13,455 research outputs found

    Towards a Robuster Interpretive Parsing

    Get PDF
    The input data to grammar learning algorithms often consist of overt forms that do not contain full structural descriptions. This lack of information may contribute to the failure of learning. Past work on Optimality Theory introduced Robust Interpretive Parsing (RIP) as a partial solution to this problem. We generalize RIP and suggest replacing the winner candidate with a weighted mean violation of the potential winner candidates. A Boltzmann distribution is introduced on the winner set, and the distribution’s parameter TT is gradually decreased. Finally, we show that GRIP, the Generalized Robust Interpretive Parsing Algorithm significantly improves the learning success rate in a model with standard constraints for metrical stress assignment

    Robust Processing of Natural Language

    Full text link
    Previous approaches to robustness in natural language processing usually treat deviant input by relaxing grammatical constraints whenever a successful analysis cannot be provided by ``normal'' means. This schema implies, that error detection always comes prior to error handling, a behaviour which hardly can compete with its human model, where many erroneous situations are treated without even noticing them. The paper analyses the necessary preconditions for achieving a higher degree of robustness in natural language processing and suggests a quite different approach based on a procedure for structural disambiguation. It not only offers the possibility to cope with robustness issues in a more natural way but eventually might be suited to accommodate quite different aspects of robust behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro, pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture Notes in Computer Science, Springer 199

    From surface dependencies towards deeper semantic representations [Semantic representations]

    Get PDF
    In the past, a divide could be seen between ’deep’ parsers on the one hand, which construct a semantic representation out of their input, but usually have significant coverage problems, and more robust parsers on the other hand, which are usually based on a (statistical) model derived from a treebank and have larger coverage, but leave the problem of semantic interpretation to the user. More recently, approaches have emerged that combine the robustness of datadriven (statistical) models with more detailed linguistic interpretation such that the output could be used for deeper semantic analysis. Cahill et al. (2002) use a PCFG-based parsing model in combination with a set of principles and heuristics to derive functional (f-)structures of Lexical-Functional Grammar (LFG). They show that the derived functional structures have a better quality than those generated by a parser based on a state-of-the-art hand-crafted LFG grammar. Advocates of Dependency Grammar usually point out that dependencies already are a semantically meaningful representation (cf. Menzel, 2003). However, parsers based on dependency grammar normally create underspecified representations with respect to certain phenomena such as coordination, apposition and control structures. In these areas they are too "shallow" to be directly used for semantic interpretation. In this paper, we adopt a similar approach to Cahill et al. (2002) using a dependency-based analysis to derive functional structure, and demonstrate the feasibility of this approach using German data. A major focus of our discussion is on the treatment of coordination and other potentially underspecified structures of the dependency data input. F-structure is one of the two core levels of syntactic representation in LFG (Bresnan, 2001). Independently of surface order, it encodes abstract syntactic functions that constitute predicate argument structure and other dependency relations such as subject, predicate, adjunct, but also further semantic information such as the semantic type of an adjunct (e.g. directional). Normally f-structure is captured as a recursive attribute value matrix, which is isomorphic to a directed graph representation. Figure 5 depicts an example target f-structure. As mentioned earlier, these deeper-level dependency relations can be used to construct logical forms as in the approaches of van Genabith and Crouch (1996), who construct underspecified discourse representations (UDRSs), and Spreyer and Frank (2005), who have robust minimal recursion semantics (RMRS) as their target representation. We therefore think that f-structures are a suitable target representation for automatic syntactic analysis in a larger pipeline of mapping text to interpretation. In this paper, we report on the conversion from dependency structures to fstructure. Firstly, we evaluate the f-structure conversion in isolation, starting from hand-corrected dependencies based on the TüBa-D/Z treebank and Versley (2005)´s conversion. Secondly, we start from tokenized text to evaluate the combined process of automatic parsing (using Foth and Menzel (2006)´s parser) and f-structure conversion. As a test set, we randomly selected 100 sentences from TüBa-D/Z which we annotated using a scheme very close to that of the TiGer Dependency Bank (Forst et al., 2004). In the next section, we sketch dependency analysis, the underlying theory of our input representations, and introduce four different representations of coordination. We also describe Weighted Constraint Dependency Grammar (WCDG), the dependency parsing formalism that we use in our experiments. Section 3 characterises the conversion of dependencies to f-structures. Our evaluation is presented in section 4, and finally, section 5 summarises our results and gives an overview of problems remaining to be solved

    An Efficient Implementation of the Head-Corner Parser

    Get PDF
    This paper describes an efficient and robust implementation of a bi-directional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a non-deterministic version of the head-corner parser is presented. A memoization technique is applied to obtain a fast parser. A goal-weakening technique is introduced which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memoization strategy with goal-weakening in comparison with ordinary chart-parsers because such a strategy can be applied selectively and therefore enormously reduces the space requirements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers implemented with selective memoization and goal weakening outperform `standard' chart parsers. The experiments include the grammar of the OVIS system and the Alvey NL Tools grammar. Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches towards robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques. A particular robust parsing model is described which is implemented in OVIS.Comment: 31 pages, uses cl.st

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL

    Resource Constrained Structured Prediction

    Full text link
    We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two structured prediction tasks, optical character recognition (OCR) and dependency parsing and show strong performance in reduction of the feature costs without degrading accuracy

    Design and enhanced evaluation of a robust anaphor resolution algorithm

    Get PDF
    Syntactic coindexing restrictions are by now known to be of central importance to practical anaphor resolution approaches. Since, in particular due to structural ambiguity, the assumption of the availability of a unique syntactic reading proves to be unrealistic, robust anaphor resolution relies on techniques to overcome this deficiency. This paper describes the ROSANA approach, which generalizes the verification of coindexing restrictions in order to make it applicable to the deficient syntactic descriptions that are provided by a robust state-of-the-art parser. By a formal evaluation on two corpora that differ with respect to text genre and domain, it is shown that ROSANA achieves high-quality robust coreference resolution. Moreover, by an in-depth analysis, it is proven that the robust implementation of syntactic disjoint reference is nearly optimal. The study reveals that, compared with approaches that rely on shallow preprocessing, the largely nonheuristic disjoint reference algorithmization opens up the possibility/or a slight improvement. Furthermore, it is shown that more significant gains are to be expected elsewhere, particularly from a text-genre-specific choice of preference strategies. The performance study of the ROSANA system crucially rests on an enhanced evaluation methodology for coreference resolution systems, the development of which constitutes the second major contribution o/the paper. As a supplement to the model-theoretic scoring scheme that was developed for the Message Understanding Conference (MUC) evaluations, additional evaluation measures are defined that, on one hand, support the developer of anaphor resolution systems, and, on the other hand, shed light on application aspects of pronoun interpretation

    CHR as grammar formalism. A first report

    Full text link
    Grammars written as Constraint Handling Rules (CHR) can be executed as efficient and robust bottom-up parsers that provide a straightforward, non-backtracking treatment of ambiguity. Abduction with integrity constraints as well as other dynamic hypothesis generation techniques fit naturally into such grammars and are exemplified for anaphora resolution, coordination and text interpretation.Comment: 12 pages. Presented at ERCIM Workshop on Constraints, Prague, Czech Republic, June 18-20, 200
    corecore