, New
Haven, CT, where he became an Associate Professor

in 1989. In 1995, he joined the Department of Electrical Engineering and
Computer Science, University of Illinois at Chicago (UIC), as a Full Professor.
He holds a joint professorship with the Bioengineering Department at UIC. His
research interests are in signal processing, communications, and biomedicine.
He is an associate editor ofCircuits, Systems, and Signal Processingand the
Journal of the Franklin Institute. He is a member of the editorial board of
Signal Processing.

Dr. Nehorai is the Editor in Chief of the IEEE TRANSACTIONS ONSIGNAL

PROCESSING. He was an Associate Editor of the IEEE TRANSACTIONS ON

ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, IEEE SIGNAL PROCESSING

LETTERS, the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, and
the IEEE JOURNAL OF OCEANIC ENGINEERING. He served as Chairman of
the Connecticut IEEE Signal Processing Chapter from 1986 to 1995 and
is currently a Founding Member and the Vice-Chair of the IEEE Signal
Processing Society’s Technical Committee on Sensor Array and Multichannel
(SAM) Processing. He is the co-General Chair of the First IEEE SAM Signal
Processing Workshop which was held in March 2000. In 1979/1980 he received
the Rothschild Fellowship in science and engineering, awarded annually to
eight new graduates throughout Israel. He was co-recipient, with P. Stoica, of
the 1989 IEEE Signal Processing Society’s Senior Award for Best Paper. He
has been a Fellow of the IEEE since 1994 and of the Royal Statistical Society
since 1996.

James S. Duncan(S’72–M’75–SM’93) was born in
New York City on December 11, 1951. He received
the B.S.E.E. degree from Lafayette College, Easton,
PA, in 1973, the M.S. degree in engineering from the
University of California, Los Angeles, in 1975, and
the Ph.D. degree in electrical engineering from the
University of Southern California, Los Angeles, in
1982.

In 1973, he joined the staff of the Electro-Optical
and Data Systems Group, Hughes Aircraft Company,
and participated in research and development

projects related to signal and image processing for forward looking infrared
(FLIR) imaging systems until 1983. During this time, he held Hughes’
Masters, Engineer, and Doctoral Fellowships. In 1983, he joined the faculty
of Yale University, New Haven, CT, where he is currently a Professor of
diagnostic radiology and electrical engineering, and is the Director of the Image
Processing and Analysis Group within Diagnostic Radiology. His research
and teaching efforts have been in the areas of image processing, computer
vision and medical imaging. His current specific research interests include the
segmentation of deformable objects from both 2-D and 3-D data, the tracking
of nonrigid object motion from 2-D and 3-D data, the use of physical models
for recovering quantitative information from images and the integration of
processing modules in vision systems, all with a special interest in using these
approaches for medical image analysis. He is on the editorial board of the
Journal of Mathematical Imaging and Visionand is co-editor of the journal
Medical Image Analysis.

Dr. Duncan is a Member of Eta Kappa Nu and Sigma Xi and is an Associate
Editor for the IEEE TRANSACTIONS ONMEDICAL IMAGING. He was inducted
as a Fellow of the American Institute for Medical and Biological Engineering
(AIMBE) in March 2000.


