9,831 research outputs found

    A decentralized proportional-integral sliding mode tracking controller for a 2 D.O.F robot arm

    Get PDF
    Trajectory tracking with high accuracy is a very challenging topic in direct drive robot control. This is due to the nonlinearities and input couplings present in the dynamics of the arm. This paper deals with the tracking control of a class of direct-drive robot manipulators. A robust Proportional-Integral (PI) sliding mode control law is derived so that the robot trajectory tracks a desired trajectory as closely as possible despite the highly non-linear and coupled dynamics. The controller is designed using the decentralized approaches. Application to a two degree of freedom direct drive robot arm is considered

    Discrete Robust Control of Robot Manipulators using an Uncertainty and Disturbance Estimator

    Full text link
    This article presents the design of a robust observer based on the discrete-time formulation of Uncertainty and Disturbance Estimator (UDE), a well-known robust control technique, for the purpose of controlling robot manipulators. The design results in a complete closed-loop, robust, controller--observer structure. The observer incorporates the estimate of the overall uncertainty associated with the plant, in order to mimic its dynamics, and the control law is generated using an auxiliary error instead of state tracking error. A detailed qualitative and quantitative stability analysis is provided, and simulations are performed on the two-link robot manipulator system. Further, a comparative study with well-known control strategies for robot manipulators is presented. The results demonstrate the efficacy of the proposed technique, with better tracking performance and lower control energy compared to other strategies.Comment: 20 pages, 7 figures, 1 tabl

    Robust control of robot manipulators using hybrid H∞/adaptive controller

    Get PDF
    A robust hybrid control method for robot manipulators is proposed which integrates an H∞ controller and an adaptive controller. The H∞ controller is used to minimize the effect of parameter uncertainties of the robot model on the tracking performance, while the adaptive controller continuously adjusts the model parameters to reduce the model error. Simulations show that disturbances generated from the model error will be quickly compensated and so small tracking errors can be achieved.published_or_final_versio

    A Stability Analysis for the Acceleration-based Robust Position Control of Robot Manipulators via Disturbance Observer

    Full text link
    This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using Disturbance Observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory tracking control. As the bandwidth of DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise sensitive when they are increased. The proposed stability analysis provides insights regarding the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that non-diagonal elements of the nominal inertia matrix are useful to improve the stability and adjust the trade-off between the robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.Comment: 9 pages, 9 figures, Journa

    Nonlinear Receding-Horizon Control of Rigid Link Robot Manipulators

    Full text link
    The approximate nonlinear receding-horizon control law is used to treat the trajectory tracking control problem of rigid link robot manipulators. The derived nonlinear predictive law uses a quadratic performance index of the predicted tracking error and the predicted control effort. A key feature of this control law is that, for their implementation, there is no need to perform an online optimization, and asymptotic tracking of smooth reference trajectories is guaranteed. It is shown that this controller achieves the positions tracking objectives via link position measurements. The stability convergence of the output tracking error to the origin is proved. To enhance the robustness of the closed loop system with respect to payload uncertainties and viscous friction, an integral action is introduced in the loop. A nonlinear observer is used to estimate velocity. Simulation results for a two-link rigid robot are performed to validate the performance of the proposed controller. Keywords: receding-horizon control, nonlinear observer, robot manipulators, integral action, robustness

    An addendum on "Robust control of robots by the computed torque method"

    Get PDF
    We reinterprete and improve recent results on robust control of robots by the computed method. The methods and ideas used are inspired by `passivity based¿ control methods for robot manipulators and lead to a significant increase in freedom of controller implementation, thereby providing more flexibility to the designer of robot control systems
    corecore