12,447 research outputs found

    Stabilization of Cascaded Two-Port Networked Systems Against Nonlinear Perturbations

    Full text link
    A networked control system (NCS) consisting of cascaded two-port communication channels between the plant and controller is modeled and analyzed. Towards this end, the robust stability of a standard closed-loop system in the presence of conelike perturbations on the system graphs is investigated. The underlying geometric insights are then exploited to analyze the two-port NCS. It is shown that the robust stability of the two-port NCS can be guaranteed when the nonlinear uncertainties in the transmission matrices are sufficiently small in norm. The stability condition, given in the form of "arcsin" of the uncertainty bounds, is both necessary and sufficient.Comment: 8 pages, in preparation for journal submissio

    Fault Tolerant Deep Reinforcement Learning for Aerospace Applications

    Get PDF
    With the growing use of Unmanned Aerial Systems, a new need has risen for intelligent algorithms that not only stabilize or control the system, but rather would also include various factors such as optimality, robustness, adaptability, tracking, decision making, and many more. In this thesis, a deep-learning-based control system is designed with fault-tolerant and disturbance rejection capabilities and applied to a high-order nonlinear dynamic system. The approach uses a Reinforcement Learning architecture that combines concepts from optimal control, robust control, and game theory to create an optimally adaptive control for disturbance rejection. Additionally, a cascaded Observer-based Kalman Filter is formulated for estimating adverse inputs to the system. Numerical simulations are presented using different nonlinear model dynamics and scenarios. The Deep Reinforcement Learning and Observer architecture is demonstrated to be a promising control system alternative for fault tolerant applications

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Fault Tolerant Filtering and Fault Detection for Quantum Systems Driven By Fields in Single Photon States

    Full text link
    The purpose of this paper is to solve a fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.Comment: arXiv admin note: text overlap with arXiv:1504.0678

    Predictive Control of Autonomous Kites in Tow Test Experiments

    Get PDF
    In this paper we present a model-based control approach for autonomous flight of kites for wind power generation. Predictive models are considered to compensate for delay in the kite dynamics. We apply Model Predictive Control (MPC), with the objective of guiding the kite to follow a figure-of-eight trajectory, in the outer loop of a two level control cascade. The tracking capabilities of the inner-loop controller depend on the operating conditions and are assessed via a frequency domain robustness analysis. We take the limitations of the inner tracking controller into account by encoding them as optimisation constraints in the outer MPC. The method is validated on a kite system in tow test experiments.Comment: The paper has been accepted for publication in the IEEE Control Systems Letters and is subject to IEEE Control Systems Society copyright. Upon publication, the copy of record will be available at http://ieeexplore.ieee.or

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction
    • …
    corecore