126 research outputs found

    Pulmonary Lobe Segmentation with Probabilistic Segmentation of the Fissures and a Groupwise Fissure Prior

    Get PDF
    A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic segmentation of the fissures and the simultaneous construction of a population model of the fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels and the surrounding parenchyma. This was combined with anatomical information and a groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation. The performance of our fissure segmentation was validated on 30 patients from the COPDGene cohort, achieving a high median F1-score of 0:90 and showed general insensitivity to filter parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which contains 55 cases at varying levels of pathology. We achieved the highest score of 0:884 of the automated algorithms. Our method was further tested quantitatively and qualitatively on 80 patients from the COPDGene study at varying levels of functional impairment. Accurate segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions of grossly incomplete fissures

    Relational Modeling for Robust and Efficient Pulmonary Lobe Segmentation in CT Scans

    Full text link
    Pulmonary lobe segmentation in computed tomography scans is essential for regional assessment of pulmonary diseases. Recent works based on convolution neural networks have achieved good performance for this task. However, they are still limited in capturing structured relationships due to the nature of convolution. The shape of the pulmonary lobes affect each other and their borders relate to the appearance of other structures, such as vessels, airways, and the pleural wall. We argue that such structural relationships play a critical role in the accurate delineation of pulmonary lobes when the lungs are affected by diseases such as COVID-19 or COPD. In this paper, we propose a relational approach (RTSU-Net) that leverages structured relationships by introducing a novel non-local neural network module. The proposed module learns both visual and geometric relationships among all convolution features to produce self-attention weights. With a limited amount of training data available from COVID-19 subjects, we initially train and validate RTSU-Net on a cohort of 5000 subjects from the COPDGene study (4000 for training and 1000 for evaluation). Using models pre-trained on COPDGene, we apply transfer learning to retrain and evaluate RTSU-Net on 470 COVID-19 suspects (370 for retraining and 100 for evaluation). Experimental results show that RTSU-Net outperforms three baselines and performs robustly on cases with severe lung infection due to COVID-19

    Deep Learning of Unified Region, Edge, and Contour Models for Automated Image Segmentation

    Full text link
    Image segmentation is a fundamental and challenging problem in computer vision with applications spanning multiple areas, such as medical imaging, remote sensing, and autonomous vehicles. Recently, convolutional neural networks (CNNs) have gained traction in the design of automated segmentation pipelines. Although CNN-based models are adept at learning abstract features from raw image data, their performance is dependent on the availability and size of suitable training datasets. Additionally, these models are often unable to capture the details of object boundaries and generalize poorly to unseen classes. In this thesis, we devise novel methodologies that address these issues and establish robust representation learning frameworks for fully-automatic semantic segmentation in medical imaging and mainstream computer vision. In particular, our contributions include (1) state-of-the-art 2D and 3D image segmentation networks for computer vision and medical image analysis, (2) an end-to-end trainable image segmentation framework that unifies CNNs and active contour models with learnable parameters for fast and robust object delineation, (3) a novel approach for disentangling edge and texture processing in segmentation networks, and (4) a novel few-shot learning model in both supervised settings and semi-supervised settings where synergies between latent and image spaces are leveraged to learn to segment images given limited training data.Comment: PhD dissertation, UCLA, 202

    Bronchoscopic lung volume reduction for Emphysema: physiological and radiological correlations

    Get PDF
    Introduction: Patient selection in lung volume reduction (LVR) plays a pivotal role in achieving meaningful clinical outcomes. Currently, LVR patients are selected based on three established criteria: heterogeneity index, percentage of low attenuation area (%LAA), and fissure integrity score. Quantitative computed tomography (QCT) has been developed to quantify lung physiological indices at the lobar level and could potentially revolutionise patient selection in LVR procedures. We developed an in-house QCT software, LungSeg, and used its radiological indices for the purposes of this thesis. The aim of this thesis is to discover potential physiological and radiological indices that could serve as predictors for superior LVR outcomes for better patient selection. Methods: This thesis took two studies and analysed them using LungSeg. The first study was the long-term coil study, a randomised controlled study that had the control group crossing over to the treatment arm at 12 months. At 12 months post-procedure the baseline measurements were assessed against the 12-months post-procedural measurements. The second study was the short-term valve study which was another randomised controlled study that compared the primary and secondary endpoints between the control and the valve-treated group at three months post-procedure. Results: In the long-term coil study, we found that the best statistically significant combination of predictors for change in target lobar volume at inspiration was found to be the combination of baseline target LV at inspiration, -950HU EI at inspiration, and TLCabs with a model adjusted R2 of 0.407 (p = 0.0001). In a subsequent multivariate analysis using ≥45% LAA on the -950HU at Inspiration, the R2 of the same prediction model did improve to 0.493 (P-value = 0.002). Meanwhile, the best statistically significant combination of predictors for change in target lobar volume at inspiration following valve treatment was found to be the combination of baseline target LV at inspiration, target lobar fissure integrity and baseline FEV1abs with a model adjusted R2 of 0.193 (p = 0.105). Conclusion: Using QCT, we have improved the proposed patient selection algorithm for LVR procedures based on the best QCT and lung function predictors.Open Acces

    Automatic pulmonary fissure detection and lobe segmentation in CT chest images

    Full text link

    Quantitative lung CT analysis for the study and diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    The importance of medical imaging in the research of Chronic Obstructive Pulmonary Dis- ease (COPD) has risen over the last decades. COPD affects the pulmonary system through two competing mechanisms; emphysema and small airways disease. The relative contribu- tion of each component varies widely across patients whilst they can also evolve regionally in the lung. Patients can also be susceptible to exacerbations, which can dramatically ac- celerate lung function decline. Diagnosis of COPD is based on lung function tests, which measure airflow limitation. There is a growing consensus that this is inadequate in view of the complexities of COPD. Computed Tomography (CT) facilitates direct quantification of the pathological changes that lead to airflow limitation and can add to our understanding of the disease progression of COPD. There is a need to better capture lung pathophysiology whilst understanding regional aspects of disease progression. This has motivated the work presented in this thesis. Two novel methods are proposed to quantify the severity of COPD from CT by analysing the global distribution of features sampled locally in the lung. They can be exploited in the classification of lung CT images or to uncover potential trajectories of disease progression. A novel lobe segmentation algorithm is presented that is based on a probabilistic segmen- tation of the fissures whilst also constructing a groupwise fissure prior. In combination with the local sampling methods, a pipeline of analysis was developed that permits a re- gional analysis of lung disease. This was applied to study exacerbation susceptible COPD. Lastly, the applicability of performing disease progression modelling to study COPD has been shown. Two main subgroups of COPD were found, which are consistent with current clinical knowledge of COPD subtypes. This research may facilitate precise phenotypic characterisation of COPD from CT, which will increase our understanding of its natural history and associated heterogeneities. This will be instrumental in the precision medicine of COPD
    • …
    corecore