1,075 research outputs found

    Robust Near-Field Adaptive Beamforming with Distance Discrimination

    Get PDF
    This paper proposes a robust near-field adaptive beamformer for microphone array applications in small rooms. Robustness against location errors is crucial for near-field adaptive beamforming due to the difficulty in estimating near-field signal locations especially the radial distances. A near-field regionally constrained adaptive beamformer is proposed to design a set of linear constraints by filtering on a low rank subspace of the near-field signal over a spatial region and frequency band such that the beamformer response over the designed spatial-temporal region can be accurately controlled by a small number of linear constraint vectors. The proposed constraint design method is a systematic approach which guarantees real arithmetic implementation and direct time domain algorithms for broadband beamforming. It improves the robustness against large errors in distance and directions of arrival, and achieves good distance discrimination simultaneously. We show with a nine-element uniform linear array that the proposed near-field adaptive beamformer is robust against distance errors as large as ±32% of the presumed radial distance and angle errors up to ±20⁰. It can suppress a far field interfering signal with the same angle of incidence as a near-field target by more than 20 dB with no loss of the array gain at the near-field target. The significant distance discrimination of the proposed near-field beamformer also helps to improve the dereverberation gain and reduce the desired signal cancellation in reverberant environments

    Robust Near-Field Adaptive Beamforming With Distance Discrimination

    Full text link

    Robustness and Distance Discrimination of Adaptive Near Field Beamformers

    Get PDF
    A robust adaptive beamformer is proposed using the near field regionally constrained adaptive approach that designs a set of linear constraints by filtering on a low rank subspace of the near field signal over a spatial region and a wide frequency band. This method can accurately control the beam-former response over the designed spatial-temporal region using a small number of linear constraint vectors and improve the robustness against target location errors. Meanwhile, this method enhances the capability of the near field beamformer in distance discrimination without additional constraints so that interference impinging at the same direction as the desired signal but at a different distance can be effectively suppressed

    A Microphone Array System for Multimedia Applications with Near-Field Signal Targets

    Get PDF
    A microphone array beamforming system is proposed for multimedia communication applications using four sets of small planar arrays mounted on a computer monitor. A new virtual array approach is employed such that the original signals received by the array elements are weighted and delayed to synthesize a large, nonuniformly spaced, harmonically nested virtual array covering the frequency band [50, 7000] Hz of the wideband telephony. Subband multirate processing and near-field beamforming techniques are then used jointly by the nested virtual array to improve the performances in reverberant environments. A new beamforming algorithm is also proposed using a broadband near-field spherically isotropic noise model for array optimization. The near-field noise model assumes a large number of broadband random noises uniformly distributed over a sphere with a finite radius in contrast to the conventional far-field isotropic noise model which has an infinite radius. The radius of the noise model, thus, adds a design parameter in addition to its power for tradeoffs between performance and robustness. It is shown that the near-field beamformers designed by the new algorithm can achieve more than 8-dB reverberation suppression while maintaining sufficient robustness against background noises and signal location errors. Computer simulations and real room experiments also show that the proposed array beamforming system reduces beampattern variations for broadband signals, obtains strong noise and reverberation suppression, and improves the sound quality for near-field targets

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Design and testing of compact dual-band dual-polarized robust satellite navigation antenna arrays

    Get PDF
    Die steigende Nachfrage nach präzisen Positionierlösungen für hochautomatisiertes Fahren und sicherheitskritische Anwendungen führt zu der Verwendung von Array-basierten Satellitennavigationsempfängern, die aufgrund des verbesserten Diversity-Gewinns und der potentiellen Strahlformungsfähigkeit eine bessere Leistung aufweisen. Die Notwendigkeit, die Robustheit von Navigationsempfängern gegenüber Quellen von Signalstörungen, wie Mehrwegempfang, atmosphärische, sowie Jamming- und Spoofing, zu verbessern, verlangt, den Empfänger weiter auszubauen, um Polarisations- und Frequenz-Diversity auszunutzen. Das hieraus resultierende Design ist durch eine signifikante Zunahme der Hardware- und Softwarekomplexität gekennzeichnet. Diese Komplexität steigt noch mit dem Trend, den Navigationsempfänger zu miniaturisieren, um die Integration in Fahrzeugen oder mobilen Systemen zu erleichtern. Da die gegenseitige Verkopplung zwischen den Antennenelementen eines kompakten Antennen- Arrays steigt, verschlechtert sich deren Strahlungseffizienz und Polarisationsreinheit und damit die Systemrobustheit. In dieser Arbeit wird ein kompaktes, dualbandiges und dualpolarisiertes Antennenarray für einen Navigationsempfänger untersucht, schaltungstechnisch entworfen und aufgebaut, womit Array-, Frequenz-, und Polarisations-Diversity ermöglicht wird. Dies führt zu einer signifikant verbesserten Robustheit gegenüber den angesprochenen Störungen. Diese Arbeit umfasst das Design des dualbandigen und dualpolarisierten Patchantennenelements, das Design des kompakten Antennenarrays, das Studium der Kreuzpolarisationsquellen in Patchantennen, die Analyse des Einflusses der gegenseitigen Kopplung auf die Strahlungseffizienz und Polarisationsreinheit, und die Abschwächung beider Effekte durch eigenmode-basierten Entkopplungs- und Anpassungsnetzwerken. Darüber hinaus beinhaltet die Arbeit die Integration des Antennensystems mit einem HF-Frontend zur Leistungsverstärkung, Filterung und Signalkonvertierung der Satellitensignale. Die Arbeit umfasst auch die Integration mit einem Array-basierten digitalen Empfänger, in dem neben der Datenerfassung, auch die Richtungsschätzung, das Beamforming und die Anti-Jamming-Algorithmen implementiert wurden. Die Machbarkeit sowohl der Array-Diversity als auch der Polarisations-Diversity wurde in Automotive-related Feldmessungen bestätigt, insbesondere für Elevationswinkel unter 40 bzw. 60 Grad, wo der Einfluss des Mehrwegempfangs ausreichend hohe Pegel erreicht. Die Messungen bestätigten die Robustheit des Empfängers gegenüber Stör- Nutzsignalverhältnissen von bis zu 85 dB und übertrafen damit mehrere "State-of-the-Art" Empfänger.The increasing demand for accurate positioning solutions for highly-automated driving and safety-critical applications motivates the use of array-based satellite navigation receivers that feature better performance, due to the enhanced diversity gain and the potential beamforming capability. The need for improving the robustness of navigation receivers against sources of signal distortion such as multipath propagation, atmospheric impact, jamming, and spoofing violations requests to extend the receiver to exploit polarization and frequency diversities. The resulting design is challenged by the significant rise in hardware and software complexity. This complexity increases even more with the trend to miniaturize the navigation receiver, to ease the integration in vehicles or mobile systems, because mutual coupling rises between the radiating elements of the receiver, and deteriorates their radiation efficiencies and polarization purities, and hence degrades the system robustness. In this thesis, a compact dual-band dual-polarized array-based navigation receiver that uses array diversity, frequency diversity, and polarization diversity is studied and designed, to provide robustness against the different types of distortions. The main contributions of the presented work include the design of the dual-band dual-polarized patch antenna element, the design of the compact antenna array, the study of the cross-polarization sources in patch antennas, the analysis of the mutual coupling impact on radiation efficiency and polarization purity of radiating elements, and the mitigation of both impacts using eigenmode-based decoupling and matching networks. Furthermore, the work also involves the integration of the antenna system with an RF-IF front-end, developed in cooperation with IMMS GmbH, for power amplification, filtering, and down-converting. The dissertation covers also the integration with an array-based digital receiver, developed in cooperation with RWTH Aachen University and the German Aerospace Center (DLR), to implement data acquisition, direction-of-arrival estimation, beamforming, and anti-jamming algorithms. The feasibility of both the array diversity and the polarization diversity was confirmed in automotive-related field measurements, particularly for elevations below 40 and 60 degrees, respectively; i.e., at directions far from the main beam direction of the even mode of the array (at zenith), and where the impact of multipath propagation on strength and polarization of the signal reaches sufficient levels to disturb the receiver. Measurements proved the receiver robustness against jamming-to-signal ratios up to 85 dB, outperforming several state-of-the-art receivers described in literature
    corecore