99 research outputs found

    Cruiser and PhoTable: Exploring Tabletop User Interface Software for Digital Photograph Sharing and Story Capture

    Get PDF
    Digital photography has not only changed the nature of photography and the photographic process, but also the manner in which we share photographs and tell stories about them. Some traditional methods, such as the family photo album or passing around piles of recently developed snapshots, are lost to us without requiring the digital photos to be printed. The current, purely digital, methods of sharing do not provide the same experience as printed photographs, and they do not provide effective face-to-face social interaction around photographs, as experienced during storytelling. Research has found that people are often dissatisfied with sharing photographs in digital form. The recent emergence of the tabletop interface as a viable multi-user direct-touch interactive large horizontal display has provided the hardware that has the potential to improve our collocated activities such as digital photograph sharing. However, while some software to communicate with various tabletop hardware technologies exists, software aspects of tabletop user interfaces are still at an early stage and require careful consideration in order to provide an effective, multi-user immersive interface that arbitrates the social interaction between users, without the necessary computer-human interaction interfering with the social dialogue. This thesis presents PhoTable, a social interface allowing people to effectively share, and tell stories about, recently taken, unsorted digital photographs around an interactive tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to capture the stories told, and associate them as audio metadata to the appropriate photographs. By leveraging the tabletop interface and providing a highly usable and natural interaction we can enable users to become immersed in their social interaction, telling stories about their photographs, and allow the computer interaction to occur as a side-effect of the social interaction. Correlating the computer interaction with the corresponding audio allows PhoTable to annotate an automatically created digital photo album with audible stories, which may then be archived. These stories remain useful for future sharing -- both collocated sharing and remote (e.g. via the Internet) -- and also provide a personal memento both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable photo sharing experience at the tabletop. To provide the necessary software to realise an interface such as PhoTable, this thesis explored the development of Cruiser: an efficient, extensible and reusable software framework for developing tabletop applications. Cruiser contributes a set of programming libraries and the necessary application framework to facilitate the rapid and highly flexible development of new tabletop applications. It uses a plugin architecture that encourages code reuse, stability and easy experimentation, and leverages the dedicated computer graphics hardware and multi-core processors of modern consumer-level systems to provide a responsive and immersive interactive tabletop user interface that is agnostic to the tabletop hardware and operating platform, using efficient, native cross-platform code. Cruiser's flexibility has allowed a variety of novel interactive tabletop applications to be explored by other researchers using the framework, in addition to PhoTable. To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems evaluation. The design rationale is framed within the above scenario and vision which we explore further, and the resulting design is critically analysed based on user studies, heuristic evaluation and a reflection on how it evolved over time. The effectiveness of Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to explore many new tabletop applications, and an analysis of performance and resource usage. Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful usability evaluations of elements of the interface; informal observations of usability when Cruiser was available to the public in several exhibitions and demonstrations; and a final evaluation of PhoTable in use for storytelling, where this had the side effect of creating a digital photo album, consisting of the photographs users interacted with on the table and associated audio annotations which PhoTable automatically extracted from the interaction. We conclude that our approach to design has resulted in an effective framework for creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop interaction as a new way to share digital photographs was realised in PhoTable. It is able to support the envisaged goal of an effective interface for telling stories about one's photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of the stories about individual photographs for future reminiscence and sharing. This work provides foundations for future work in creating new ways to interact at a tabletop and to the ways to capture personal stories around digital photographs for sharing and long-term preservation

    Cruiser and PhoTable: Exploring Tabletop User Interface Software for Digital Photograph Sharing and Story Capture

    Get PDF
    Digital photography has not only changed the nature of photography and the photographic process, but also the manner in which we share photographs and tell stories about them. Some traditional methods, such as the family photo album or passing around piles of recently developed snapshots, are lost to us without requiring the digital photos to be printed. The current, purely digital, methods of sharing do not provide the same experience as printed photographs, and they do not provide effective face-to-face social interaction around photographs, as experienced during storytelling. Research has found that people are often dissatisfied with sharing photographs in digital form. The recent emergence of the tabletop interface as a viable multi-user direct-touch interactive large horizontal display has provided the hardware that has the potential to improve our collocated activities such as digital photograph sharing. However, while some software to communicate with various tabletop hardware technologies exists, software aspects of tabletop user interfaces are still at an early stage and require careful consideration in order to provide an effective, multi-user immersive interface that arbitrates the social interaction between users, without the necessary computer-human interaction interfering with the social dialogue. This thesis presents PhoTable, a social interface allowing people to effectively share, and tell stories about, recently taken, unsorted digital photographs around an interactive tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to capture the stories told, and associate them as audio metadata to the appropriate photographs. By leveraging the tabletop interface and providing a highly usable and natural interaction we can enable users to become immersed in their social interaction, telling stories about their photographs, and allow the computer interaction to occur as a side-effect of the social interaction. Correlating the computer interaction with the corresponding audio allows PhoTable to annotate an automatically created digital photo album with audible stories, which may then be archived. These stories remain useful for future sharing -- both collocated sharing and remote (e.g. via the Internet) -- and also provide a personal memento both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable photo sharing experience at the tabletop. To provide the necessary software to realise an interface such as PhoTable, this thesis explored the development of Cruiser: an efficient, extensible and reusable software framework for developing tabletop applications. Cruiser contributes a set of programming libraries and the necessary application framework to facilitate the rapid and highly flexible development of new tabletop applications. It uses a plugin architecture that encourages code reuse, stability and easy experimentation, and leverages the dedicated computer graphics hardware and multi-core processors of modern consumer-level systems to provide a responsive and immersive interactive tabletop user interface that is agnostic to the tabletop hardware and operating platform, using efficient, native cross-platform code. Cruiser's flexibility has allowed a variety of novel interactive tabletop applications to be explored by other researchers using the framework, in addition to PhoTable. To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems evaluation. The design rationale is framed within the above scenario and vision which we explore further, and the resulting design is critically analysed based on user studies, heuristic evaluation and a reflection on how it evolved over time. The effectiveness of Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to explore many new tabletop applications, and an analysis of performance and resource usage. Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful usability evaluations of elements of the interface; informal observations of usability when Cruiser was available to the public in several exhibitions and demonstrations; and a final evaluation of PhoTable in use for storytelling, where this had the side effect of creating a digital photo album, consisting of the photographs users interacted with on the table and associated audio annotations which PhoTable automatically extracted from the interaction. We conclude that our approach to design has resulted in an effective framework for creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop interaction as a new way to share digital photographs was realised in PhoTable. It is able to support the envisaged goal of an effective interface for telling stories about one's photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of the stories about individual photographs for future reminiscence and sharing. This work provides foundations for future work in creating new ways to interact at a tabletop and to the ways to capture personal stories around digital photographs for sharing and long-term preservation

    HD: Efficient Hand Detection and Tracking

    Full text link

    Phrasing Bimanual Interaction for Visual Design

    Get PDF
    Architects and other visual thinkers create external representations of their ideas to support early-stage design. They compose visual imagery with sketching to form abstract diagrams as representations. When working with digital media, they apply various visual operations to transform representations, often engaging in complex sequences. This research investigates how to build interactive capabilities to support designers in putting together, that is phrasing, sequences of operations using both hands. In particular, we examine how phrasing interactions with pen and multi-touch input can support modal switching among different visual operations that in many commercial design tools require using menus and tool palettes—techniques originally designed for the mouse, not pen and touch. We develop an interactive bimanual pen+touch diagramming environment and study its use in landscape architecture design studio education. We observe interesting forms of interaction that emerge, and how our bimanual interaction techniques support visual design processes. Based on the needs of architects, we develop LayerFish, a new bimanual technique for layering overlapping content. We conduct a controlled experiment to evaluate its efficacy. We explore the use of wearables to identify which user, and distinguish what hand, is touching to support phrasing together direct-touch interactions on large displays. From design and development of the environment and both field and controlled studies, we derive a set methods, based upon human bimanual specialization theory, for phrasing modal operations through bimanual interactions without menus or tool palettes

    Compact and kinetic projected augmented reality interface

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 143-150).For quite some time, researchers and designers in the field of human computer interaction have strived to better integrate information interfaces into our physical environment. They envisioned a future where computing and interface components would be integrated into the physical environment, creating a seamless experience that uses all our senses. One possible approach to this problem employs projected augmented reality. Such systems project digital information and interfaces onto the physical world and are typically implemented using interactive projector-camera systems. This thesis work is centered on design and implementation of a new form factor for computing, a system we call LuminAR. LuminAR is a compact and kinetic projected augmented reality interface embodied in familiar everyday objects, namely a light bulb and a task light. It allows users to dynamically augment physical surfaces and objects with superimposed digital information using gestural and multi-touch interfaces. This thesis documents LuminAR's design process, hardware and software implementation and interaction techniques. The work is motivated through a set of applications that explore scenarios for interactive and kinetic projected augmented reality interfaces. It also opens the door for further explorations of kinetic interaction and promotes the adoption of projected augmented reality as a commonplace user interface modality. This thesis work was partially supported by a research grant from Intel Corporation.Supported by a research grant from Intel Corporationby Natan Linder.S.M

    Improving Accuracy and Efficiency of Hand Gestures on Multi-Touch Devices

    No full text
    Geometric transformation gestures such as rotation, scaling and dragging are extremely common. There are multiple variants of designing and implementing these gestures. Variants include slightly modifying the gesture input (e.g. different original placement or tracing of fingers) or the resulting action (e.g. scale factor, retention of scale centre or rotation degree). There has not been a significant amount of research assessing the best design of geometric transformation gestures across multiple multi-touch devices. We describe our research project that looks at variants of standard geometric transformation hand gestures. We hypothesise that these variants are superior to standard geometric transformation gestures (in terms of supporting more precise transformations and faster completion times) and are as easy to initiate and maintain as the standard gestures. We also discuss our experiences in implementing these variants and describe and present user experiments we have completed in order to test our hypotheses. The results show that only some of our variants are more precise and support faster transformation completion and that only some of these results are mirrored between devices. Furthermore, only some of our variants are as easy to initiate and maintain as the standard gestures

    Sensitive and Makeable Computational Materials for the Creation of Smart Everyday Objects

    Get PDF
    The vision of computational materials is to create smart everyday objects using the materi- als that have sensing and computational capabilities embedded into them. However, today’s development of computational materials is limited because its interfaces (i.e. sensors) are unable to support wide ranges of human interactions , and withstand the fabrication meth- ods of everyday objects (e.g. cutting and assembling). These barriers hinder citizens from creating smart every day objects using computational materials on a large scale. To overcome the barriers, this dissertation presents the approaches to develop compu- tational materials to be 1) sensitive to a wide variety of user interactions, including explicit interactions (e.g. user inputs) and implicit interactions (e.g. user contexts), and 2) makeable against a wide range of fabrication operations, such cutting and assembling. I exemplify the approaches through five research projects on two common materials, textile and wood. For each project, I explore how a material interface can be made to sense user inputs or activities, and how it can be optimized to balance sensitivity and fabrication complexity. I discuss the sensing algorithms and machine learning model to interpret the sensor data as high-level abstraction and interaction. I show the practical applications of developed computational materials. I demonstrate the evaluation study to validate their performance and robustness. In the end of this dissertation, I summarize the contributions of my thesis and discuss future directions for the vision of computational materials

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF

    Around-Body Interaction: Leveraging Limb Movements for Interacting in a Digitally Augmented Physical World

    Full text link
    Recent technological advances have made head-mounted displays (HMDs) smaller and untethered, fostering the vision of ubiquitous interaction with information in a digitally augmented physical world. For interacting with such devices, three main types of input - besides not very intuitive finger gestures - have emerged so far: 1) Touch input on the frame of the devices or 2) on accessories (controller) as well as 3) voice input. While these techniques have both advantages and disadvantages depending on the current situation of the user, they largely ignore the skills and dexterity that we show when interacting with the real world: Throughout our lives, we have trained extensively to use our limbs to interact with and manipulate the physical world around us. This thesis explores how the skills and dexterity of our upper and lower limbs, acquired and trained in interacting with the real world, can be transferred to the interaction with HMDs. Thus, this thesis develops the vision of around-body interaction, in which we use the space around our body, defined by the reach of our limbs, for fast, accurate, and enjoyable interaction with such devices. This work contributes four interaction techniques, two for the upper limbs and two for the lower limbs: The first contribution shows how the proximity between our head and hand can be used to interact with HMDs. The second contribution extends the interaction with the upper limbs to multiple users and illustrates how the registration of augmented information in the real world can support cooperative use cases. The third contribution shifts the focus to the lower limbs and discusses how foot taps can be leveraged as an input modality for HMDs. The fourth contribution presents how lateral shifts of the walking path can be exploited for mobile and hands-free interaction with HMDs while walking.Comment: thesi
    corecore