16,055 research outputs found

    Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data

    Get PDF
    In systems biomedicine, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multi-variable network-level responses. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template -- used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts

    EMMIXcskew: an R Package for the Fitting of a Mixture of Canonical Fundamental Skew t-Distributions

    Get PDF
    This paper presents an R package EMMIXcskew for the fitting of the canonical fundamental skew t-distribution (CFUST) and finite mixtures of this distribution (FM-CFUST) via maximum likelihood (ML). The CFUST distribution provides a flexible family of models to handle non-normal data, with parameters for capturing skewness and heavy-tails in the data. It formally encompasses the normal, t, and skew-normal distributions as special and/or limiting cases. A few other versions of the skew t-distributions are also nested within the CFUST distribution. In this paper, an Expectation-Maximization (EM) algorithm is described for computing the ML estimates of the parameters of the FM-CFUST model, and different strategies for initializing the algorithm are discussed and illustrated. The methodology is implemented in the EMMIXcskew package, and examples are presented using two real datasets. The EMMIXcskew package contains functions to fit the FM-CFUST model, including procedures for generating different initial values. Additional features include random sample generation and contour visualization in 2D and 3D
    • …
    corecore