6 research outputs found

    A Novel and Effective Short Track Speed Skating Tracking System

    Get PDF
    This dissertation proposes a novel and effective system for tracking high-speed skaters. A novel registration method is employed to automatically discover key frames to build the panorama. Then, the homography between a frame and the real world rink can be generated accordingly. Aimed at several challenging tracking problems of short track skating, a novel multiple-objects tracking approach is proposed which includes: Gaussian mixture models (GMMs), evolving templates, constrained dynamical model, fuzzy model, multiple templates initialization, and evolution. The outputs of the system include spatialtemporal trajectories, velocity analysis, and 2D reconstruction animations. The tracking accuracy is about 10 cm (2 pixels). Such information is invaluable for sports experts. Experimental results demonstrate the effectiveness and robustness of the proposed system

    A novel monitoring system for the training of elite swimmers

    Get PDF
    Swimming performance is primarily judged on the overall time taken for a swimmer to complete a specified distance performing a stroke that complies with current regulations defined by the Fédération Internationale de Natation (FINA), the International governing body of swimming. There are three contributing factors to this overall time; the start, free swimming and turns. The contribution of each of these factors is event dependent; for example, in a 50m event there are no turns, however, the start can be a significant contributor. To improve overall performance each of these components should be optimised in terms of skill and execution. This thesis details the research undertaken towards improving performance-related feedback in swimming. The research included collaboration with British Swimming, the national governing body for swimming in the U.K., to drive the requirements and direction of research. An evaluation of current methods of swimming analysis identified a capability gap in real-time, quantitative feedback. A number of components were developed to produce an integrated system for comprehensive swim performance analysis in all phases of the swim, i.e. starts, free swimming and turns. These components were developed to satisfy two types of stakeholder requirements. Firstly, the measurement requirements, i.e. what does the end user want to measure? Secondly, the process requirements, i.e. how would these measurements be achieved? The components developed in this research worked towards new technologies to facilitate a wider range of measurement parameters using automated methods as well as the application of technologies to facilitate the automation of current techniques. The development of the system is presented in detail and the application of these technologies is presented in case studies for starts, free swimming and turns. It was found that developed components were able to provide useful data indicating levels of performance in all aspects of swimming, i.e. starts, free swimming and turns. For the starts, an integrated solution of vision, force plate technology and a wireless iii node enabled greater insight into overall performance and quantitative measurements of performance to be captured. Force profiles could easily identify differences in swimmer ability or changes in technique. The analysis of free swimming was predominantly supported by the wireless sensor technology, whereby signal analysis was capable of automatically determining factors such as lap times variations within strokes. The turning phase was also characterised in acceleration space, allowing the phases of the turn to be individually assessed and their contribution to total turn time established. Each of the component technologies were not used in isolation but were supported by other synchronous data capture. In all cases a vision component was used to increase understanding of data outputs and provide a medium that coaches and athletes were comfortable with interpreting. The integrated, component based system has been developed and tested to prove its ability to produce useful, quantitative feedback information for swimmers. The individual components were found to be capable of providing greater insight into swimming performance, that has not been previously possible using the current state of the art techniques. Future work should look towards the fine-tuning of the prototype system into a useable solution for end users. This relies on the refinement of components and the development of an appropriate user interface to enable ease of data collection, analysis, presentation and interpretation

    Estudio de viabilidad de un algoritmo de seguimiento basado en el aprendizaje previo de trayectorias habituales

    Get PDF
    En este proyecto de fin de carrera se pretende estudiar la viabilidad de un algoritmo de seguimiento basado en el aprendizaje previo de trayectorias “habituales”. Para ello nos apoyaremos en un trabajo anterior formado por distintos métodos de detección y seguimiento de objetos. Las trayectorias “habituales” o “comunes” son aquellas trayectorias asociadas a los objetos en movimiento(en nuestro caso personas, pero se podría aplicar a otros objetos usando los modelos apropiados)que aparecen con más frecuencia durante un cierto intervalo temporal en la zona espacial en la que pretendemos usar nuestro algoritmo de seguimiento. Para la obtención de trayectorias nos apoyaremos, como ya hemos mencionado antes, en un sistema de detección y seguimiento que ya ha sido desarrollado préviamente. Posteriormente a esto nos encargaremos de obtener las trayectorias medias a partir del conjunto de trayectorias obtenidas inicialmente. A estas trayectorias medias es a lo que llamaremos trayectorias “habituales” o “comunes”. Una vez calculadas, trataremos de realimentar a los algoritmos de seguimiento con dichas trayectorias con el fin de que mejore el funcionamiento de dichos algoritmos. Se pretenderá además que la introducción de esta nueva información afecte lo menos posible al sistema en cuanto a inestabilidad y practicidad, de forma que el sistema pueda ejecutarse en tiempo real o en su defecto cercano a ello. En este trabajo en concreto se va a trabajar con las posiciones y las trayectorias de los jugadores de dos equipos que se están enfrentando en un partido en un campo de futbol. En nuestro caso disponemos de 3 cámaras, las cuáles se han usado para grabar el partido (una en la zona izquierda, otra en la zona central y otra en la zona derecha del campo). De esta manera estaremos trabajando en un entorno real; el cuál a pesar de parecer estar controlado, es más caótico de lo que se pueda pensar a priori, puesto que cada jugador tiende a moverse por diferentes zonas del campo. De esta manera, si somos capaces de mejorar el sistema de seguimiento en este entorno, en teoría podremos ponerlo en práctica también en otros ámbitos fuera de lo deportivo
    corecore