4 research outputs found

    Cycling around a curve : the effect of cycling speed on steering and gaze behavior

    Get PDF
    Although it is generally accepted that visual information guides steering, it is still unclear whether a curvature matching strategy or a 'look where you are going' strategy is used while steering through a curved road. The current experiment investigated to what extent the existing models for curve driving also apply to cycling around a curve, and tested the influence of cycling speed on steering and gaze behavior. Twenty-five participants were asked to cycle through a semicircular lane three consecutive times at three different speeds while staying in the center of the lane. The observed steering behavior suggests that an anticipatory steering strategy was used at curve entrance and a compensatory strategy was used to steer through the actual bend of the curve. A shift of gaze from the center to the inside edge of the lane indicates that at low cycling speed, the 'look where you are going' strategy was preferred, while at higher cycling speeds participants seemed to prefer the curvature matching strategy. Authors suggest that visual information from both steering strategies contributes to the steering system and can be used in a flexible way. Based on a familiarization effect, it can be assumed that steering is not only guided by vision but that a short-term learning component should also be taken into account

    Robust ego-localization using monocular visual odometry

    Get PDF

    Robust monocular visual odometry by uncertainty voting

    No full text
    GPS by itself is not dependable in urban environments, due to signal reception issues such as multi-path effects or occlusion. Other sensor data is required to keep track of the vehicle in absence of a reliable GPS signal. We propose a new method to use a single on-board consumer-grade camera for vehicle motion estimation. The method is based on the tracking of ground plane features, taking into account the uncertainty on their backprojection as well as the uncertainty on the vehicle motion. A Hough-like parameter space vote is employed to extract motion parameters from the uncertainty models. The method is easy to calibrate and designed to be robust to outliers and bad feature quality. Experimental results show good accuracy and high reliability, with a positional estimate within 2 metres for a 400 metre elapsed distance

    The role of visual information in the steering behaviour of young and adult bicyclists

    Get PDF
    In a first series of experiments, the visual behaviour during different steering tasks, and under different constraints, was investigated in an indoor environment. Young learner, and experienced adult bicyclists were asked to steer through narrow lanes, a curved lane, and a slalom. Participants directed their gaze to the future path about one to two seconds ahead, and moved forward using optokinetic nystagmus-like eye movements. Both cycling speed and task demand were found to affect the visual behaviour of bicyclists. Although these shifts of visual attention were in line with earlier findings in pedestrians and car drivers, they did not seem to be entirely in line with the two-level model of steering behaviour. Therefore, a redefined version of this model was proposed as the ‘gaze constraints model for steering’. During a simple linear steering task, the visual behaviour of children (between 6 and 12 years of age) was similar to that of adults. However, in a more demanding slalom task children adopted a different visual-motor strategy. Whereas adults made more use of anticipatory fixations and often looked at the functional space between two cones, children mainly focussed on the upcoming cone. These findings suggest that adults plan their route through the slalom whereas children focus on steering around one cone at the time. In a second series of experiments, the distribution of visual attention was investigated in an actual traffic environment and the influence of a low quality cycling track on visual behaviour was studied. Results showed that children direct their gaze more to the environment and less to the path than adults. However, both adults and children made an apparent shift of visual attention from distant environmental regions towards more proximate road properties on the low quality cycling track. In general, the current thesis provides insights into how visual attention of young and adult bicyclists is distributed during different steering tasks and how this is affected by individual, task, and environmental constraints. Based on the current results, a gaze constraints model for steering was proposed. Furthermore, it seems that children adapted their visual behaviour to their limited capabilities, but that children’s visual behaviour changes in a similar way to changing task constraints as the visual behaviour of adults. These findings suggest that traffic rules, road infrastructure and traffic education should take into account the limited capabilities of children. However, it should be noted that this work only focussed on the lane-keeping task. Future research should therefore study the integration of these findings in the visual control of other traffic tasks such as hazard perception. A better understanding of the development of information processing of young learner bicyclists could potentially lead to better traffic education and more appropriate road infrastructure. Additionally, a new fixation-by-fixation analysis method to analyze head-mounted eye tracking data was tested in this thesis. This method was found to be a good alternative to the time-consuming frame-by-frame method, provided that the areas of interest were large, and the analysis is done over an extended period of time
    corecore