41,719 research outputs found

    Robust Time-inconsistent Linear-Quadratic Stochastic Controls: A Stochastic Differential Game Approach

    Full text link
    This paper studies robust time-inconsistent (TIC) linear-quadratic stochastic control problems, formulated by stochastic differential games. By a spike variation approach, we derive sufficient conditions for achieving the Nash equilibrium, which corresponds to a time-consistent (TC) robust policy, under mild technical assumptions. To illustrate our framework, we consider two scenarios of robust mean-variance analysis, namely with state- and control-dependent ambiguity aversion. We find numerically that with time inconsistency haunting the dynamic optimal controls, the ambiguity aversion enhances the effective risk aversion faster than the linear, implying that the ambiguity in the TIC cases is more impactful than that under the TC counterparts, e.g., expected utility maximization problems

    Time--consistent investment under model uncertainty: the robust forward criteria

    Full text link
    We combine forward investment performance processes and ambiguity averse portfolio selection. We introduce the notion of robust forward criteria which addresses the issues of ambiguity in model specification and in preferences and investment horizon specification. It describes the evolution of time-consistent ambiguity averse preferences. We first focus on establishing dual characterizations of the robust forward criteria. This offers various advantages as the dual problem amounts to a search for an infimum whereas the primal problem features a saddle-point. Our approach is based on ideas developed in Schied (2007) and Zitkovic (2009). We then study in detail non-volatile criteria. In particular, we solve explicitly the example of an investor who starts with a logarithmic utility and applies a quadratic penalty function. The investor builds a dynamical estimate of the market price of risk λ^\hat \lambda and updates her stochastic utility in accordance with the so-perceived elapsed market opportunities. We show that this leads to a time-consistent optimal investment policy given by a fractional Kelly strategy associated with λ^\hat \lambda. The leverage is proportional to the investor's confidence in her estimate λ^\hat \lambda

    An Asynchronous Parallel Approach to Sparse Recovery

    Full text link
    Asynchronous parallel computing and sparse recovery are two areas that have received recent interest. Asynchronous algorithms are often studied to solve optimization problems where the cost function takes the form i=1Mfi(x)\sum_{i=1}^M f_i(x), with a common assumption that each fif_i is sparse; that is, each fif_i acts only on a small number of components of xRnx\in\mathbb{R}^n. Sparse recovery problems, such as compressed sensing, can be formulated as optimization problems, however, the cost functions fif_i are dense with respect to the components of xx, and instead the signal xx is assumed to be sparse, meaning that it has only ss non-zeros where sns\ll n. Here we address how one may use an asynchronous parallel architecture when the cost functions fif_i are not sparse in xx, but rather the signal xx is sparse. We propose an asynchronous parallel approach to sparse recovery via a stochastic greedy algorithm, where multiple processors asynchronously update a vector in shared memory containing information on the estimated signal support. We include numerical simulations that illustrate the potential benefits of our proposed asynchronous method.Comment: 5 pages, 2 figure

    Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control

    Get PDF
    This paper investigates the problem of robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems. The uncertainties exhibit in both system matrices and transition rate matrix of the Markovian chain. A new impulsive and proportional-derivative control strategy is presented, where the derivative gain is to make the closed-loop system of the singular plant to be a normal one, and the impulsive control part is to make the value of the Lyapunov function does not increase at each time instant of the Markovian switching. A linearization approach via congruence transformations is proposed to solve the controller design problem. The cost function is minimized via solving an optimization problem under the designed control scheme. Finally, three examples (two numerical examples and an RC pulse divider circuit example) are provided to illustrate the effectiveness and applicability of the proposed methods

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Robust Control Structure Selection

    Get PDF
    Screening tools for control structure selection in the presence of model/plant mismatch are developed in the context of the Structured Singular Value (μ) theory. The developed screening tools are designed to aid engineers in the elimination of undesirable control structure candidates for which a robustly performing controller does not exist. Through application on a multicomponent distillation column, it is demonstrated that the developed screening tools can be effective in choosing an appropriate control structure while previously existing methods such as the Condition Number Criterion can lead to erroneous results

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose
    corecore