233 research outputs found

    Single Sketch Image based 3D Car Shape Reconstruction with Deep Learning and Lazy Learning

    Get PDF
    Efficient car shape design is a challenging problem in both the automotive industry and the computer animation/games industry. In this paper, we present a system to reconstruct the 3D car shape from a single 2D sketchimage. To learn the correlation between 2D sketches and 3D cars, we propose a Variational Autoencoder deepneural network that takes a 2D sketch and generates a set of multi-view depth and mask images, which forma more effective representation comparing to 3D meshes, and can be effectively fused to generate a 3D carshape. Since global models like deep learning have limited capacity to reconstruct fine-detail features, wepropose a local lazy learning approach that constructs a small subspace based on a few relevant car samples inthe database. Due to the small size of such a subspace, fine details can be represented effectively with a smallnumber of parameters. With a low-cost optimization process, a high-quality car shape with detailed featuresis created. Experimental results show that the system performs consistently to create highly realistic cars ofsubstantially different shape and topology

    Interactive Sketching of Mannequin Poses

    Get PDF
    It can be easy and even fun to sketch humans in different poses. In contrast, creating those same poses on a 3D graphics 'mannequin' is comparatively tedious. Yet 3D body poses are necessary for various downstream applications. We seek to preserve the convenience of 2D sketching while giving users of different skill levels the flexibility to accurately and more quickly pose/refine a 3D mannequin. At the core of the interactive system, we propose a machine-learning model for inferring the 3D pose of a CG mannequin from sketches of humans drawn in a cylinder-person style. Training such a model is challenging because of artist variability, a lack of sketch training data with corresponding ground truth 3D poses, and the high dimensionality of human pose-space. Our unique approach to synthesizing vector graphics training data underpins our integrated ML-and-kinematics system. We validate the system by tightly coupling it with a user interface, and by performing a user study, in addition to quantitative comparisons

    Fast character modeling with sketch-based PDE surfaces

    Get PDF
    © 2020, The Author(s). Virtual characters are 3D geometric models of characters. They have a lot of applications in multimedia. In this paper, we propose a new physics-based deformation method and efficient character modelling framework for creation of detailed 3D virtual character models. Our proposed physics-based deformation method uses PDE surfaces. Here PDE is the abbreviation of Partial Differential Equation, and PDE surfaces are defined as sculpting force-driven shape representations of interpolation surfaces. Interpolation surfaces are obtained by interpolating key cross-section profile curves and the sculpting force-driven shape representation uses an analytical solution to a vector-valued partial differential equation involving sculpting forces to quickly obtain deformed shapes. Our proposed character modelling framework consists of global modeling and local modeling. The global modeling is also called model building, which is a process of creating a whole character model quickly with sketch-guided and template-based modeling techniques. The local modeling produces local details efficiently to improve the realism of the created character model with four shape manipulation techniques. The sketch-guided global modeling generates a character model from three different levels of sketched profile curves called primary, secondary and key cross-section curves in three orthographic views. The template-based global modeling obtains a new character model by deforming a template model to match the three different levels of profile curves. Four shape manipulation techniques for local modeling are investigated and integrated into the new modelling framework. They include: partial differential equation-based shape manipulation, generalized elliptic curve-driven shape manipulation, sketch assisted shape manipulation, and template-based shape manipulation. These new local modeling techniques have both global and local shape control functions and are efficient in local shape manipulation. The final character models are represented with a collection of surfaces, which are modeled with two types of geometric entities: generalized elliptic curves (GECs) and partial differential equation-based surfaces. Our experiments indicate that the proposed modeling approach can build detailed and realistic character models easily and quickly

    SKED: Sketch-guided Text-based 3D Editing

    Full text link
    Text-to-image diffusion models are gradually introduced into computer graphics, recently enabling the development of Text-to-3D pipelines in an open domain. However, for interactive editing purposes, local manipulations of content through a simplistic textual interface can be arduous. Incorporating user guided sketches with Text-to-image pipelines offers users more intuitive control. Still, as state-of-the-art Text-to-3D pipelines rely on optimizing Neural Radiance Fields (NeRF) through gradients from arbitrary rendering views, conditioning on sketches is not straightforward. In this paper, we present SKED, a technique for editing 3D shapes represented by NeRFs. Our technique utilizes as few as two guiding sketches from different views to alter an existing neural field. The edited region respects the prompt semantics through a pre-trained diffusion model. To ensure the generated output adheres to the provided sketches, we propose novel loss functions to generate the desired edits while preserving the density and radiance of the base instance. We demonstrate the effectiveness of our proposed method through several qualitative and quantitative experiments

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    DeepSketchHair: Deep Sketch-based 3D Hair Modeling

    Full text link
    We present sketchhair, a deep learning based tool for interactive modeling of 3D hair from 2D sketches. Given a 3D bust model as reference, our sketching system takes as input a user-drawn sketch (consisting of hair contour and a few strokes indicating the hair growing direction within a hair region), and automatically generates a 3D hair model, which matches the input sketch both globally and locally. The key enablers of our system are two carefully designed neural networks, namely, S2ONet, which converts an input sketch to a dense 2D hair orientation field; and O2VNet, which maps the 2D orientation field to a 3D vector field. Our system also supports hair editing with additional sketches in new views. This is enabled by another deep neural network, V2VNet, which updates the 3D vector field with respect to the new sketches. All the three networks are trained with synthetic data generated from a 3D hairstyle database. We demonstrate the effectiveness and expressiveness of our tool using a variety of hairstyles and also compare our method with prior art

    What's the Situation with Intelligent Mesh Generation: A Survey and Perspectives

    Full text link
    Intelligent Mesh Generation (IMG) represents a novel and promising field of research, utilizing machine learning techniques to generate meshes. Despite its relative infancy, IMG has significantly broadened the adaptability and practicality of mesh generation techniques, delivering numerous breakthroughs and unveiling potential future pathways. However, a noticeable void exists in the contemporary literature concerning comprehensive surveys of IMG methods. This paper endeavors to fill this gap by providing a systematic and thorough survey of the current IMG landscape. With a focus on 113 preliminary IMG methods, we undertake a meticulous analysis from various angles, encompassing core algorithm techniques and their application scope, agent learning objectives, data types, targeted challenges, as well as advantages and limitations. We have curated and categorized the literature, proposing three unique taxonomies based on key techniques, output mesh unit elements, and relevant input data types. This paper also underscores several promising future research directions and challenges in IMG. To augment reader accessibility, a dedicated IMG project page is available at \url{https://github.com/xzb030/IMG_Survey}
    corecore