5,935 research outputs found

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Unsupervised Domain Adaptation with Similarity Learning

    Full text link
    The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both domains to be as indistinguishable as possible, so that a classifier trained on the source can also be applied on the target domain. In general, the classifiers in step (i) consist of fully-connected layers applied directly on the indistinguishable features learned in (ii). In this paper, we propose a different way to do the classification, using similarity learning. The proposed method learns a pairwise similarity function in which classification can be performed by computing similarity between prototype representations of each category. The domain-invariant features and the categorical prototype representations are learned jointly and in an end-to-end fashion. At inference time, images from the target domain are compared to the prototypes and the label associated with the one that best matches the image is outputed. The approach is simple, scalable and effective. We show that our model achieves state-of-the-art performance in different unsupervised domain adaptation scenarios

    A Distributed and Approximated Nearest Neighbors Algorithm for an Efficient Large Scale Mean Shift Clustering

    Full text link
    In this paper we target the class of modal clustering methods where clusters are defined in terms of the local modes of the probability density function which generates the data. The most well-known modal clustering method is the k-means clustering. Mean Shift clustering is a generalization of the k-means clustering which computes arbitrarily shaped clusters as defined as the basins of attraction to the local modes created by the density gradient ascent paths. Despite its potential, the Mean Shift approach is a computationally expensive method for unsupervised learning. Thus, we introduce two contributions aiming to provide clustering algorithms with a linear time complexity, as opposed to the quadratic time complexity for the exact Mean Shift clustering. Firstly we propose a scalable procedure to approximate the density gradient ascent. Second, our proposed scalable cluster labeling technique is presented. Both propositions are based on Locality Sensitive Hashing (LSH) to approximate nearest neighbors. These two techniques may be used for moderate sized datasets. Furthermore, we show that using our proposed approximations of the density gradient ascent as a pre-processing step in other clustering methods can also improve dedicated classification metrics. For the latter, a distributed implementation, written for the Spark/Scala ecosystem is proposed. For all these considered clustering methods, we present experimental results illustrating their labeling accuracy and their potential to solve concrete problems.Comment: Algorithms are available at https://github.com/Clustering4Ever/Clustering4Eve

    Spatio-temporal Video Parsing for Abnormality Detection

    Get PDF
    Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table

    Residual-Sparse Fuzzy CC-Means Clustering Incorporating Morphological Reconstruction and Wavelet frames

    Full text link
    Instead of directly utilizing an observed image including some outliers, noise or intensity inhomogeneity, the use of its ideal value (e.g. noise-free image) has a favorable impact on clustering. Hence, the accurate estimation of the residual (e.g. unknown noise) between the observed image and its ideal value is an important task. To do so, we propose an 0\ell_0 regularization-based Fuzzy CC-Means (FCM) algorithm incorporating a morphological reconstruction operation and a tight wavelet frame transform. To achieve a sound trade-off between detail preservation and noise suppression, morphological reconstruction is used to filter an observed image. By combining the observed and filtered images, a weighted sum image is generated. Since a tight wavelet frame system has sparse representations of an image, it is employed to decompose the weighted sum image, thus forming its corresponding feature set. Taking it as data for clustering, we present an improved FCM algorithm by imposing an 0\ell_0 regularization term on the residual between the feature set and its ideal value, which implies that the favorable estimation of the residual is obtained and the ideal value participates in clustering. Spatial information is also introduced into clustering since it is naturally encountered in image segmentation. Furthermore, it makes the estimation of the residual more reliable. To further enhance the segmentation effects of the improved FCM algorithm, we also employ the morphological reconstruction to smoothen the labels generated by clustering. Finally, based on the prototypes and smoothed labels, the segmented image is reconstructed by using a tight wavelet frame reconstruction operation. Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.Comment: 12 pages, 11 figur

    Hypothesis-based image segmentation for object learning and recognition

    Get PDF
    Denecke A. Hypothesis-based image segmentation for object learning and recognition. Bielefeld: Universität Bielefeld; 2010.This thesis addresses the figure-ground segmentation problem in the context of complex systems for automatic object recognition as well as for the online and interactive acquisition of visual representations. First the problem of image segmentation in general terms and next its importance for object learning in current state-of-the-art systems is introduced. Secondly a method using artificial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time figure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to fulfill these requirements characterizes the novelty of the approach compared to state-of-the-art methods. Finally our technique is extended towards online adaption of model complexity and the integration of several segmentation cues. This yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition
    corecore