5 research outputs found

    Fault tolerance force for redundant manipulators

    Full text link
    Fault tolerant manipulators maintain their trajectory even if their joint/s fails. Assuming that the manipulator is fault tolerant on its trajectory, fault tolerant compliance manipulators provide required force at their end-effector even when a joint fails. To achieve this, the contributions of the faulty joints for the force of the end-effector are required to be mapped into the proper compensating joint torques of the healthy joints to maintain the force. This paper addresses the optimal mapping to minimize the force jump due to a fault, which is the maximum effort to maintain the force when a fault occurs. The paper studies the locked joint fault/s of the redundant manipulators and it relates the force jump at the end-effector to the faults within the joints. Adding on a previous study to maintain the trajectory, in here the objective is to providing fault tolerant force at the end-effector of the redundant manipulators. This optimal mapping with minimum force jump is presented using matrix perturbation model. And the force jump is calculated through this model for single and multiple joints fault. The proposed optimal mapping is used in different fault scenarios for a 5-DOF manipulator; also it is deployed to compensate the force at the end-effector for the 5-DOF manipulator through simulation study and the results are presented

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives

    Control of Nonlinear Mechatronic Systems

    Get PDF
    This dissertation is divided into four self-contained chapters. In Chapter 1, an adaptive nonlinear tracking controller for kinematically redundant robot manipulators is presented. Past research efforts have focused on the end-effector tracking control of redundant robots because of their increased dexterity over their non-redundant counterparts. This work utilizes an adaptive full-state feedback quaternion based controller developed in [1] and focuses on the design of a general sub-task controller. This sub-task controller does not affect the position and orientation tracking control objectives, but instead projects a preference on the configuration of the manipulator based on sub-task objectives such as the following: singularity avoidance, joint limit avoidance, bounding the impact forces, and bounding the potential energy. In Chapter 2, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems. The first controller is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the master and the slave dynamic models provided the user and the environmental input forces are measurable. The second controller yields a global asymptotic result despite unmeasurable user and environmental input forces provided the dynamic models of the master and slave systems are known. These controllers rely on a transformation and a flexible target system to allow the master system\u27s impedance to be easily adjusted so that it matches a desired target system. This work also offers a structure to encode a velocity field assist mechanism to provide the user help in controlling the slave system in completing a pre-defined contour following task. For each controller, Lyapunov-based techniques are used to prove that both controllers provide passive coordination of the haptic/teleoperator system when the velocity field assist mechanism is disabled. When the velocity field assist mechanism is enabled, the analysis proves the coordination of the haptic/teleoperator system. Simulation results are presented for both controllers. In Chapter 3, two controllers are developed for flat multi-input/multi-output nonlinear systems. First, a robust adaptive controller is proposed and proven to yield semi-global asymptotic tracking in the presence of additive disturbances and parametric uncertainty. In addition to guaranteeing an asymptotic output tracking result, it is also proven that the parameter estimate vector is driven to a constant vector. In the second part of the chapter, a learning controller is designed and proven to yield a semi-global asymptotic tracking result in the presence of additive disturbances where the desired trajectory is periodic. A continuous nonlinear integral feedback component is utilized in the design of both controllers and Lyapunov-based techniques are used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation results are presented for both controllers. In Chapter 4, a new dynamic model for continuum robot manipulators is derived. The dynamic model is developed based on the geometric model of extensible continuum robot manipulators with no torsional effects. The development presented in this chapter is an extension of the dynamic model proposed in [2] (by Mochiyama and Suzuki) to include a class of extensible continuum robot manipulators. First, the kinetic energy of a slice of the continuum robot is evaluated. Next, the total kinetic energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy of all the slices). Then, the gravitational potential energy of the manipulator is derived. Next, the elastic potential energy of the manipulator is derived for both bending and extension. Finally, the dynamic model of a planar 3-section extensible continuum robot manipulator is derived by utilizing the Lagrange representation. Numerical simulation results are presented for a planar 3-section extensible continuum robot manipulator

    Stratégie de commande distribuée pour les manipulateurs rigides et flexibles assurant la stabilité des erreurs de suivi de trajectoires

    Get PDF
    Cette thèse de doctorat propose et valide expérimentalement une nouvelle stratégie de commande distribuée pour les manipulateurs rigides et flexibles assurant le suivi de trajectoires dans l’espace articulaire et cartésien. Cette stratégie est développée, dans un premier temps, pour les manipulateurs rigides. Ensuite, elle est modifiée pour prendre en compte la flexibilité des bras au niveau des manipulateurs flexibles. Dans le cas des manipulateurs rigides, cette stratégie est utilisée pour assurer un bon suivi de trajectoires dans l’espace de travail. Dans le cas où les paramètres du système sont parfaitement connus, une stratégie de commande distribuée est utilisée. Cette stratégie de commande décompose, dans un premier temps, la dynamique du manipulateur en plusieurs sous-systèmes non linéaires interconnectés. Chaque sous-système représente une articulation. Ensuite, la commande distribuée consiste à contrôler le manipulateur en commençant par la dernière articulation (sous-système) toute en supposant que le reste des articulations est stable. La même procédure est utilisée au rebours jusqu’à la première articulation. Dans le cas où les paramètres du système ne sont pas connus, une commande adaptative est développée. Dans ce contexte, la commande distribuée et adaptative peut être interprétée comme étant une commande hiérarchique. En effet, les paramètres inconnus, existant dans l’équation de mouvement du dernier sous-système, sont tout d’abord estimés et la loi de commande est ainsi déduite en fonction de ces paramètres. Puis, passant à l’avant-dernier sous-système, la loi de commande est développée en fonction de leurs propres paramètres estimés, existant dans l’équation de mouvement de l’avant-dernière articulation, et les paramètres estimés du sous-système de niveau supérieur. La même stratégie est utilisée à contresens jusqu’au premier sous-système. L’approche de Lyapunov est utilisée pour prouver la stabilité globale des erreurs de suivi. Les deux lois de commande sont validées expérimentalement sur un manipulateur rigide à 7 ddl et elles montrent un bon suivi dans l’espace articulaire et cartésien. Dans le cas des manipulateurs flexibles, cette stratégie est modifiée et étendue pour assurer un bon suivi de trajectoires dans l’espace articulaire et, en même temps, minimiser les vibrations au niveau des bras flexibles. Donc, en plus de l’objectif de suivi de trajectoire utilisée dans le cas des manipulateurs flexibles, la stratégie de commande doit assurer la déformation bornée et minimiser les vibrations des bras flexibles. Au contraire des manipulateurs rigide, les manipulateurs flexibles sont des systèmes sous-actionnés, c’est-à-dire ils possèdent plus de degrés de liberté que d’entrées de commande. Dans ce cas, chaque sous-système est composé d’une articulation et le bras flexible associé. Dans le cas où les paramètres du manipulateur sont parfaitement connus, une commande distribuée est développée pour assurer la stabilité des erreurs de suivi dans l’espace articulaire et réduire les vibrations des bras flexibles. Cette stratégie consiste à commander et stabiliser la dernière articulation ainsi que le dernier bras flexible en supposant que le reste des sous-systèmes sont stables. Puis, passons aux contrôle et stabilité de l’avant-dernier sous–système de la même façon. Cette démarche est suivie, au rebours, jusqu'au premier sous-système. Sa version adaptative, dite « hiérarchique », est également développée. La stabilité globale est prouvée en utilisant l’approche de Lyapunov. La validation expérimentale des deux lois de commande sur un manipulateur flexible à 2 ddl montre un bon suivi de trajectoires dans l’espace articulaire et des vibrations minimales au niveau des bras flexibles. Dans le cas de suivi de trajectoires dans l’espace de travail des manipulateurs flexibles, la cinématique inverse, utilisée pour les manipulateurs rigides, n’est plus suffisante pour transformer les trajectoires désirées de l’espace de travail vers l’espace articulaire. En plus d’une relation cinématique, il existe une relation dynamique entre l’espace de travail et articulaire. Pour résoudre ce problème, un espace intermédiaire, nommé « virtuel » et la méthode quasi-statique sont utilisés. En effet, la cinématique inverse est utilisée pour transformer la trajectoire désirée de l’espace de travail vers l’espace virtuel tandis que l'approche quasi-statique est utilisée pour le passage de l'espace virtuel à l'espace articulaire. Lors du contrôle direct de l’extrémité, les manipulateurs flexibles deviennent des systèmes à non minimum de phase et la dynamique interne n'est plus bornée. Pour surmonter ce problème, la technique de la redéfinition de sortie est utilisée pour sélectionner une sortie la plus proche possible de l'extrémité assurant une dynamique interne bornée. Cette sortie est composée de la position angulaire plus une valeur pondérée de la déformation de l’extrémité du bras flexible. Une étude de stabilité de la dynamique interne (ou dynamique des zéros) en utilisant la passivité est utilisée pour déterminer la valeur critique du paramètre caractérisant cette sortie paramétrisée. Deux lois de commande sont développées pour un robot à deux bras flexibles. La première loi de commande basée sur l’approche de linéarisation par retour d’état assure juste la stabilité locale des erreurs de suivi. La deuxième loi de commande constitue une généralisation pour assurer la stabilité globale de la dynamique des erreurs de suivi. Ces deux algorithmes sont testés sur un robot à deux bras flexibles et montrent un bon suivi de trajectoires dans l’espace de travail
    corecore