511 research outputs found

    Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

    Get PDF
    This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arbores- cence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms. Powerful new cuts expressed over a very large set of variables could be added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very signi¯cant improvements over previous algorithms. Several open instances could be solved to optimalityNo keywords;

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm

    Layered graph approaches for combinatorial optimization problems

    Get PDF
    Extending the concept of time-space networks, layered graphs associate information about one or multiple resource state values with nodes and arcs. While integer programming formulations based on them allow to model complex problems comparably easy, their large size makes them hard to solve for non-trivial instances. We detail and classify layered graph modeling techniques that have been used in the (recent) scientific literature and review methods to successfully solve the resulting large-scale, extended formulations. Modeling guidelines and important observations concerning the solution of layered graph formulations by decomposition methods are given together with several future research directions

    The capacitated minimum spanning tree problem

    Get PDF
    In this thesis we focus on the Capacitated Minimum Spanning Tree (CMST), an extension of the minimum spanning tree (MST) which considers a central or root vertex which receives and sends commodities (information, goods, etc) to a group of terminals. Such commodities flow through links which have capacities that limit the total flow they can accommodate. These capacity constraints over the links result of interest because in many applications the capacity limits are inherent. We find the applications of the CMST in the same areas as the applications of the MST; telecommunications network design, facility location planning, and vehicle routing. The CMST arises in telecommunications networks design when the presence of a central server is compulsory and the flow of information is limited by the capacity of either the server or the connection lines. Its study also results specially interesting in the context of the vehicle routing problem, due to the utility that spanning trees can have in constructive methods. By the simple fact of adding capacity constraints to the MST problem we move from a polynomially solvable problem to a non-polynomial one. In the first chapter we describe and define the problem, introduce some notation, and present a review of the existing literature. In such review we include formulations and exact methods as well as the most relevant heuristic approaches. In the second chapter two basic formulations and the most used valid inequalities are presented. In the third chapter we present two new formulations for the CMST which are based on the identification of subroots (vertices directly connected to the root). One way of characterizing CMST solutions is by identifying the subroots and the vertices assigned to them. Both formulations use binary decision variables y to identify the subroots. Additional decision variables x are used to represent the elements (arcs) of the tree. In the second formulation the set of x variables is extended to indicate the depth of the arcs in the tree. For each formulation we present families of valid inequalities and address the separation problem in each case. Also a solution algorithm is proposed. In the fourth chapter we present a biased random-key genetic algorithm (BRKGA) for the CMST. BRKGA is a population-based metaheuristic, that has been used for combinatorial optimization. Decoders, solution representation and exploring strategies are presented and discussed. A final algorithm to obtain upper bounds for the CMST is proposed. Numerical results for the BRKGA and two cutting plane algorithms based on the new formulations are presented in the fifth chapter . The above mentioned results are discussed and analyzed in this same chapter. The conclusion of this thesis are presented in the last chapter, in which we include the opportunity areas suitable for future research.En esta tesis nos enfocamos en el problema del Árbol de Expansión Capacitado de Coste Mínimo (CMST, por sus siglas en inglés), que es una extensión del problema del árbol de expansión de coste mínimo (MST, por sus siglas en inglés). El CMST considera un vértice raíz que funciona como servidor central y que envía y recibe bienes (información, objetos, etc) a un conjunto de vértices llamados terminales. Los bienes solo pueden fluir entre el servidor y las terminales a través de enlaces cuya capacidad es limitada. Dichas restricciones sobre los enlaces dan relevancia al problema, ya que existen muchas aplicaciones en que las restricciones de capacidad son de vital importancia. Dentro de las áreas de aplicación del CMST más importantes se encuentran las relacionadas con el diseño de redes de telecomunicación, el diseño de rutas de vehículos y problemas de localización. Dentro del diseño de redes de telecomunicación, el CMST está presente cuando se considera un servidor central, cuya capacidad de transmisión y envío está limitada por las características de los puertos del servidor o de las líneas de transmisión. Dentro del diseño de rutas de vehículos el CMST resulta relevante debido a la influencia que pueden tener los árboles en el proceso de construcción de soluciones. Por el simple de añadir las restricciones de capacidad, el problema pasa de resolverse de manera exacta en tiempo polinomial usando un algoritmo voraz, a un problema que es muy difícil de resolver de manera exacta. En el primer capítulo se describe y define el problema, se introduce notación y se presenta una revisión bibliográfica de la literatura existente. En dicha revisión bibliográfica se incluyen formulaciones, métodos exactos y los métodos heurísticos utilizados más importantes. En el siguiente capítulo se muestran dos formulaciones binarias existentes, así como las desigualdades válidas más usadas para resolver el CMST. Para cada una de las formulaciones propuestas, se describe un algoritmo de planos de corte. Dos nuevas formulaciones para el CMST se presentan en el tercer capítulo. Dichas formulaciones estás basadas en la identificación de un tipo de vértices especiales llamados subraíces. Los subraíces son aquellos vértices que se encuentran directamente conectados al raíz. Un forma de caracterizar las soluciones del CMST es a través de identificar los nodos subraíces y los nodos dependientes a ellos. Ambas formulaciones utilizan variables para identificar los subraices y variables adicionales para identificar los arcos que forman parte del árbol. Adicionalmente, las variables en la segunda formulación ayudan a identificar la profundidad con respecto al raíz a la que se encuentran dichos arcos. Para cada formulación se presentan desigualdades válidas y se plantean procedimientos para resolver el problema de su separación. En el cuarto capítulo se presenta un algoritmo genético llamado BRKGA para resolver el CMST. El BRKGA está basado en el uso de poblaciones generadas por secuencias de números aleatorios, que posteriormente evolucionan. Diferentes decodificadores, un método de búsqueda local, espacios de búsqueda y estrategias de exploración son presentados y analizados. El capítulo termina presentando un algoritmo final que permite la obtención de cotas superiores para el CMST. Los resultados computacionales para el BRKGA y los dos algoritmos de planos de corte basados en las formulaciones propuestas se muestran en el quinto capítulo. Dichos resultados son analizados y discutidos en dicho capítulo. La tesis termina presentando las conclusiones derivadas del desarrollo del trabajo de investigación, así como las áreas de oportunidad sobre las que es posible realizar futuras investigaciones

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Satellite Network, Design, Optimization, and Management

    Get PDF
    We introduce several network design and planning problems that arise in the context of commercial satellite networks. At the heart of most of these problems we deal with a traffic routing problem over an extended planning horizon. In satellite networks route changes are associated with significant monetary penalties that are usually in the form of discounts (up to 40%) offered by the satellite provider to the customer that is affected. The notion of these rerouting penalties requires the network planners to consider management problems over multiple time periods and introduces novel challenges that have not been considered previously in the literature. Specifically, we introduce a multiperiod traffic routing problem and a multiperiod network design problem that incorporate rerouting penalties. For both of these problems we present novel path-based reformulations and develop branch-and-price-and-cut approaches to solve them. The pricing problems in both cases present new challenges and we develop special purpose approaches that can deal with them. We also show how these results can be extended to deal with traffic routing and network design decisions in other settings with much more general rerouting penalties. Our computational work demonstrates the benefits of using the branch-and-price-and-cut procedure developed that can deal with the multiperiod nature of the problem as opposed to straightforward, myopic period-by-period optimization approaches. In order to deal with cases in which future demand is not known with certainty we present the stochastic version of the multiperiod traffic routing problem and formulate it as a stochastic multistage recourse problem with integer variables at all stages. We demonstrate how an appropriate path-based reformulation and an associated branch-and-price-and-cut approach can solve this problem and other more general multistage stochastic integer multicommodity flow problems. Finally, we motivate the notion of reload costs that refer to variable (i.e., per unit of flow) costs for the usage of pairs of edges, as opposed to single edges. We highlight the practical and theoretical significance of these cost structures and present two extended graphs that allow us to easily capture these costs and generate strong formulations
    corecore