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ABSTRACT

With the growing use of Unmanned Aerial Systems, a new need has risen for intelligent

algorithms that not only stabilize or control the system, but rather would also include

various factors such as optimality, robustness, adaptability, tracking, decision making, and

many more. In this thesis, a deep-learning-based control system is designed with

fault-tolerant and disturbance rejection capabilities and applied to a high-order nonlinear

dynamic system. The approach uses a Reinforcement Learning architecture that combines

concepts from optimal control, robust control, and game theory to create an optimally

adaptive control for disturbance rejection. Additionally, a cascaded Observer-based Kalman

Filter is formulated for estimating adverse inputs to the system. Numerical simulations are

presented using different nonlinear model dynamics and scenarios. The Deep

Reinforcement Learning and Observer architecture is demonstrated to be a promising

control system alternative for fault tolerant applications.
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1. Introduction

In recent years, there has been an increase in the use of Unmanned Aerial Vehicles

(UAV) for different types of missions. However, one of them main challenges has become

to build controls that can reject various disturbances especially when dealing with new

sometimes unknown environments. This is clearly portrayed in Figure (1.1) which shows

the Mars Ingenuity Rover, which is dealing with an environment unknown to man.

Figure 1.1 Ingenuity Rover On Mars (Aeronautics & Administration, 2021).

When dealing with unpredictable environments, a robust, optimal, and adaptive system

should be established in order to control the vehicle. One of the main difficulties in

aerospace systems is the identification and quantification of disturbances that can occur

during vehicle operation. However, with recent discoveries in artificial intelligence various

algorithms have been proposed to address issues of robustness, adaptability, and optimality

applied specifically to disturbance rejection.

Different branches of learning algorithms have developed, such as Machine Learning

(ML), Deep Learning (DL), Reinforcement Learning (RL) and many others, the trend and

its applications have become versatile in all of its formulations and combinations. With the

arrival of such artificial intelligence concepts and the basis of Neural Networks, as well as

high processing computers, a new domain has opened for human mental mimicry. This

helped individuals formulate the mental functions of a human into an algorithm which can

help solve issues in real life. This important Neural Network concept is portrayed in Figures
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(1.2) and (1.3). As such, this thesis describes a deep learning method which includes aspects

of optimal control algorithms along with optimization concepts from Neural Networks.

Figure 1.2 Comparison Between a Neuron as an equation and in the Brain (Nagyfi, 2018).

Figure 1.3 Comparison Between a Computer and Brain Neural network (Nagyfi, 2018).

1.1. Thesis Objectives

The main purpose of this research is to develop a Deep Learning algorithm which is

capable of controlling a high order system with online learning characteristics along with

disturbance rejection. The observability aspect of the problem adds upon the complexity of

the proposed system as it will incorporate cascaded Kalman filters which would be used for

total system observability. To achieve this goal, several elements must be identified and are

summarized as follows:

• A study of different kinds of errors for UAV’s and their dynamics
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• A survey of all various control methods for UAV’s

• Different methods of disturbance identification

• Different types of Artificial Intelligence algorithms

In this document, each point will be addressed by a distinguished chapter with further

explanations and elaborations which will culminate with the proposed algorithm and the

advances established from these proposals.

1.2. Thesis Outline

A generalized background and context of the problem is provided in Chapter 2, which

includes the various surveys. This includes the errors to UAV systems, UAV control

systems, and Artificial Intelligence algorithms.

Chapter 3 presents an Online Deep Learning algorithm that is proposed alongside a

cascaded Kalman filter for state, dynamics, and disturbance estimation for full system

observability and fault tolerance. This proposed system includes concepts from optimal

control, robust control, game theory, and estimation.

Chapter 4 includes results of the generalized algorithm along with its variations and

comparisons to other methods such as optimal control. Numerical simulations are

performed using various platforms and dynamics including a state space, the DJI Phantom 2

quadrotor, and the Crazyflie 2.0 quadrotor.

Chapter 5 delves into main conclusion of the results and discusses the various options

for elaborating upon the proposed method in future work.
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2. Background

In this chapter, a various survey of different topics will be discussed including quadrotor

dynamics, various faults that might be present for the systems, and different control

methods. Moreover, a review of different estimation systems are studied as well as revewing

the vast library of Artificial Intelligence methods and algorithms.

2.1. Quadrotor Dynamics

To describe high order system dynamics, such as a quadrotor, a generalized coordinate

transformation should be established, and a set of aerodynamics concept shall be

provided.In order to start with localizing the dynamics of the equation the forces governing

the system should be transformed from the inertial frame (world frame) to the body frame,

and also states should be transformed from body frame to inertial frame. These

transformations are done usually under the scope of Euler transformation matrices and

Euler angles using ZYZ rotation axes (Christoph Aoun & Shammas, 2019). This is shown

in Figure (2.1) which shows the difference between the iniertial and body frames.

Figure 2.1 Quadrotor Dynamics and Frames (Christoph Aoun & Shammas, 2019).

Specifically, a transformation matrix is given by:

RB
I (φ, θ, ψ) =


cφcψ − cθsφsψ −cψsφ − cφcθsψ sθsψ

cθcψsφ + cφsψ cφcθcψ − sφsψ −cψsθ

sφsθ cφsθ cθ

 (2.1)
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where c represents a cos function and s represents a sin function as well as the Euler angles

are represented by φ, θ, ψ which are roll, pitch and yaw, respectively.

The forces that govern the motion of the quadrotor are generated by the rotors of the

quadcopter. Each rotor has two components of force which are created when the rotor

blades swirl. These forces are lateral and longitudinal known as the drag and thrust forces

of the rotor blades.

Figure 2.2 Quadrotor Motion Variations (Christoph Aoun & Shammas, 2020).

As shown in Figure (2.2), the motion of the quadrotor varies with the differnt

combinations by the relative variations of the rotor speeds. To formulate this into actual

dynamics, the following equations are used.



u1

u2

u3

u4


=



k(ω2
1 + ω2

2 + ω2
3 + ω2

4)

k(ω2
2 − ω2

4)

k(ω2
3 − ω2

1)

bt(ω
2
1 − ω2

2 + ω2
3 − ω2

4)


. (2.2)
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where ω represent the rotor speeds, k is the thrust coefficient, bt is the drag coefficient. u1,

is the total thrust performed by all rotors, while u2 and u3 are the difference in thrusts which

will be used to calucalte the roll and pitch moments respectively, while u4 is the yaw

moment (Aoun, 2019).

Using Equation (2.1) along with Newton’s second law of motion, the following

quadrotor equations of motion in the inertial frame are established.

mẍ = k(sinφ sinψ + cosφ cosψ sin θ)u1,

mÿ = k(cosφ sin θ sinψ − cosψ sinφ)u1,

mz̈ = k(cosφ cos θ)u1 −mg,

Ixφ̈ = (Iy − Iz)θ̇ψ̇ + lu2,

Iyθ̈ = (Iz − Ix)φ̇ψ̇ + lu3,

Izψ̈ = (Ix − Iy)φ̇θ̇ + u4. (2.3)

where x, y, z are the positions in the inertial frame and Ix, Iy, and Iz are the moments

of inertia of the respective axes. m is the mass of the quadrotor, g = 9.81m/s2 is the

acceleration due to gravity, and l is length of the arm. Considering Equations (2.3) and (2.2),

the following equation of motion result (Aoun, 2019):

mẍ = k(sinφ sinψ + cosφ cosψ sin θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4),

mÿ = k(cosφ sin θ sinψ − cosψ sinφ)(ω2
1 + ω2

2 + ω2
3 + ω2

4),

mz̈ = k(cosφ cos θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4)−mg,

Ixφ̈ = (Iy − Iz)θ̇ψ̇ + lk(ω2
4 − ω2

2),

Iyθ̈ = (Iz − Ix)φ̇ψ̇ + lk(ω2
3 − ω2

1),

Izψ̈ = (Ix − Iy)φ̇θ̇ + b(ω2
2 − ω2

1 + ω2
4 − ω2

3). (2.4)

2.2. UAV Operational Challenges

There are three generalized categories of problems that might arise in UAVs. These

might be categorized into system problems, external problems, and program issues. In

particular, the categories are known as Failures, Errors, and Threats. These might have
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various effects on the system whether it changes the system dynamics, or the sensor data,

communication, or even might just be considered as an additional input to the system.

2.2.1. Failures

Failures in the system are generally associated with major changes occurring in the

physical attributes of the system. For a quadrotor UAV in particular, there are several

failures that might occur.

2.2.1.1. Propeller and Motor Failure

One example would be a propeller breakage or motor failure for one or more sides of

the quadrotor. This would cause a total exclusion of one or more of the ω terms from the

equations of motion in Equation (2.4) depending on which rotor or motor is affected or

destroyed.

Another example of this failure is reduced efficiency of the motor or bent propellers

which might also reduce efficiency or change the thrust coefficient k. This would result in

having an efficiency coefficient εω multiplied to each ω2 in Equations (2.4).

One of the most common limitations of the motor is saturation. This could be very

eccentrically formulated into the system where there is a range of speed that the rotor can

sustain such as ωmin < ω < ωmax. This could be formulated as an external input which

increases proportionally with the motor command to keep it limited within the maximum

limit of the system (Mueller & D’Andrea, 2014).

2.2.1.2. Arm Failure

A change in the arms first and foremost would result in the change of the constant l in

the Equations (2.4). It might also result in an array of variations. Having an arm break

would not only result in the elimination of the ω component of the respective side, but also

would affect the whole dynamics of the system including the moments of inertia Ix, Iy, and

Iz along with the mass m. As a consequence, the center of gravity will change.

If the arm is twisted several components are changed. The thrust contributed by each

rotor will result in two main forces on the body frame which include a lateral and a
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longitudinal thrust force. This would result in the augmentation of the equations of motion.

Moreover, several dynamic constants would be augmented to fit the contribution and the

center of gravity and mass shifting in the quadrotor. As per the severity of the bend, it might

also cause certain changes to the dynamic constants of Equations (2.4) as it might move the

center of gravity causing changes in the moments of inertia Ix, Iy, and Iz (M. Rizon, 2020).

2.2.2. Sensor Errors

Sensor errors mostly pertain to more sensory inputs and virtual system failures. These

might affect the general observability of the system dynamics. In the context of a state-space

format, the observation matrix C will be modified. Sensor errors are generally established in

different levels that include ceasing of functionality, biases, drift, noise, and delays.

Ceasing of sensor functionality means that the sensor has totally failed and would result

in zero observability of the state that was provided by that sensor. Bias is described by an

offset in sensory input. Noise is usually described as small additions to the actual condition

of the sensed state that might average out in the long run to a zero mean error. These could

be found in a range of amplitudes and frequencies. Delays, on the other hand, might come

from the rate of sensing that might occur and the variations in signal timing between

sensory inputs (Vignesh Kumar Chandhrasekaran, 2010). Figure (2.3) shows the various

sensor errors that could occur.
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(a) Delay Example(1 second delay) (b) Bias Example (+0.5 offset)

(c) Drift Example (+0.01/s slope drift) (d) Noise Example (max amplitude ±0.25)

Figure 2.3 Various Examples of Errors.

The main sensors used in the quadrotor are the GPS and the Inertial Measurement Unit

(IMU) which includes both the gyroscope and the accelerometer sensors. These sensors

measure linear and angular accelerations in body frames (Olson & Atkins, 2013). Figure

(2.4) describes the various sensors included in the IMU.

Figure 2.4 IMU input.
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Another type of commonly used sensor is the height sensor which mostly uses infrared

or ultrasound to determine the height of the object from the ground. Moreover, in order to

determine the rest of the coordinates and the heading of the system other sensors are used to

determine the lateral states. This includes vision systems which determine the lateral speed

of the system along with its relative location to its original position based on variations in

pixels. Another form of determining location is a Global Position System (GPS) which

provides position and velocity observability. Finally, another form of location system is

using a magnetometer to find out the position and the heading of the system (Cuenca, 2021).

2.2.3. External Threats

One of the most difficult disturbances to determine or estimate are external threats.

These could range from simple forces, to change in loads, to wind gusts and many more.

2.2.3.1. Wind Gusts

Wind gusts are a common threats that UAV’s experience very often. One way to model

a wind gust is considering it simply as a form of force that is proportionate to the angle of

impact and relative to the body frame. The quadrotor can be simplified into a cylindrical

representation whilst having the the wind being represented as a distributed force (Solovyev

Viktor V. & A., 2015). This wind gust force effect is portrayed in Figure (2.5).

Figure 2.5 Wind Force Representation (Solovyev Viktor V. & A., 2015).

This formulation could be portrayed using the following equations:

Fwx = SexAw(Vcz)
2 cosψw (2.5)

Sex = βπr2 sin θ + απrh cos θ (2.6)

Fwy = SeyAw(Vcz)
2 sinψw (2.7)

Sey = βπr2 sinφ+ απrh cosφ (2.8)
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where ψw is the relative the yaw of the quad, while α and β are fill factors of the cylinder

area which depends on the quadrotor design. Moreover, h and r represent the cylinder

height and radius respectively. Fwx and Fwy are the forces to the body frame along the

lateral axes. Vcz is the relative wind velocity compared to the quadrotor speed. Aw = 0.61

is the rate of conversion from wind velocity (m/s2) to pressure (N/m2) and Sex and Sey are

the effective area of impact of the wind pressure.

An alternative way for modeling wind speed to the system is analyzing how the

quadrotor produces thrust through an action-reaction process by pushing wind through its

rotors and causing a thrust force. However, when wind is applied to Equation (2.4), it may

cause a variation in the air direction and speed which might disrupt the expected reactionary

thrust outcome from the rotor speed (Solovyev Viktor V. & A., 2015).

In an outdoor domain, the lateral airflow acting on the propeller can be depicted using

the Figure (2.6) (Ding & Wang, n.d.):

Figure 2.6 Lateral Wind Effect.

The resultant force from each quadrotor is modeled as follows:

fT = 2ρApV̂ Vp (2.9)

V̂ =
√

(Vw cosαw + Vp)2 + (Vw sinαw)2 (2.10)

fω = fT − ktω2 (2.11)

where Vw and αw are the wind speed and impact angle with the qaudrotor vertical axis, Vp
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is the induced wind speed from the propellers, Ap is the propeller area, and ρ is the air

density. Moreover, the aerodynamic drag is defined as mdrag = ρAwV
2
w/2

mωφ

mωθ

mωψ

 =


(fω4 − fω2)l

(fω3 − fω1)l∑4
i=1mdragi

 . (2.12)

This results in a more complete set of equations of motion (Ding & Wang, n.d.):

mẍ = k(sinφ sinψ + cosφ cosψ sin θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4) +
4∑
i=1

fωi ,

mÿ = k(cosφ sin θ sinψ − cosψ sinφ)(ω2
1 + ω2

2 + ω2
3 + ω2

4) +
4∑
i=1

fωi ,

mz̈ = k(cosφ cos θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4)−mg +
4∑
i=1

fωi ,

Ixφ̈ = (Iy − Iz)θ̇ψ̇ + lk(ω2
4 − ω2

2) +mωφ ,

Iyθ̈ = (Iz − Ix)φ̇ψ̇ + lk(ω2
3 − ω2

1) +mωθ ,

Izψ̈ = (Ix − Iy)φ̇θ̇ + b(ω2
2 − ω2

1 + ω2
4 − ω2

3) +mωψ . (2.13)

2.2.3.2. Payload

Payloads are an addition to the m mass of the system. This, however, can change

depending on the quality of the payload. Some payloads include fluids and varying

payloads and even swinging payloads, which affect the moment of inertia. A variation of

load could be formulated as a peripheral force added or subtracted to the moments and

forces that affect the dynamics of the system (S. Sadr & Zarafshan, 2014). One of the

swinging payload examples is portrayed in Figure (2.7).
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Figure 2.7 Swinging Payload.

2.2.3.3. Cyber Attacks

One threat that has been rising during system operations is cyber-attacks, particularly

zero-dynamic cyber attacks. This would entail changes to the dynamic equations of the

system. This includes the motor inputs as well as the observability provided from certain

sensors (Hamidreza Jafarnejadsani & Voulgaris, 2018). Another form of cyber-attack is

hijacking where a malicious individual takes control of the drone. Moreover, a different

aspect could be obscuring vision detection systems and replacing them with unrealistic data

which inevitably ends in a crash.

2.3. Control Systems

Throughout time, there have been proposed several types of controllers that range from

linear to model-based to learning algorithms. In this chapter, a review of different types of

controllers along with their pros and cons are provided.

2.3.1. PID Controller

Proportional-Integrator-Differential (PID) controllers are divided into three gains each

of which is used to fix certain attributes of the tracking system response. Proportional deals

primarily with the tracking, Differential deals with the transition phase to prevent strong

spikes and peaks, and finally the integrator is used to take out the offset which might not be

compensated by a proportional gain. It is considered one of the most stable controllers and
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includes a certain degree of robustness. It is known to be slightly difficult to tune, but also

there are differences and variations which could help such as an online PID tuner

(Qingsong Jiao, 2018).

2.3.2. LQR/LQG

Optimal Control is usually implemented to a Linear Quadratic Regulator (LQR) or

Linear Quadratic Gaussian (LQG), which involves an estimator of the states along with an

LQR. The main concept within Optimal Control is minimizing a generalized cost function

such as:

J(e, uo) =

∫ ∞
0

eTQe+ uToRuodt (2.14)

where Q ≥ 0 and R > 0 are the weight matrices of the state error (e) and input (uo)

respectively. This cost function is expected to be minimized along with a linearized state

space model, which is ẋ = Ax+Buo. In order to optimize the solution (Araar & Aouf,

2014), the Hamiltonian is used:

H = eTQe+ uToRuo + ΛT (Ae+Buo) (2.15)

where Λ is a Lagrange multiplier. Using the Euler-Lagrange method results in the
continuous time Algebraic Ricatti Equation (ARE) (Brian D.O. Anderson, 1989).

ATS∞ + S∞A− S∞BR−1BTS∞ +Q = 0 (2.16)

where S∞ is the solution of the ARE. Solving this equation would result in determining the
feedback input to the system, which is as follows:

uo = −R−1BTS∞e (2.17)

This algorithm is optimal with a clear-cut analytical solution, but it retains problems of

adaptability and robustness.

2.3.3. H∞

This type of controller relies on frequency domain optimization. It is mainly concerned

with robustness and sub-optimality when creating a feedback controller. The problem is

generally formulated in a way that the system is considered with two inputs uo as the
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controlled input and w as the exogenous input. This results in two outputs z representing

the error signal and y which are the measurable variables. This formulation is placed in the

Lagrangian domain and results in the following formulation (Harm BartMarinus, 2010):ẑ
ŷ

 =

G11(s) G12(s)

G21(s) G22(s)


ŵ
û

 (2.18)

However, placing û = K(s)ŷ as well as ẑ = Fl(s)ŵ are determined by the H∞ norm which

is expressed as follows:

H∞ =

 A γ−2BBT

−CCT −AT

 (2.19)

where γ > ||G||∞. This results into two Hamiltonian equations and two separate Ricatti

equations that provide a solution and its solution to both K(s) and Fl(s) (Araar & Aouf,

2014). This system lacks adaptability and does not satisfy total optimality.

2.3.4. Sliding Mode Controller (SMC)

SMC is usually considered an adaptive case where it is used in nonlinear control cases.

It is usually an attempt at adjusting several gains in terms of sliding them slightly in order to

stabilize the system or minimize the error according to a certain nonlinear requirements.

This, however, lacks robustness and optimality as this is simply relying on the dynamical

equations without a generalized optimality at hand. The main concept of the system is

based off Lyapunov Stability Theory which is often used as a complementary adaptive

mechanism to manipulate more basic forms of controllers such as PID

(Abdel-Razzak Merheb & Bateman, 2014).

2.3.5. Model Reference Adaptive Control (MRAC)

In general, adaptive control methods deal mostly with uncertainties. That is why they do

not require a priori knowledge of the system or the plant at hand. It relies on the concept of

parameter identification. These identifications can be usually done through recursive least

square or gradient descent.
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There are various types of adaptive controllers including MRAC where the system

parameters are estimated by comparing its outputs with a model reference system based on

ideal terms. This helps identify uncertainties which might not have been taken into

consideration when considering the ideal case or condition of the system at hand. A

correcting input is used in order to help the system follow and track the required trajectory

based on the reference model system at hand.

There are two forms of MRAC which are Direct and Indirect MRAC. Direct MRAC use

the estimated parameters directly for the adaptive controller. In indirect MRAC, the system

parameters are estimated and used to calculate required controller parameters such as the

various matrices of the linearized system. MRAC usually includes a controller that might be

as simple as a proportional controller that has adaptable gains (Shekhar & Sharma, 2018).

The various forms of MRAC are shown in Figure (2.8).

Figure 2.8 Indirect Vs Direct MRAC (Shekhar & Sharma, 2018).

2.3.6. Nonlinear Dynamic Inversion (NLDI)

When dealing with a nonlinear system it is usually preferred to transform it into a

linearized system. This helps to turn the dynamical equations into an invertible form.
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Consider the following nonlinear system:

ẋ = f(x) + g(x)uo, (2.20)
ẋ1

...

ẋn

 =


x2

...

b(x)

+


0

...

a(x)

uo (2.21)

As the system is linearized, similar to a Feedback Linearization system, there is a virtual

controller that can be established v = b(x) + a(x)uo ⇔ uo = a−1(x)(v − b(x)) where v

can be used to control the system. This however, is very susceptible to errors and

uncertainties as well as external threats which might cause it to go unstable. Thus, this is

neither optimal nor robust nor adaptive (Qing Lin, 2016).

2.3.7. Fuzzy Logic-Based Controller

The main idea of this controller revolves around the concepts of fuzzy rules in pilot

interactions. It is considered quite robust and adaptable, but lacks in initial stability and

accuracy in state prediction and compensation. It has capabilities of fault tolerance, but

might suffer when the scope of the threat is out of the logic base (Andrew Zulu, 2014).

2.3.8. Artificial Neural Network(ANN)

This form of controller is an umbrella term for variable forms of controllers. Neural

Networks are a combination of Neural equations cascaded into weighted sums of other

combinations. These weights are mostly updated through learning or optimization

algorithms, however complex the algorithms might be. They fall into generalized categories

which will be explained in later sections.

ANN has been hailed as the new innovative domain of feedback controllers since its

learning algorithms could incorporate several aspects which can include robustness,

adaptability, optimality, fault tolerance, accuracy, and stability. However, it is important to

note that proving ANN stability in an analytical perspective is challenging and it might be

quite difficult to predict how the system would react based on various situations and
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conditions. As such, ANN is still a wide field of research and the controller is as efficient

and as strong as its learning algorithm (Lebao Li, 2015).

2.3.9. Comparison Table

In order to compare the various stated algorithm along with many others, Table (2.1)

outlines the various attributes of the array of control algorithms proposed for quadrotor

controller.

Table 2.1

Comparison of Quadrotor control Algorithms.

Characteristics
Name R A O I T F P S D U M N
PID 1 0 0 0 1 1 1 2 0 0 2 2
LQR 0 2 1 0 1 1 0 1 1 0 1 1
LQG 0 2 2 0 1 1 0 0 2 0 1 0
H∞ 2 1 2 0 2 0 1 0 2 2 0 0

SMC 2 2 1 0 2 2 2 1 2 1 0 0
FL-NLDI 1 1 0 0 2 2 2 1 0 1 0 1

BC 0 2 0 0 2 2 1 0 2 1 0 0
MPC 2 1 2 0 2 1 1 0 1 1 0 1
NST 2 2 0 0 2 2 1 0 1 1 0 1
FLB 2 1 1 2 1 1 1 1 1 0 1 0
ANN 2 1 2 2 1 1 1 0 1 1 0 0
RL 2 1 2 2 1 1 1 0 1 1 0 1
IL 1 2 1 2 1 1 2 1 1 1 0 1

MB 1 1 1 2 1 1 1 1 2 1 0 1
BEL 2 2 2 2 1 1 1 0 2 2 0 1
I-PID 1 0 0 2 1 1 1 1 0 0 0 1

L1 0 2 2 0 1 2 2 0 1 0 0 0
GA 1 2 2 2 1 1 1 0 1 2 0 0
H1 2 1 2 0 2 0 1 0 1 1 0 0

Table (2.1) describes all the different controllers and their respective advantages and

disadvantages. The grading is done as follows (Lebao Li, 2015):

0− Low, 1− Average, 2−High. The Abbreviations of the table are shown as follows;

R-robust; A-adaptive; O-optimal; I-intelligent; T-tracking ability; F-fast
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convergence/response; P-precision; S-simplicity; D-disturbance rejection; U-unmodeled

parameter handling; M-manual tuning; N-(signal) noise (Andrew Zulu, 2014).

The names are as follows (Lebao Li, 2015): PID -Poportional Integral Derivative; LQR-

Linear Quadratic Regulator; LQG- Linear Quadratic Gaussian; SMC- Sliding Mode

Controller; FL-Feedback Linearizer; NLDI- Nonlinear Dynamics Inversion; MPC-Model

Predictive Controller; NST- Nested Saturation Technique; BC- Backstepping Controller;

FLB- Fuzzy Logic Based; ANN-Artificial Neural Network; RL- Reinforcement Learning;

IL- Iterative Learning; MB-Memory Based; BEL-Brain Emotional Learning; I-PID-

Intelligent PID; GA-Genetic Algorithm (Andrew Zulu, 2014).

2.4. Adverse Estimation (Li, 2016)

One of the most difficult aspects in any control system is predicting, detecting, or

quantifying the adverse inputs or disturbances that arise or affect the general dynamics of

the system. These threats can be identified in many ways which will be discussed briefly in

this section.

In a Frequency Domain Disturbance Observer (IDO), formulation the disturbance is is

considered a lumped disturbance, where the generalized diagram of this formulation is

shown in Figure (2.9).

Figure 2.9 Disturbance Observer Based Controller.

To be able to estimate the disturbance in the frequency domain, the lumped disturbance

is considered to be made up of three elements based on Figure (2.9).

dl(s) = [G(s)−1 −Gn(s)−1]y(s) + d(s)−Gn(s)n(s) (2.22)
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where G(s) is the physical system frequency domain model while Gn(s) is the nominal

model. d(s) is the actual disturbance and n(s) is the measurement noise. Thus, dl includes

all the system noises and disturbances. It is generally funneled through a filter Q(s), which

ends up estimates the lumped force using the following:

d̂l(s) = Gudu(s) +Gyd(s)ȳ(s) (2.23)

where the Gud and Gyd are the components of the filter Q(s) pertaining to the input and

sensor data components respectively. Moreover, it is important to note that Q(s) is usually a

low pass filter since it helps channel out the noise which is of high frequency and retains a

certain estimation of the disturbance which is of low to medium frequencies.

Furthermore, an Extended State Observer (ESO) estimator proposal focuses on

transforming a nonlinear system into a linearized one similar to that of a Feedback

linearizer or NLDI. In this estimation, b(x) also includes the disturbance dynamics, thus an

extra state is chosen.

xn+1 = b(x, d)

ẋn+1 = h(t) (2.24)

It is also important to note the configuration of the output formulation which is established

as follows:

y(n) = f(y(t), ..., y(n−1),t, u(t)) (2.25)

where yl is the lth derivative of the output. The ESO concept is designed and formulate to

estimate all the states along with the lumped disturbance term which is found in b(x, d) in

Equation (2.24).

˙̂xi = x̂i+1 + βi(y − ŷ), i = 1, ..., n

˙̂xn+1 = βn+1(y − ŷ) (2.26)

where β is a gain used as a correcting factor. This helps in determining the external

disturbances, but up to a relative degree depending on the proper estimation of the dynamics

and how they are reflected in cascaded linearization.
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Since the 1960’s Unknown Input Observer (UIO) has been proposed and developed by

NASA for various types of projects. This is considered one of the first milestones in

disturbance estimation using filtering methods. The linearized system can be shown as

follows:

ẋ = Ax+Buuo +Bdd

y = Cx. (2.27)

where Bu and Bd are input matrices for control and disturbance respectively. However, it

considers a peripheral exogenous system with its exogenous state to be determined as

follows:

ζ̇ = Wζ

d = V ζ. (2.28)

where W is the exogenous feedback dynamic matrix V is the mapping matrix of exogenous

state to disturbance input. In this system, both states and disturbances are estimated using a

Kalman filter concept. This results in an estimation system as follows.

˙̂x = Ax̂+Buuo + Lx(y − ŷ) +Bdd̂

ŷ = Cx̂.

˙̂
ζ = Wζ̂ + Ld(y − ŷ)

d̂ = V ζ̂. (2.29)

where Lx and Ld are the observer gains for the state and the disturbance estimator

respectively such that the estimated system is still stable. This allows the system to

determine a wide range of disturbance estimation, but this suffers from a limited

predictability to uncertainties and noise as it might be considered under the notion of

lumped disturbance.
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In addition, the Uncertainty and Disturbance Estimator (UDE) formulation considers

mainly a lump sum of uncertainties and disturbances and noise assumptions. In general, the

linearized system can be shown as follows:

ẋ = Ax+Buuo + ∆Ax+ ∆Buuo + d (2.30)

dl = ∆Ax+ ∆Buuo + d (2.31)

dl = ẋ− Ax−Buuo (2.32)

Since ẋ is not observable, the proposed algorithm surpasses this problem by approximating

its estimate as:

d̂l = dl ? q (2.33)

where ? is a convolution operator with q, which is the impulse response of a filter Q(s).

This proposed filter helps detect uncertainties more prominently, but requires extensive

considerations in filter design which could be difficult and might lead to unrealistic results.

On the other hand, in an Equivalent Disturbance (EID) system, Bu = Bd; this

consideration makes slight changes and eases certain restrictions of wide range

considerations. In this, the filter Q(s) is formulated as follows:

Q(s) =
1

Tqs+ 1
(2.34)

where Tq is the time constant used for filtration. However, using this filter results in the

disturbance estimation formulation which is shown as follows:

˙̂
d =

1

Tq
(BT

uBu)
−1BT

uL(y − ŷ) (2.35)

where L is a error gain between estimated sensor output and actual sensor output. This has

several advantages and disadvantages depending on what frequency of disturbances the user

is trying to identify.

There are two main categories of nonlinear systems which are similar to the linear

systems. However, when dealing with a Nonlinear system a Nonlinear Disturbance
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Observer (NDOB) is used which is generally under the following formulation:

ẋ = Ax+ g1(x)uo + g2(x)d

y = h(x). (2.36)

where g1(x) is the nonlinear dynamics of the system or controller input, g2(x) is the

nonlinear external disturbance dynamics, while uo and d are the controller and disturbance

inputs respectively, and h(x) is the nonlinear sensor input.

One of the nonlinear methods for disturbance estimation is called Unknown Constant

Disturbance (UCD). This nonlinear formulation is used to estimation unknown slow time

varying disturbances. It is generally implemented as follows:

ż = −l(x)g2(x)z − l(x)[g2(x)p(x) + f(x)g1(x)uo]

d̂ = z = p(x). (2.37)

where z is an internal pseudo-state while l(x) and p(x) are nonlinear function gains which

are designed such that:

l(x) =
δp(x)

δx
(2.38)

Moreover, they are both chosen such that ėd = −l(x)g2(x)ed is asymptotically stable

regardless of x while ed = d− d̂ is the disturbance error.

Moreover, there exists a nonlinear algorithm with similar formulation as the UIO. This

is called Geberal Exogenous Disturbance (GED). This uses a cascade of three interrelated

equations of nonlinear formulation, which are shown as follows:

ż = [W − l(x)g2(x)V ]z +Wp(x)− l(x)[g2(x)V p(x) + f(x) + g1(x)uo]

ζ̂ = z + p(x)

d̂ = V ζ̂ (2.39)

where W , V are similar to that of UIO, while l(x) is similar to that of the UCD In order to

calculate the nonlinear gain l(x) the gains must be chosen such that

ėζ = [W − l(x)g2(x)V ]eζ is globally exponentially stable regardless of x. This is a
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preferred algorithm since it includes observable aspects of the system as well as an

exogenous and internal state which can provide further filtering of noise and identification

of uncertainties.

There are various other observers, which include Generalized Proportional Integral

Observer (GPIO), which builds upon the UIO with an integral component for settling error

or offsets. This can help with the final fine tuning of the system which usually has a

constant error.

Moreover, there are many other nonlinear observers which include Extended High-Gain

State Observer (EHGSO), which uses a complex cascade of various linearized and

nonlinear assumptions of the system to evaluate both state and disturbance. However, this

system lacks in robustness and ability to reject noise and uncertainties especially with rapid

disturbance changes even as simple as a large step input.

2.5. Artificial Intelligence

One of the most popular topics of the current age is artificial intelligence, that has risen

to fruition with the high speed computing and increase capabilities of retaining and

processing memory data. The primary start to entering this field is understanding the

difference between different types of learning algorithms along with their pros and cons. In

general, artificial intelligence is denoted to John McCarthy who is considered the godfather

of AI. It is defined as the branch of computer science that deals with the simulation of

intelligent behavior in computers which give capabilities to imitate human behaviour. It

enables computer systems to perform tasks that normally require human intelligence such

as complex visual perception, speech recognition, decision-making, and translation between

languages (A.I., 2021).

2.5.1. Machine Learning (ML)

Machine Learning is a subset of Artificial Intelligence which took the concept training

to a whole new level. Machine learning is based on the concept that a system is trained in

various manners, but develops decision making capabilities where it can tackle issues it did
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not encounter during training up to a certain extent. This basically revolutionized the

concept of Machine Learning as a new form of controls which required prior training, but

doesn’t have to go through every scenario. ML has several categories where each entails

different formulations, but they can be sectioned into four main processes: Supervised,

Semi-Supervised, Unsupervised, Reinforcement Learning (Middleton, 2021). Figure (2.10)

clearly portrays the different Machine learning algorithms.

Figure 2.10 Machine Learning Categories (A.I., 2021).

Supervised learning is learning based on training material which are already labeled

with a clear input-output. The system learns and modifies every time it adds to its attributes

as it learns from the pre-compiled and played input-output combinations and fits them

according to standard (Middleton, 2021).

Due to the vast numbers required to train a Supervised Learning algorithm, it is quite

vexing to collect all the necessary labeling and data . Thus, Semi-supervised Learning

includes both labeled and unlabeled data sets where a small quantity of input-output pairs

are presented which enables the system to correct itself every time it trains with unlabeled

material. Sometimes, Semi-supervised is placed under the Supervised Category due to their
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similarities. However, there are times when data labeling is not present and training is

required. This leads to the Unsupervised Learning (Middleton, 2021).

Unsupervised Learning is created when labeling is not present at all and it is up to the

ML algorithm to determine patterns and similarities between data sets and create formats of

clustering. It samples all data and adds them into clusters based on similar patterns on

behaviours whether it is visual aspects or control input-output combinations. This method

includes lots of uncertainties and might lead to unpredictable results. However, when data

sets are not present, there is a fourth process that can take place which is known as

Reinforcement Learning (Middleton, 2021).

2.5.2. Reinforcement Learning

Reinforcement Learning can be classified as model based or model free. In its definition,

it is a form of ML where the system acquires random data and compiles input-output

combinations on its own. In the meantime, it uses several episodes and several steps to

modify its own attributes whilst acquiring the input-output labelling. This is done mainly

using rewards and punishments, which are given at every step based off a generalized cost

function and the output acquired from the input decision taken by the system. The concept

is summarized in Figure (2.11) (Draguna Vrabie, 2012).

Figure 2.11 Reinforcement Learning Process (A.I., 2021).
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Deep Learning, used in this thesis is the learning element of RL and is a subset of

Machine Learning that uses deep neural networks. It also uses complex algorithms in order

to optimize and learn. It requires less intervention from human, and is mostly determined by

the algorithms and might not even require previously acquired data (A.I., 2021). To further

explain where Deep Learning lies within the categories, Figure (2.12) portrays the

subsections of AI.

Figure 2.12 Learning Subsets (A.I., 2021).

The main neural networks that are used in DL fall under three main aspects which are

Convolution Neural networks which are usually used for vision systems and are mainly

binary in their output, Regressive Neural Networks that include weights and activation

functions, and Recursive Neural Networks that are a form of ANN that retain a memory in

its contents (Middleton, 2021).

Deep Learning algorithms are designed to mimic human brain activity and might use an

array of various ”neurons” which are known as activation functions. These activation

functions can be found in various formulations (Kumawat, 2019). The different types of NN

are outlined in Table (2.2).
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Table 2.2

Activation Functions.

Identity Binary Step Sigmoid Tanh

x
0 x < 0

1 x ≥ 0
σ(x) = 1

1+e−x
tanh(x) = ex−e−x

ex+e−x

ReLU GELU Softplus ELU

0 x ≤ 0

x x > 0

1
2
x
(

1 + erf
(

x√
2

))
ln (1 + ex)

α(ex − 1) x ≤ 0

x x > 0

SELU Leaky ReLU PReLU SiLU

λα(ex − 1) x ≤ 0

λx x > 0

0.01x x ≤ 0

x x > 0

αx x ≤ 0

x x > 0

x
1+e−x

Mish Gaussian Softmax Maxout

x tanh (ln (1 + ex)) e−x
2 exi∑J

j=1 e
xj

maxxi

Imitation Learning is a form of machine learning that is similar to Reinforcement

Learning and Semi-supervised learning. The system tries to mimic a behaviour of another

observed system by performing iterations. This provides the system both observability to its

own input-output labeling as well as that of the other system. However, it is important to

note that Imitation learning can only be as good as the system it is imitating. Generally

optimization is done by sampling as well as changing attributes might sometimes be only

done by using the data provided from the mimicked individual which might deprive the

system from optimality (Lőrincz, 2019).

2.5.3. Generative Adversarial Neural Networks (GAN)

Having a system which is required to deal with an array of different disturbances and

problems, it is quite difficult to create a library which can include all possible scenarios. As

such, an adversarial system was proposed in 2014. This formulation is made in a way where
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there are two main neural networks are working together known as the critic and the actor

while a third one is working to disturb the system and create a new form of problems as the

simulations progress. The actor tries to do the correct action, the adverse tries to disrupt,

and the critic observes and assesses the main input-adverse-output combination

(Goodfellow, 2014). This concept is clearly portrayed in Figure (2.13).

Figure 2.13 Adverserial System Diagram.

This adverse concept helps robustify the system and some could even be implemented as

an online trainer or even during a training session for a pre-training protocol. This method

can be used in all categories of Deep and Machine learning. Moreover, this system provides

adaptability to the system according to the learning protocol under robust circumstances.
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3. Methodology

In this chapter, an extensive discussion of the proposed machine learning architecture is

provided. The system includes a design based on a Deep Learning Online Learning

Algorithm with optimal, robust, and adaptive capabilities. The system could be used as a

main controller or an augmentation to another baseline controller. The discussion for

stability and initial conditions is primarily tackled as well as its capabilities of rejecting

disturbances. It is based on various concepts from robust control, optimal control, and game

theory. The architecture includes main NN modules for actor-critic-adversary.

As it will be noticed later in this chapter, this formulation requires observability of

disturbance inputs. As such, a cascaded system of Kalman filters is proposed using the main

concept from UIO. However, the main contribution to this is splitting the system into an

inner and outer filter formulation that deals with position and attitude control separately

while guaranteeing optimality both in estimation and control.

3.1. Optimal Control with Disturbance

Primarily, the general nonlinear and linear state space dynamics can be defined as

follows:

ẋ = f(x) + g(x)uo + k(x)da (3.1)

ẋ = Ax+Buo +Kda (3.2)

where x is the state, f(x) or A is the state input dynamics, g(x) or B is the input dynamics,

k(x) or K is the disturbance dynamics, uo is the actor input,and da is the disturbance or

adverse input to the system which is either a ”lumped disturbance” or individual

disturbance.

3.1.1. Hamiltonian

In order to incorporate the disturbance input into the optimal control cost function an

H∞ formulation is used resulting in the following cost function (Luis Carrillo, 2019):

J(e, uo, da) =

∫ ∞
0

eTQe+ uToRuo − γ2||da||2dt (3.3)
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where e is the tracking error; Q ≥ 0 and R > 0 are the weighting matrices of the state error

(e) and input (uo) respectively. The term γ is considered the H∞ gain, and γ > 0 is the

weight of the adversarial input to the system (da).

H = eTQe+ uToRuo − γ2||da||2 +∇ΛT (f(e) + g(e)uo + k(e)da) (3.4)

where Λ > 0 is the Lagrange Multiplier,∇ symbolizes a gradient operation. The

formulation aims to minimize the Hamiltonian and find the optimal cases for the inputs

(Luis Carrillo, 2019).

3.1.2. Hamilton Jacobi Isaacs (HJI) and Zero-Sum Game Theory

In order to optimize the Hamiltonian equation usually a Hamilton Jacobi Bellman

Equation is established, but with the introduction of the adverse input a different

formulation arises to the Hamilton-Jacobi-Isaacs equations.

This system is presumed to be a two-player game where the advancement of one is

considered the loss of the other. This concept is mainly translated as a zero-sum game

theory is a limited amount of rewards and where only one side can advance while the other

recedes. This assumption results in what is known as the Nash condition and equilibrium

(Kyriakos Vamvoudakis, n.d.).

min
uo

max
da

J(e, uo, da) = max
uo

min
da

J(e, uo, da) (3.5)

J(e, u∗o, da) ≤ J(e, u∗o, d
∗
a) ≤ J(e, uo, d

∗
a) (3.6)

where (u∗o, d
∗
a) is considered the optimal saddle point optimal solution for two players (actor

vs. adverse). Using Equation (3.4), the Λ can be calculated as a solution to the Hamiltonian

and the path to minimization of the cost function.

Λ∗ = min
uo

max
da

J(e, uo, da) (3.7)

However, in order to determine the saddle point within the zero-sum game assumption, the

following equations are established.

∂H

∂uo
= 0 =⇒ u∗o = −1

2
R−1gT (e)∇Λ∗ (3.8)
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∂H

∂da
= 0 =⇒ d∗a = − 1

2γ2
kT (e)∇Λ∗ (3.9)

Replacing these equations back into the Hamiltonian results in a maximized Hamiltonian

(Luis Carrillo, 2019).

H∗ = eTQe+∇Λ∗Tf(e)

− 1

4
∇Λ∗Tg(e)R−1gT (e)∇Λ∗

+
1

4γ2
∇Λ∗Tk(e)kT (e)∇Λ∗ (3.10)

with∇Λ = ∂Λ
∂e

and Λ∗(0) = 0 and in convergence H∗ = 0.

3.1.3. Critic Neural Network Approximations of the Value Function

The function of the critic is to estimate a cost or value function. This estimation is

improved upon every time step in order to estimate the value correctly. At the same time,

the critic influences the Actor and Adverse NN’s to change their weights.

In this problem, the primary value function is assumed to be the cost function of the

optimal control. This results in the following NN assumption:

Λ∗(e) = W ∗T
c Φc(e) + εc(e) (3.11)

where Wc ∈RN is the critic weights, Φc is the NN with N number of activation functions

and εc is the critic approximation error . In order to build the Hamiltonian, however, the

following gradient is calculated:

∇Λ∗(e) = ∇ΦT
c
∗
c +∇εc(e) (3.12)

The main concept behind NN approximations is based off of the Weistrass approximation

which states that as N −→∞ the error and its gradient ε −→ 0 and∇ε −→ 0. Despite the

free form that exists with the NN approximation it should be noted that there is an

underlying assumption of boundedness that proceeds with this formulation as the NN, its

weights, and their respective errors and its gradients are all considered to be bounded

between terms. As such, Equation (3.12) is replaced in Equation (3.10) which results in the
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following equation:

Ĥ = Ŵ T
c σ(e) + eTQe+ uToRuo − γ2||da||2

t−→∞−−−→ H∗ ∀e, uo, da (3.13)

where σ = ∇Φc(f(e) + g(e)uo + k(e)da). In this case Ŵc
t−→∞−−−→ W ∗

c . Moreover, the

methodology proposed for updating the critic weights is based on minimization of the

approximation error (Luis Carrillo, 2019).

eH = Ĥ −H∗ ∀e, uo, da (3.14)

In this case, H∗ = 0 is similar to the consideration done for Λ∗(0) = 0. This results in

Ĥ = eH . However, to minimize this error the square residual error is calculated.

EH =
1

2

eTHeH
(σTσ + 1)2

(3.15)

The residual error gradient descent method is used in order to build the adaptive weight

updating equation. This results in the following:

˙̂
Wc = −αc

∂Ec

∂Ŵc

= −αc
σ

(σTσ + 1)2
(σTWc + eTQe+ uToRuo − γ2||da||2) (3.16)

where αc > 0 which is the rate of convergence coefficient. However, this formulation has a

dependency for Persistence of Excitation(PE). In order to surpass that obstacle without

including additional lemmas and assumptions, a buffer is used (Kyriakos Vamvoudakis,

n.d.).

3.1.4. Critic Buffer

The main purpose of the buffer is built upon two basic needs. One is the necessity of

persistence of excitation which is a requirement for every deep learning algorithms. Two,

the buffer allows the system to compare its current status as not only serving the current

state, but also all the previous states and inputs acquired which occupy the buffer size. This

means that the estimated critic or modified weights are compared not only to the current
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status of the cost function, but also all previous cost functions observed in prior steps. Thus,

a buffer estimation error is defined as follows:

ebuff = Ĥbuff,i −H∗ ∀e, uo, da (3.17)

where the subscript i represents each step saved in the buffer memory. Using the same

assumptions as the previous section along with the buffer, the combination of residual errors

is shown as follows:

Etotal =
1

2

eTHeH
(σTσ + 1)2

+
1

2

k∑
i=1

eTbuff,iebuff,i

(σTi σi + 1)2
(3.18)

The main reason for using (σTσ + 1)2 is in order to normalize and bound the function to

restrict divergence and ensure further convergence. Moreover, k ∈ Z+ is the number of

saved events the buffer memory contains. Performing the gradient descent method on the

modified residual mean error results in the following critic updating formulation:

˙̂
Wc = −αc

σ

(σTσ + 1)2
(σTWc + eTQe+ uToRuo − γ2||da||2)

− αbuff
k∑
i=1

σi
(σTi σi + 1)2

(σTi Wc + eTi Qei + uToiRuoi − γ
2||dai ||2) (3.19)

where αbuff > 0 and αc > 0 are the updating rates respective to current or buffer memory

status contribution. Moreover, it is important to determine the buffer size since this is

computationally heavy and requires a big slot of memory for the processor, as well as the

fact that this might keep some data which are unfavorable for a longer time that might

disturb the clean convergence expected.(Luis Carrillo, 2019)

3.1.5. Actor and Adverse Neural Networks

Going back to Equations (3.8) and (3.9), if we replace the Lagrange constant with the

NN as suggested in Equation (3.12) the resultant would be the following for the controller

and adverse inputs (Kyriakos G. Vamvoudakis, 2010):

∂H

∂uo
= 0 =⇒ u∗o = −1

2
R−1gT (e)∇ΦT

cW
∗
c (3.20)

∂H

∂da
= 0 =⇒ d∗a = − 1

2γ2
kT (e)∇ΦT

cW
∗
c (3.21)
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Replacing those in Equation (3.10) results in the following:

eTQe+W T
c ∇Φcf(e)− 1

4
W T
c DoWc +

1

4
W T
c DaWc = 0 (3.22)

where Do = ∇Φcg(e)R−1gT (e)∇ΦT
c and Da = 1

γ2
∇Φck(e)kT (e)∇ΦT

c . However,using the

critic weights directly would result in constant fluctuations and near instability especially in

highly unstable systems. That is why a different weight is chosen for the actor and adverse

NN. This enables the weights to update in a filtered manner. Thus, the critic weights should

be different than that of the critic as they are influenced by the critic weights. As such the

following is established (Luis Carrillo, 2019).

uo = −1

2
R−1gT (e)∇ΦT

cWo (3.23)

da =
1

2γ2
kT (e)∇ΦT

cWa (3.24)

where Wo and Wa represent the actor and the adversary NN respectively. In order to

maintain the consistency of the HJI equation the following tuning of the actor and adverse

are defined as follows (Igelnik & Yoh-Han Pao, 1995):

˙̂
Wo = −αo

{
1

2
Do

(
Wo −Wc

)
− 1

4
DoWo

(
σ

(σTσ + 1)2

)T
Wc

}
(3.25)

˙̂
Wa = −αa

{
1

2
Do

(
Wa −Wc

)
− 1

4
DaWa

(
σ

(σTσ + 1)2

)T
Wc

}
(3.26)

The presence of σ
(σT σ+1)2

guarantees persistence of excitation for both the actor and adverse

in addition to a boundary limit to the tuning level. αo and αa are the actor and the adversary

NN weight update rate or learning rate, respectively (Kyriakos G. Vamvoudakis, 2010).

Figure 3.1 DL Schema without Adverse NN.
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Figure 3.2 DL Schema with Adverse NN.

Figure (3.1) shows the formulation of the system where the critic and buffer update an

actor NN weight while retaining observability of an external disturbance. On the other hand,

Figure (3.2) shows the scheme of how the critic and the buffer update not only the actor, but

also an adverse NN, which are both then inputed into the plant/system creating an internal

adverse input.

3.2. Adverse Estimation

When the system is not generating its own adverse input via the adverse NN, various

forms of threats, uncertainties and adverse inputs are present to disrupt the system or even

destabilize it. Moreover, as the DL algorithm and specifically Equation (3.19) show, there is

a need for a full state, dynamic, and disturbance observability (Li, 2016).

As such, primarily a UIO formulation is chosen which is shown as follows:

˙̂x = Ax̂+Buuo + Lx(y − ŷ) +Bdd̂

ŷ = Cx̂. (3.27)

˙̂
ζ = Wζ̂ + Ld(y − ŷ)

d̂ = V ζ̂. (3.28)

However, the main issue behind performing this solution is determining out the value of

both Lx and Ld. In this case, Linear Quadratic Estimators are used in order to determine the
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Lx. For this consider the linearized state space with noise as follows (Li, 2016):

ẋ = Ax+Buuo +Bdda +Gvn

y = Cx+Duo + wn. (3.29)

where vn is the process noise and wn is the measurement noise, usually white Gaussian

noise with an estimated variance of Qe and Re, respectively with a mean of 0. Considering

the estimation error to be ee = x− x̂, the resulting error dynamics are as follows (Brian

D.O. Anderson, 1989):

ėe = ẋ− ˙̂x

= (A− LxC)ee +Gvn − Lxwn (3.30)

In order to minimize the error there are two aspects that need to be attenuated which are the

mean and variance of the estimation error. Thus, consider the covariance matrix

P = Ee[eee
T
e ]. This results in the following covariance dynamics:

Ṗ = (A− LxC)P + P (A− LxC)T +GQeG
T − LxReL

T
x (3.31)

with this covariance equation the following assumption could be made for an

infinite-horizon case:

Ṗ −→ 0 t −→∞ (3.32)

P −→ P∞ t −→∞ (3.33)

As such, an Lx should be chosen that minimizes the following cost function (Brian

D.O. Anderson, 1989):

Je = trace(P∞) (3.34)

However, the dynamics of the covariance are portrayed as follows:

0 = (A− LxC)P + P (A− LxC)T +GQeG
T − LxReL

T
x = N (3.35)

This results in a Hamiltonian as follows:

He = trace(P∞) + trace(ΛT
eN) (3.36)
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where Λe is the Lagrange multiplier. Solving the Hamiltonian would result in the following

Algebraic Ricatti Equation (ARE):

AP∞ + P∞A
T − P∞CTR−1

e P∞ +GQeG
T = 0 (3.37)

Moreover, maximizing the Hamiltonian would result in the following equation (Brian

D.O. Anderson, 1989):

Lx = P∞C
TR−1

e (3.38)

Furthermore, Ld is usually influenced by several considerations which includes a small

premonition of the dynamics that might be affected by the external disturbance. This

includes distributing weights according to the effect of the presumed disturbance on each

state. However, it should be set in such a manner that the dynamics of ζ are stable. This is

also affected by the values of W and V .
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4. Numerical Simulation and Result Analysis

In this chapter, numerical simulations are described and different results are presented to

analyze the proferomance of the DL proposed algorithm. It builds up culminating with the

application of the quadrotor split algorithm along with the adverse estimator

4.1. High Order Dynamics

Controlling a quadrotor has been an extensively researched subject that has had several

solutions. In general, the main states that need to be controlled are

[x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇].

In order to address this problem, the system is designed using two separate dynamical

systems: one is concerned with stability and altitude (inner loop) and another one which is

concerned with the horizontal position and attitude (outer loop).As shwon in Figure (4.1),

The formulation of the inner loop arises by linearizing the system at hovering condition and

with very small angles. Hovering input for quadrotors results in

k(ω2
1 + ω2

2 + ω2
3 + ω2

4) = mg. In consequence, we obtain the following outer loop

dynamical equations:

ẍ = gθ

ÿ = −gφ (4.1)

whereas the inner loop dynamics could stay as follows.

mz̈ = k(cosφ cos θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4)−mg,

Ixφ̈ = (Iy − Iz)θ̇ψ̇ + lk(ω2
4 − ω2

2),

Iyθ̈ = (Iz − Ix)φ̇ψ̇ + lk(ω2
3 − ω2

1),

Izψ̈ = (Ix − Iy)φ̇θ̇ + b(ω2
2 − ω2

1 + ω2
4 − ω2

3). (4.2)

In this configuration, each loop contains its own Deep Learning algorithm as well as

estimator.
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Figure 4.1 Quadrotor Loops and schema.

4.2. Initial Conditions

One of the most important aspects of DL algorithms is the initial conditions. This even

gets more important with unstable systems such as the quadcopter dynamics. In such cases,

the system would collapse or go through irreversible instability before the weights of the

DL could converge to the desired values. Thus, it is preferable to have at least a safe first

guess of optimal weights in order to guarantee stability and further optimization. Going

back to the optimal control, the optimal input to the system is defined as:

uo = −R−1gT (e)S∞e (4.3)

While the one for the DL, the optimal input to the system is.

uo = −1

2
R−1gT (e)∇ΦT

cWo (4.4)

It is important to make a first assumption of Wo = Wa = Wc since it is considered at this

point that the critic weights are already optimal and thus can be used in all equations. This

results in the following:

1

2
∇ΦT

cWc ≡ S∞e (4.5)

Moreover, if the Φc is quadratic then the ”≡” could turn into an ”=”. This results in a

meticulous format of coefficient matching which results in the finalized initial weight

guesses.

Note that if such initial condition process doesn’t have solution, it is important to have

the unstable system stabilized either by a form of another controller and then use the DL as
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a complementary system or augmentation to the main controller. For example, as the

configuration shown in Figure (4.2).

Figure 4.2 DL augmentation of an LQG with Disturbance Estimation.

4.3. DL Augmentation for Linear System

One of the first experimental phases was testing on an unstable linear system. This

experiment did not include an Adverse Neural Network since the disturbance is considered

an external one. The state space was as follows. Table (4.1) lists the various constants for

the linearized simulation.

A =


1 1 1

0 1 1

0 0 1

 , Bu =


0

0

1

 , Bd = Bu, C =

1 0 0

0 0 1



Table 4.1

DL constants.

Constants γ Q R αo αc αbuff QE RE G W V Ld

Value 4 10×I3×3 1 0.1 1 0.001 10×I3×3 10×I2×2 I3×3 -1 0.9 [0, 10]
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The initial conditions for Wc = Wo are a [6× 1] ones-matrix. The quadratic form of

NN was chosen for both actor and critic and their respective gradients are as follows:

Φc =

[
x2

1 x1x2 x2
2 x1x3 x2x3 x2

3

]

∇Φc =



2x1 0 0

x2 x1 0

0 2x2 0

x3 0 x1

0 x3 x2

0 0 2x3



As this is not a tracking test, but rather a stability check, the initial conditionsfor the states

are chosen as are [2, 2, 2]. At ten seconds mark a step input of magnitude 2 is placed as an

adverse input along with a chirp signal of amplitude 0.5 as shown in Figure (4.3). The

initial condition for ζ is 0. It is important to note that the open loop poles are [1, 1, 1] while

the LQR closed loop poles are [−0.767,−2.128,−2.8077]. This shows that the system is

now stabilized. Figures (4.4) to (4.9) show the main results obtained for all three states as

well as the inputs between LQR and Deep Learning Augmentation of LQR along with the

critic and actor weights.

Figure 4.3 Disturbance vs Disturbance Estimator .
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Figure 4.4 DL vs LQR input.

Figure 4.5 x1 State Estimation, LQR Controller, and DL-LQG Controller .



44

Figure 4.6 x2 State Estimation, LQR Controller, and DL-LQG Controller .

Figure 4.7 x3 State Estimation, LQR Controller, and DL-LQG Controller .
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Figure 4.8 Actor Weights.

Figure 4.9 Critic Weights.

From these figure, there is not much of a difference when it came to LQR and DL-LQG

controllers during nominal conditions when observing solely the states. However, the main



46

difference appears in the inputs and states. The DL algorithm added an additional form of

constant push back which caused the states to return back to their stable 0 position, but with

the LQR alone there was a significant offset that did not decrease.

On the other hand, the disturbance estimator shows to be accurate in its estimation, but

failed at retaining the chirp magnitude, the higher the chirp frequency got the more

attenuated it became. Moreover, the DL weights converged which a sign that the algorithm

is stable and does not diverge.

4.4. Linear Quadrotor Simulation

One of the first trials for Quadrotor stability analysis was an LQR augmented with DL

applied to a linearized version of a quadrotor state space dynamics:

A =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 g 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −g 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0



, Bu =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1



where Bd = Bu, and inputs are similar to Equation (2.3) with m, Ix, Iy, and Iz are 1.

The vector of the states is [x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇]. Moreover, the adaptive law for

the actor and adverse weights are not taken as prior, but use the formulation derived from
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(Kyriakos Vamvoudakis, n.d.). Which are:

˙̂
Wo = −αo

{(
FoWo − Fc

σ

σTσ + 1
Wc

)
− 1

4
DoWo

(
σ

(σTσ + 1)2

)T
Wc

}
(4.6)

˙̂
Wa = −αa

{(
FaWa − Fc

σ

σTσ + 1
Wc

)
− 1

4
DaWa

(
σ

(σTσ + 1)2

)T
Wc

}
(4.7)

where Fa, Fo and Fc are the confidence rates of the adverse, actor and critic respectively.

The two main scenarios where derived from Figure (4.10) and (4.11).

Figure 4.10 Scenario 1.

Figure 4.11 Scenario 2.
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The schema and the constants used in these trial scenarios are shown in Table (4.2)

while the constants used in the simulations are shown in Table (4.3).

Table 4.2

Scenarios.

Scenario 1 (Internal Adverse) Scenario 2 (External Disturbance)

Systems LQR LQR+DL LQR LQR+DL

Closed

Loop

LQR

Input

LQR

+

Operator

input

+

Adverse

Input

LQR

Input

LQR

input

+

Operator

input

+

Extraneous

input

Observability States

States

+

Dynamics

States

States

+

Dynamics

+

Extraneous

Input

Adverse In-

put
N/A

Adversary

NN
Step input Magnitude 20 at 10 seconds
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Table 4.3

Control constants.

Constants γ Q R αo αc αbuff αa Fo Fa Fc Xo

Value 1 10×I12×12 I4×4 0.01 10 1 1 10 1 1 112×1

It is important to note that the initial guess for all NN’s is randomly generated and the

critic, actor, and adverse Neural Networks all used in this simulation are a twelve state

quadratic NN. Figure (4.12) shows the difference in system inputs coming from the Actor

and Adverse and LQR respectivley for Scenario 1, while Figures (4.13) to (4.15) show the

progression of the Weights of the different NN’s through time, and Figure (4.16) compare

all the states between an LQR and a DL augmented LQR in Scenario 1. Moreover, Figure

(4.17) shows the inputs to the system of actor, disturbance, and LQR to the system, while

Figures (4.18) and (4.19) show the progression of actor and critic weights respectively for

Scenario 2, and Figure (4.20) show the comparison of the states between an LQR system vs.

an DL augmented LQR.

Figure 4.12 Inputs to the system (Scenario 1).
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Figure 4.13 Adverse Weights (Scenario 1).

Figure 4.14 Critic Weights (Scenario 1).

Figure 4.15 Actor Weights (Scenario 1).
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Figure 4.16 States LQR vs DL+LQR (Scenario 1).

Figure 4.17 System Inputs (Scenario 2).
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Figure 4.18 Actor Weights (Scenario 2).

Figure 4.19 Critic Weights (Scenario 2).
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Figure 4.20 States LQR vs DL+LQR (Scenario 2).

As seen in Figure (4.16) the DL augmented LQR controller shows good signs of

stability with less fluctuations even with the adverse NN input disturbaing the system.

Moreover, Figure (4.20) clearly portrays the difference between the DL augmentation and a

sole LQR controller as the system tends to bring back the states to the equilibrium point of

0 with the DL augmentation, while maintaining an offset in the states when LQR is used

alone in Scenario 2.

4.5. DJI Quadrotor Two-loop DL Controller

In this section the format shown in Figure (4.1) is used along with an actor-critic

controller, with the dynamic equations that are portrayed as follows:

mẍ = k(sinφ sinψ + cosφ cosψ sin θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4) + dx,

mÿ = k(cosφ sin θ sinψ − cosψ sinφ)(ω2
1 + ω2

2 + ω2
3 + ω2

4) + dy,

mz̈ = k(cosφ cos θ)(ω2
1 + ω2

2 + ω2
3 + ω2

4)−mg + dz,

Ixφ̈ = (Iy − Iz)θ̇ψ̇ + lk(ω2
4 − ω2

2) + dφ,

Iyθ̈ = (Iz − Ix)φ̇ψ̇ + lk(ω2
3 − ω2

1) + dθ,

Izψ̈ = (Ix − Iy)φ̇θ̇ + b(ω2
2 − ω2

1 + ω2
4 − ω2

3) + dψ. (4.8)
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the DL is applied to the dynamics on a DJI Phantom 2. Table (4.4) lists the physical

parameters of the DJI Phantom 2 (Christoph Aoun & Shammas, 2019).

Table 4.4

DJI Phantom 2 Parameters

mquad = 1.3 kg Ix = 0.081 kgm2

Iy = 0.081 kgm2 Iz = 0.142 kgm2

k = 3.8305× 10−6 bt = 2.2518× 10−8

ωmax = 1047.197 rad/s l = 0.175 m

4.5.1. Linearization

In order to Linearize the system. Primarily, the conditions should be in hovering state.

This is done by have a rotor speed of 913.12 rad/s. The outer loop follows Equation (4.1)

and the inner loop uses the Equations (4.2). This results in the following linear state spaces:

For Outer:

Ao =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


, Buo =



0 0

9.81 0

0 0

0 −9.81


, Bdo =



0 0

1 0

0 0

0 1


For Inner:

Ai =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0





55

Bui = 10−5



0 0 0 0

0.2947 0.2947 0.2947 0.2947

0 0 0 0

0 0.8276 0 −0.8276

0 0 0 0

−0.8276 0 0.8276 0

0 0 0 0

0.0159 −0.0159 0.0159 −0.0159



, Bdi =



0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1


where the subscript of i indicates inner and a subscript of o indicates outer. The inputs to the

outer loop are [φdes, θdes] while the inputs to the inner loop are [ω2
1, ω

2
2, ω

2
3, ω

2
4]. The states

for the outer loop are [x, ẋ, y, ẏ] and for the inner loop are [z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇]. The initial

condition for all the states is zero.

4.5.2. Deep Learning Design

To determine the initial conditions of weights using LQR, the system must be linearized.

A quadratic NN activation function was defined to create a primary weight values. Table

(4.5) summarizes the values for the main parameters used within the DRL architecture.

Table 4.5

DL constants.

Inner loop Parameters

Q=diag([1015, 1015, 1015, 1010, 1012, 1012, 1016, 1016])

γ R αo αc αbuff QE RE G V Tp Td

106 10 ×I4×4 0.05 0.05 0.05 10×I8×8 I8×8 I8×8 1 -0.1 ×I2×2 -0.1 ×I2×2

Ld = 10× [1, 10, 0, 0, 0, 0, 0, 0; 0, 0, 1, 1, 0, 0, 0, 0, ; 0, 0, 0, 0, 1, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 1]

Outer loop Parameters

Q=diag([0.05,0.05,0.05,0.05])

γ R αo αc αbuff QE RE G V Tp Td

1 I2×2 0.05 0.05 0.05 10×I4×4 I4×4 I4×4 1 -1 ×I2×2 -1 ×I2×2

Ld = [10, 1, 0, 0; 0, 0, 10, 1]
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Initial numerical simulations were run for a case where a step input disturbance was

introduced into the y while the system is hovering at attitude zero. This could represent, for

example, an external force input due to wind.

4.5.3. Initial Conditions

The function (Φc) has a quadratic form for both inner and outer loops. Using this NN,

we solve the following equivalence: S∞x = 1
2
∇ΦT

cWc.

For the outer loop, the gradient of the quadratic NN would result in the following ∇Φc:

∇Φco =



2x1 0 0 0

x2 x1 0 0

0 2x2 0 0

x3 0 x1 0

0 x3 x2 0

0 0 2x3 0

x4 0 0 x1

0 x4 0 x2

0 0 x4 x3

0 0 0 2x4


where [x1, x2, x3, x4] = [x, ẋ, y, ẏ]. Taking into consideration the constants of the outer

loop used in Table (4.5) the following equivalence is made:

1

2
∇ΦT

cWc = S∞x

w1x1 + w2x2
2

+ w4x3
2

+ w7x4
2

w2x1
2

+ w3x2 + w5x3
2

+ w8x4
2

w4x1
2

+ w5x2
2

+ w7x3 + w9x4
2

w7x1
2

+ w8x2
2

+ w9x3
2

+ w10x4


=



0.0691x1 + 0.0228x2 − 3.62× 10−18x3 + 7.6029× 10−18x4

0.0228x1 + 0.0315x2 − 1.5313× 10−18x3 + 3.8237× 10−18x4

−3.62× 10−18x1 − 1.5313× 10−18x2 + 0.0709x3 + 0.0228x4

7.6029× 10−18x1 + +3.8237× 10−18x2 + 0.0228x3 + 0.0323x4


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This results in the following initial outer critic and actor weights:

Wco =



0.06911

0.0456

0.0315

−7.24× 10−18

−3.0626× 10−18

0.0709

1.5206× 10−17

7.6475× 10−18

0.0456

0.0323


These weights are used used as an optimal initial condition for the outer loop DL controller.
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Similarly to the prior formulation, the following is the NN gradient for the inner loop.

∇Φci =



2x1 0 0 0 0 0 0 0

x2 x1 0 0 0 0 0 0

0 2x2 0 0 0 0 0 0

x3 0 x1 0 0 0 0 0

0 x3 x2 0 0 0 0 0

0 0 2x3 0 0 0 0 0

x4 0 0 x1 0 0 0 0

0 x4 0 x2 0 0 0 0

0 0 x4 x3 0 0 0 0

0 0 0 2x4 0 0 0 0

x5 0 0 0 x1 0 0 0

0 x5 0 0 x2 0 0 0

0 0 x5 0 x3 0 0 0

0 0 0 x5 x4 0 0 0

0 0 0 0 2x5 0 0 0

x6 0 0 0 0 x1 0 0

0 x6 0 0 0 x2 0 0

0 0 x6 0 0 x3 0 0

0 0 0 x6 0 x4 0 0

0 0 0 0 x6 x5 0 0

0 0 0 0 0 2x6 0 0

x7 0 0 0 0 0 x1 0

0 x7 0 0 0 0 x2 0

0 0 x7 0 0 0 x3 0

0 0 0 x7 0 0 x4 0

0 0 0 0 x7 0 x5 0

0 0 0 0 0 x7 x6 0

0 0 0 0 0 0 2x7 0

x8 0 0 0 0 0 0 x1

0 x8 0 0 0 0 0 x2

0 0 x8 0 0 0 0 x3

0 0 0 x8 0 0 0 x4

0 0 0 0 x8 0 0 x5

0 0 0 0 0 x8 0 x6

0 0 0 0 0 0 x8 x7

0 0 0 0 0 0 0 2x8


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where [x1, x2, x3, x4, x5, x6, x7, x8] = [z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇]. Using similar processes

as the section above the following equivalencies are established.

w1× x1 + (w2× x2)/2 + (w4× x3)/2 + (w7× x4)/2 + (w11× x5)/2 + (w16× x6)/2 + (w22× x7)/2 + (w29× x8)/2

(w2× x1)/2 + w3× x2 + (w5× x3)/2 + (w8× x4)/2 + (w12× x5)/2 + (w17× x6)/2 + (w23× x7)/2 + (w30× x8)/2

(w4× x1)/2 + (w5× x2)/2 + w6× x3 + (w9× x4)/2 + (w13× x5)/2 + (w18× x6)/2 + (w24× x7)/2 + (w31× x8)/2

(w7× x1)/2 + (w8× x2)/2 + (w9× x3)/2 + w10× x4 + (w14× x5)/2 + (w19× x6)/2 + (w25× x7)/2 + (w32× x8)/2

(w11× x1)/2 + (w12× x2)/2 + (w13× x3)/2 + (w14× x4)/2 + w15× x5 + (w20× x6)/2 + (w26× x7)/2 + (w33× x8)/2

(w16× x1)/2 + (w17× x2)/2 + (w18× x3)/2 + (w19× x4)/2 + (w20× x5)/2 + w21× x6 + (w27× x7)/2 + (w34× x8)/2

(w22× x1)/2 + (w23× x2)/2 + (w24× x3)/2 + (w25× x4)/2 + (w26× x5)/2 + (w27× x6)/2 + w28× x7 + (w35× x8)/2

(w29× x1)/2 + (w30× x2)/2 + (w31× x3)/2 + (w32× x4)/2 + (w33× x5)/2 + (w34× x6)/2 + (w35× x7)/2 + w36× x8



=



1.016e+ 15 1.6969e+ 13 1.881 0.1616 −0.0441 0.0124 0.7756 −0.5861

1.6969e+ 13 17255e+ 13 −0.0763 −0.0022 −0.0014.9714e− 4 −0.0899 −0.0249

1.8811 −0.0763 1.3076e+ 14 8.5444e+ 12 −0.0525 −0.055 −0.4826 −0.107

0.1616 −0.0022 8.5444e+ 12 1.1173e+ 12 −0.0034 −0.0029 −0.1975 −0.0129

−0.0441 −0.001 −0.0525 −0.0034 1.2411e+ 11 3.3535e+ 11 −0.2104 −0.0275

0.7756 −0.0899 −0.4826 −0.1975 −0.091 −0.2104 1.0952e+ 16 9.9706e+ 14

−0.5861 −0.0249 −0.107 −0.0129 −0.0147 −0.0275 9.9706e+ 14 1.0920e+ 15



×



x1

x2

x3

x4

x5

x6

x7

x8


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The following Critic and Actor initial weights for the inner loop are found:

Wci =



1.0168e+ 15

3.3938e+ 13

1.7255e+ 13

3.7622

−0.1526

0.3232

−0.0043

1.7089e+ 13

1.1173e+ 12

−0.0881

−0.002

−0.105

−0.0069

1.2411e+ 12

0.0248

9.9427e− 4

−0.11

−0.059

5.4039e+ 11

3.3535e+ 11

1.5512

−0.1798

−0.9653

−0.3951

−0.1821

−0.4208

1.0952e+ 16

−1.1721

−0.0499

−0.214

−0.0257

−0.0293

−0.0549

1.9941e+ 15

1.092e+ 15


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4.5.4. Results

An adverserial input dy of step input of value 2 N at 100 seconds as shown in Figure

(4.21). Figure (??) shows all the weights of the actors and critics of both the inner and outer

loops. Figures (4.25) to (4.35) show the comparison between the states when the controllers

are either LQG or DL controllers. Furthermore, Figure (4.36) shows the difference between

controller inputs of the LQG and DL controllers.

Figure 4.21 Adverse Estimation vs Actual Disturbance.

Figure 4.22 DL Outer Weights.
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Figure 4.23 DL Inner Weights.

Figure 4.24 x and ẋ states with DL Controller.

(a) x-state with LQG

Figure 4.25 x and ẋ states with LQG Controller.
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Figure 4.26 y and ẏ states with DL Controller.

Figure 4.27 y and ẏ states with LQG Controller.

Figure 4.28 z and ż states with DL Controller.
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Figure 4.29 z and ż states with LQG Controller.

Figure 4.30 φ and φ̇ states with DL Controller.

Figure 4.31 φ and φ̇ states with LQG Controller.
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Figure 4.32 θ and θ̇ states with DL Controller.

Figure 4.33 θ and θ̇ states with LQG Controller.

Figure 4.34 ψ and ψ̇ states with DL Controller.
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Figure 4.35 ψ and ψ̇ states with LQG Controller.

(a) Rotor input with DL (b) Rotor input with LQG

Figure 4.36 Comparison of Rotor Inputs with DL vs. LQG.

As shown in Figure (4.27), the LQG controller maintains an offset from the desired

position, while the DL controller pushes back trying to retrieve the system back to its

desired position. The rest of the states are shown to be stable and tracking.

4.5.5. Sinusoidal Disturbance

Similarly a sine wave of magnitude 1 N and frequency 0.1 Hz is applied to the

y-direction of the inertial frame as shown in Figure (4.37). Figure (4.38) shows all the

weights of the actors and critics of both the inner and outer loops. Figures (4.40) to (4.51)

show the comparison between the states when the controllers are either LQG or DL



67

controllers. Furthermore, Figure (4.52) shows the difference between controller inputs of

the LQG and DL controllers.

Figure 4.37 Adverse Estimation vs Actual Disturbance(Sinusoidal).

Figure 4.38 DL Outer Weights (Sinusoidal).
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Figure 4.39 DL Inner Weights (Sinusoidal).

Figure 4.40 x and ẋ states with DL Controller (Sinusoidal).

Figure 4.41 x and ẋ states with LQG Controller (Sinusoidal).
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Figure 4.42 y and ẏ states with DL Controller (Sinusoidal).

Figure 4.43 y and ẏ states with LQG Controller (Sinusoidal).

Figure 4.44 z and ż states with DL Controller (Sinusoidal).
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Figure 4.45 z and ż states with LQG Controller (Sinusoidal).

Figure 4.46 φ and φ̇ states with DL Controller (Sinusoidal).

Figure 4.47 φ and φ̇ states with LQG Controller (Sinusoidal).
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Figure 4.48 θ and θ̇ states with DL Controller (Sinusoidal).

Figure 4.49 θ and θ̇ states with LQG Controller (Sinusoidal).

Figure 4.50 ψ and ψ̇ states with DL Controller (Sinusoidal).



72

Figure 4.51 ψ and ψ̇ states with LQG Controller (Sinusoidal).

(a) Rotor input with DL (b) Rotor input with LQG

Figure 4.52 Comparison of Rotor Inputs with DL vs. LQG (Sinusoidal) .

As shown in Figure (4.42), the LQG controller maintains a constant fluctuation from the

desired position, while the DL controller pushes back trying to retrieve the system back to

its desired position while attenuating and lowering the magnitude of the fluctuation. The

rest of the states are shown to be stable and tracking.

4.5.6. Helix trajectory Analysis

A helical shape is proposed with a disturbance to dx as shown in Figure (4.53). Figure

(4.54) shows all the weights of the actors and critics of both the inner and outer loops.

Figures (4.56) to (4.67) show the comparison between the states when the controllers are
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either LQG or DL controllers. Furthermore, Figure (4.68) shows the difference between

controller inputs of the LQG and DL controllers.

Figure 4.53 Adverse Estimation vs Actual Disturbance(HELIX).

Figure 4.54 DL Outer Weights (HELIX).
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Figure 4.55 DL Inner Weights (HELIX).

Figure 4.56 x and ẋ states with DL Controller (HELIX).

Figure 4.57 x and ẋ states with LQG Controller (HELIX).
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Figure 4.58 y and ẏ states with DL Controller (HELIX).

Figure 4.59 y and ẏ states with LQG Controller (HELIX).

Figure 4.60 z and ż states with DL Controller (HELIX).
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Figure 4.61 z and ż states with LQG Controller (HELIX).

Figure 4.62 φ and φ̇ states with DL Controller (HELIX).

Figure 4.63 φ and φ̇ states with LQG Controller (HELIX).
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Figure 4.64 θ and θ̇ states with DL Controller (HELIX).

Figure 4.65 θ and θ̇ states with LQG Controller (HELIX).

Figure 4.66 ψ and ψ̇ states with DL Controller (HELIX).
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Figure 4.67 ψ and ψ̇ states with LQG Controller (HELIX).

(a) Rotor input with DL (b) Rotor input with LQG

Figure 4.68 Comparison of Rotor Inputs with DL vs. LQG (HELIX) .
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Figure 4.69 Actual, Desired, an Estimated LQG path of Helical Shape.

Figure 4.70 Actual, Desired, an Estimated Deep Learning path of Helical Shape.

As shown in Figure (4.69), the LQG does not reject the disturbance completely, but

keeps the system at a constant offset of the helical desired path. However, as shown in

Figure (4.70) the DL controller pushes back and tries to get the system back on its original

desired track.
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4.6. Crazyflie Quadrotor

Similarly to the previous simulations a test for the Crazyflie 2.0 is used. This mainly is

different from the DJI in terms of its stability and it’s high coupling of dynamic factors.

This offers a great platform to test the stability of the system proposed since Crazyflie is

highly unstable and can be easily drifted with any amount of force. Crazyflie dynamic

constants are defined in Table (4.6) and the DL algorithm constants are shown in Table (4.7).

The hovering rotor speed for the Crazyflie is 606.9384rad/s. Moreover, in order to

initialize the DL (Aoun, 2019).

Table 4.6

Crazyflie 2.0 Parameters .

mquad = 30 g Ix = 1.395× 10−5 kgm2

Iy = 1.395× 10−5 kgm2 Iz = 2.173× 10−5 kgm2

k = 1.9973× 10−7 bt = 2.4411× 10−9

ωmax = 2513.27 rad/s l = 40× 10−3 m

Table 4.7

DL constants (Crazyflie 2.0).

Inner loop Parameters

Q=diag([1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010])

γ R αo αc αbuff QE RE G V Tp Td

10 10 ×I4×4 5×10−5 5×10−5 5×10−5 10×I8×8 I8×8 I8×8 1 -0.1 ×I2×2 -0.1 ×I2×2

Ld = 10× [1, 10, 0, 0, 0, 0, 0, 0; 0, 0, 1, 1, 0, 0, 0, 0, ; 0, 0, 0, 0, 1, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 1]

Outer loop Parameters

Q=diag([0.1,0.1,0.1,0.1])

γ R αo αc αbuff QE RE G V Tp Td

2 I2×2 5×10−3 5×10−3 5×10−3 10×I4×4 I4×4 I4×4 0.9 -0.1 ×I2×2 -10 ×I2×2

Ld = [10, 1, 0, 0; 0, 0, 10, 1]

The initialization of the Critic and Actor weights using the Table (4.7) inputs resulted in

the following optimal initial weights.
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Wco =



0.1282

0.0654

0.0413

−8.1529× 10−18

−3.0413× 10−18

0.1282

9.0828× 10−18

−1.1436× 10−17

0.0645

0.0413



, Wci =



2.3979e+ 10

4.7499e+ 10

5.6948e+ 10

−7.2817e− 05

−5.845e− 05

1.0383e+ 10

3.3467e− 06

5.236e− 06

7.8089e+ 8

4.0540e+ 8

1.6063e− 05

1.7887e− 05

3.3329e− 05

1.6559e− 06

1.0383e+ 10

−1.1233e− 06

−2.4833e− 07

−2.4833e− 07

9.6055e− 07

7.8089e+ 8

4.0540e+ 8

−1.7875e− 07

5.4532e− 06

1.1677e− 05

4.5870e− 07

4.8760e− 06

1.9662e− 07

1.1320e+ 10

6.3776e− 06

7.8953e− 06

3.4298e− 06

1.5340e− 07

1.1757e− 07

2.8149e+ 9

1.5933e+ 9


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A helical path is proposed and a disturbance is of magnitude 0.05N in the dx of the

x-direction as shown in Figure (4.71). Figure (4.72) shows all the weights of the actors and

critics of both the inner and outer loops. Figures (4.74) to (4.85) show the comparison

between the states when the controllers are either LQG or DL controllers. Furthermore,

Figure (4.86) shows the difference between controller inputs of the LQG and DL controllers.

Figure 4.71 Adverse Estimation vs Actual Disturbance (Crazyflie).

Figure 4.72 DL Outer Weights (Crazyflie).
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Figure 4.73 DL Inner Weights (Crazyflie).

Figure 4.74 x and ẋ states with DL Controller (Crazyflie).

Figure 4.75 x and ẋ states with LQG Controller (Crazyflie).
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Figure 4.76 y and ẏ states with DL Controller (Crazyflie).

Figure 4.77 y and ẏ states with LQG Controller (Crazyflie).

Figure 4.78 z and ż states with DL Controller (Crazyflie).
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Figure 4.79 z and ż states with LQG Controller (Crazyflie).

Figure 4.80 φ and φ̇ states with DL Controller (Crazyflie).

Figure 4.81 φ and φ̇ states with LQG Controller (Crazyflie).
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Figure 4.82 θ and θ̇ states with DL Controller (Crazyflie).

Figure 4.83 θ and θ̇ states with LQG Controller (Crazyflie).

Figure 4.84 ψ and ψ̇ states with DL Controller (Crazyflie).
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Figure 4.85 ψ and ψ̇ states with LQG Controller (Crazyflie).

(a) Rotor input with DL (b) Rotor input with LQG

Figure 4.86 Comparison of Rotor Inputs with DL vs. LQG (Crazyflie) .
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Figure 4.87 Actual, Desired, an Estimated LQG path of Helical Shape for Crazyflie.

Figure 4.88 Actual, Desired, an Estimated DL path of Helical Shape for Crazyflie.

As shown in Figure (4.87), the LQG does not reject the disturbance completely, but

keeps the system at a constant offset of the helical desired path. However, as shown in

Figure (4.88) the DL controller pushes back and tries to get the system back on its original

desired track.

It is also important to note how the LQG controller in Figure (4.87) digressed

significantly from the path even in the y-direction when struck by the wind force which



89

resulted in having circular paths way off the desired path, while the DL in Figure (4.88) did

not undergo this chaotic behaviour.
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5. Conclusions and Future Work

With the results provided in Chapter (4), it is safe to say that the DL algorithm for

controls has proven to be empirically stable and capable of disturbance rejection. This

established the basis for later endeavours which involve DL. It presented an algorithm

which is optimal, adaptable, and robust.

In this research a Fault Tolerancing Deep learning algorithm was studied which is based

off of a Actor-Critic-Adverse System. This system is updated and optimized using concepts

from optimal control, robust control, and game theory. It’s adaptability law is done using

gradient descent methods. This proposed algorithm was tested on various dynamical

systems ranging from unstable to stable systems. As such, it has proven that the system is

effective if dealt with in a stable or stabilized environment. Otherwise, an initial stable

conditioning should be established. Moreover, it has proved to reject disturbances both as a

controller or as an augmentation algorithm to a stabilizing controller.

Due to the necessity for total observability to the system dynamics including adverse

inputs, states, and their respective dynamics, a Kalman Filter based observer was successful

in estimating said requirements. A UIO is used which ensures that the system maintains

fidelity to the system dynamics and states status especially after linearization.

5.1. Future Work

To conclude this research, optional concepts are proposed to further review aiming for

performance improvement of the algorithms proposed:

• Expanding the DL algorithm to a Kalman Filter such as LQE’s

• Explore the possibility of limited obesrvability such as output feedback controller that

could be formulated into a DL algorithm.

• Stability analysis using Lyapounov stability.

• Real field experiments with various uncertainties and disturbances.
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