411 research outputs found

    Estimating the Number of Soccer Players using Simulation-based Occlusion Handling

    Get PDF

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    Enhanced Augmented Reality Framework for Sports Entertainment Applications

    Get PDF
    Augmented Reality (AR) superimposes virtual information on real-world data, such as displaying useful information on videos/images of a scene. This dissertation presents an Enhanced AR (EAR) framework for displaying useful information on images of a sports game. The challenge in such applications is robust object detection and recognition. This is even more challenging when there is strong sunlight. We address the phenomenon where a captured image is degraded by strong sunlight. The developed framework consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player detection, face detection, recognition of players, and display of personal information of players. First, an algorithm based on Multi-Scale Retinex (MSR) is proposed for image enhancement. For the tasks of player and face detection, we use adaptive boosting algorithm with Haar-like features for both feature selection and classification. The player face recognition algorithm uses adaptive boosting with the LDA for feature selection and nearest neighbor classifier for classification. The framework can be deployed in any sports where a viewer captures images. Display of players-specific information enhances the end-user experience. Detailed experiments are performed on 2096 diverse images captured using a digital camera and smartphone. The images contain players in different poses, expressions, and illuminations. Player face recognition module requires players faces to be frontal or up to ?350 of pose variation. The work demonstrates the great potential of computer vision based approaches for future development of AR applications.COMSATS Institute of Information Technolog

    Multi-target pig tracking algorithm based on joint probability data association and particle filter

    Get PDF
    In order to evaluate the health status of pigs in time, monitor accurately the disease dynamics of live pigs, and reduce the morbidity and mortality of pigs in the existing large-scale farming model, pig detection and tracking technology based on machine vision are used to monitor the behavior of pigs. However, it is challenging to efficiently detect and track pigs with noise caused by occlusion and interaction between targets. In view of the actual breeding conditions of pigs and the limitations of existing behavior monitoring technology of an individual pig, this study proposed a method that used color feature, target centroid and the minimum circumscribed rectangle length-width ratio as the features to build a multi-target tracking algorithm, which based on joint probability data association and particle filter. Experimental results show the proposed algorithm can quickly and accurately track pigs in the video, and it is able to cope with partial occlusions and recover the tracks after temporary loss

    Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis

    Get PDF
    Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach

    MonoTrack: Shuttle trajectory reconstruction from monocular badminton video

    Full text link
    Trajectory estimation is a fundamental component of racket sport analytics, as the trajectory contains information not only about the winning and losing of each point, but also how it was won or lost. In sports such as badminton, players benefit from knowing the full 3D trajectory, as the height of shuttlecock or ball provides valuable tactical information. Unfortunately, 3D reconstruction is a notoriously hard problem, and standard trajectory estimators can only track 2D pixel coordinates. In this work, we present the first complete end-to-end system for the extraction and segmentation of 3D shuttle trajectories from monocular badminton videos. Our system integrates badminton domain knowledge such as court dimension, shot placement, physical laws of motion, along with vision-based features such as player poses and shuttle tracking. We find that significant engineering efforts and model improvements are needed to make the overall system robust, and as a by-product of our work, improve state-of-the-art results on court recognition, 2D trajectory estimation, and hit recognition.Comment: To appear in CVSports@CVPR 202

    Tracking football player movement from a single moving camera using particle filters

    No full text
    This paper deals with the problem of tracking football players in a football match using data from a single moving camera. Tracking footballers from a single video source is difficult: not only do the football players occlude each other, but they frequently enter and leave the cameras field of view, making initialisation and destruction of a players tracking a difficult task. The system presented here uses particle filters to track players. The multiple state estimates used by a particle filter provide an elegant method for maintaining tracking of players following an occlusion. Automated tracking can be achieved by creating and stopping particle filters depending on the input player data
    corecore