371 research outputs found

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Class-Based Feature Matching Across Unrestricted Transformations

    Get PDF
    We develop a novel method for class-based feature matching across large changes in viewing conditions. The method is based on the property that when objects share a similar part, the similarity is preserved across viewing conditions. Given a feature and a training set of object images, we first identify the subset of objects that share this feature. The transformation of the feature's appearance across viewing conditions is determined mainly by properties of the feature, rather than of the object in which it is embedded. Therefore, the transformed feature will be shared by approximately the same set of objects. Based on this consistency requirement, corresponding features can be reliably identified from a set of candidate matches. Unlike previous approaches, the proposed scheme compares feature appearances only in similar viewing conditions, rather than across different viewing conditions. As a result, the scheme is not restricted to locally planar objects or affine transformations. The approach also does not require examples of correct matches. We show that by using the proposed method, a dense set of accurate correspondences can be obtained. Experimental comparisons demonstrate that matching accuracy is significantly improved over previous schemes. Finally, we show that the scheme can be successfully used for invariant object recognition

    Numerical methods for polyline‐to‐point‐cloud registration with applications to patient‐specific stent reconstruction

    Full text link
    We present novel numerical methods for polyline‐to‐point‐cloud registration and their application to patient‐specific modeling of deployed coronary artery stents from image data. Patient‐specific coronary stent reconstruction is an important challenge in computational hemodynamics and relevant to the design and improvement of the prostheses. It is an invaluable tool in large‐scale clinical trials that computationally investigate the effect of new generations of stents on hemodynamics and eventually tissue remodeling. Given a point cloud of strut positions, which can be extracted from images, our stent reconstruction method aims at finding a geometrical transformation that aligns a model of the undeployed stent to the point cloud. Mathematically, we describe the undeployed stent as a polyline, which is a piecewise linear object defined by its vertices and edges. We formulate the nonlinear registration as an optimization problem whose objective function consists of a similarity measure, quantifying the distance between the polyline and the point cloud, and a regularization functional, penalizing undesired transformations. Using projections of points onto the polyline structure, we derive novel distance measures. Our formulation supports most commonly used transformation models including very flexible nonlinear deformations. We also propose 2 regularization approaches ensuring the smoothness of the estimated nonlinear transformation. We demonstrate the potential of our methods using an academic 2D example and a real‐life 3D bioabsorbable stent reconstruction problem. Our results show that the registration problem can be solved to sufficient accuracy within seconds using only a few number of Gauss‐Newton iterations.We present novel numerical methods for nonlinear polyline‐to‐point‐cloud registration and their application to patient‐specific modeling of deployed coronary artery stents from image data. We design a general and mathematically sound framework that includes novel (almost everywhere) differentiable distance measures and 2 new regularization approaches to overcome the ill‐posedness and enable robust registration in the presence of outliers. We demonstrate that 3D registration problem arising in stent reconstruction can be solved within seconds using only a small number of Gauss‐Newton iterations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142552/1/cnm2934.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142552/2/cnm2934_am.pd

    Adaptive Pose Priors for Pictorial Structures

    Get PDF
    Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and parameterization of the model is often restricted, for example, by assuming tree dependency structure and unimodal, data-independent pairwise interactions. These expressivity restrictions fail to capture important patterns in the data. On the other hand, local methods such as nearest-neighbor classification and kernel density estimation provide nonparametric flexibility but require large amounts of data to generalize well. We propose a simple semi-parametric approach that combines the tractability of pictorial structure inference with the flexibility of non-parametric methods by expressing a subset of model parameters as kernel regression estimates from a learned sparse set of exemplars. This yields query-specific, image-dependent pose priors. We develop an effective shape-based kernel for upper-body pose similarity and propose a leave-one-out loss function for learning a sparse subset of exemplars for kernel regression. We apply our techniques to two challenging datasets of human figure parsing and advance the state-of-the-art (from 80% to 86% on the Buffy dataset [8]), while using only 15% of the training data as exemplars

    Matching Interest Points Using Projective Invariant Concentric Circles

    Get PDF
    We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.Singapore-MIT Alliance (SMA

    Cast shadow modelling and detection

    Get PDF
    Computer vision applications are often confronted by the need to differentiate between objects and their shadows. A number of shadow detection algorithms have been proposed in literature, based on physical, geometrical, and other heuristic techniques. While most of these existing approaches are dependent on the scene environments and object types, the ones that are not, are classified as superior to others conceptually and in terms of accuracy. Despite these efforts, the design of a generic, accurate, simple, and efficient shadow detection algorithm still remains an open problem. In this thesis, based on a physically-derived hypothesis for shadow identification, novel, multi-domain shadow detection algorithms are proposed and tested in the spatial and transform domains. A novel "Affine Shadow Test Hypothesis" has been proposed, derived, and validated across multiple environments. Based on that, several new shadow detection algorithms have been proposed and modelled for short-duration video sequences, where a background frame is available as a reliable reference, and for long duration video sequences, where the use of a dedicated background frame is unreliable. Finally, additional algorithms have been proposed to detect shadows in still images, where the use of a separate background frame is not possible. In this approach, the author shows that the proposed algorithms are capable of detecting cast, and self shadows simultaneously. All proposed algorithms have been modelled, and tested to detect shadows in the spatial (pixel) and transform (frequency) domains and are compared against state-of-art approaches, using popular test and novel videos, covering a wide range of test conditions. It is shown that the proposed algorithms outperform most existing methods and effectively detect different types of shadows under various lighting and environmental conditions
    • 

    corecore