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Abstract 

 

 

 

 
Swimming performance is primarily judged on the overall time taken for a swimmer to 

complete a specified distance performing a stroke that complies with current 

regulations defined by the Fédération Internationale de Natation (FINA), the 

International governing body of swimming.  There are three contributing factors to this 

overall time; the start, free swimming and turns.  The contribution of each of these 

factors is event dependent; for example, in a 50m event there are no turns, however, 

the start can be a significant contributor. To improve overall performance each of these 

components should be optimised in terms of skill and execution.  

 

This thesis details the research undertaken towards improving performance-related 

feedback in swimming. The research included collaboration with British Swimming, the 

national governing body for swimming in the U.K., to drive the requirements and 

direction of research. An evaluation of current methods of swimming analysis 

identified a capability gap in real-time, quantitative feedback. A number of components 

were developed to produce an integrated system for comprehensive swim performance 

analysis in all phases of the swim, i.e. starts, free swimming and turns. These 

components were developed to satisfy two types of stakeholder requirements. Firstly, 

the measurement requirements, i.e. what does the end user want to measure? Secondly, 

the process requirements, i.e. how would these measurements be achieved? The 

components developed in this research worked towards new technologies to facilitate 

a wider range of measurement parameters using automated methods as well as the 

application of technologies to facilitate the automation of current techniques. The 

development of the system is presented in detail and the application of these 

technologies is presented in case studies for starts, free swimming and turns. 

 

It was found that developed components were able to provide useful data indicating 

levels of performance in all aspects of swimming, i.e. starts, free swimming and turns. 

For the starts, an integrated solution of vision, force plate technology and a wireless 
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node enabled greater insight into overall performance and quantitative measurements 

of performance to be captured. Force profiles could easily identify differences in 

swimmer ability or changes in technique. The analysis of free swimming was 

predominantly supported by the wireless sensor technology, whereby signal analysis 

was capable of automatically determining factors such as lap times variations within 

strokes. The turning phase was also characterised in acceleration space, allowing the 

phases of the turn to be individually assessed and their contribution to total turn time 

established. Each of the component technologies were not used in isolation but were 

supported by other synchronous data capture. In all cases a vision component was used 

to increase understanding of data outputs and provide a medium that coaches and 

athletes were comfortable with interpreting.  

 

The integrated, component based system has been developed and tested to prove its 

ability to produce useful, quantitative feedback information for swimmers. The 

individual components were found to be capable of providing greater insight into 

swimming performance, that has not been previously possible using the current state 

of the art techniques. Future work should look towards the fine-tuning of the prototype 

system into a useable solution for end users. This relies on the refinement of 

components and the development of an appropriate user interface to enable ease of 

data collection, analysis, presentation and interpretation.    
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Chapter 1 

 

 

 

 

1. 0BQUANTIFICATION OF STAKEHOLDER REQUIREMENTS 

 

Swimming is the number one participation sport in the UK [Mintel 2009].  Olympic 

success from the last three Olympiads has increased significantly from 0 medals in 

Sydney 2000, to 2 Bronze medals in Athens 2004 and most recently a total of 6 medals 

in Beijing 2008 (2 Gold, 2 Silver, 2 Bronze). This achievement, in addition to the 

upcoming Olympics in London, 2012, has given rise to an increased investment in the 

sustained development of the sport, especially at the elite level, to maximise podium 

success in 2012. To optimise performance, ongoing athlete monitoring is essential to 

enable the refinement of training strategies at all phases during the build up to the 

games.  

 

The objective of the research presented in this thesis was to improve performance-

related feedback in swimming. The project worked collaboratively with British 

Swimming, the national governing body for swimming in the U.K., to drive the 

requirements and direction of research. The primary aim to deliver on the research 

objective was to establish the feasibility of applying new technologies and methods in 

swimming performance analysis so as to facilitate the measurement of a greater range 

of quantitative performance parameters in a timely manner.  

1.1 7BChapter Overview 

 

The requirements as specified by the swimming stakeholders (i.e. coaches, sports 

scientists and athletes) are presented within this chapter. These have been divided into 

measurement and process requirements. Measurement requirements pertain to the 
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physical parameters that need to be measured. Process requirements refer to the way 

in which these measurements are obtained and processed. 

1.1.1 40BResearch Questions (RQs) 

 

RQ1 Stakeholder requirements 

a. What are the stakeholder requirements for the system? 

b. What methods are currently used for performance analysis in 

swimming?  

c. What are their limitations, with respects to the stated stakeholder 

requirements? 

1.1.2 41BChapter Structure  

 

The current chapter, focussed on the stakeholder requirements of the research project, 

is structured as follows. Research is discussed within the context of an elite training 

environment, where inputs and outputs are used to optimise athlete performance. 

Measurement needs, as defined by the user, are specified for each phase of swimming, 

i.e. start, free swim and turn. Current methods of analysis are reviewed using CIMOSA 

modelling to evaluate what and how analysis is presently performed. Interviews with 

the end user are summarised to provide a list of “process needs”. These address the 

ideal way in which the end user would like systems to operate, for example in real-time. 

Finally core themes arising from the chapter are summarised. 
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1.2 8BComponents of an elite athlete system 

 

 
Figure 1-1: The elite athlete ‘system’ 

 

An elite athlete is driven by quantifiable Goals based on their performance within their 

specific discipline. To reach these goals there are Inputs for the athlete, such as Training 

Strategies and Outputs from the athlete, which are the performance attributes that can 

be measured and monitored (via Sensor Feedback) to give an indication of capability 

(see 496HFigure 1-1). These measured parameters may then be used to make Value 

Judgements on how best to adapt future strategies to optimise performance. 

 

For an elite swimmer, goals will predominantly be based around achieving personal 

best times for their preferred event, at a particular date, e.g. for the Olympic Games. 

Due to: (i) the differences in the demands of events (e.g. distances (50m, 100m, 400m, 

800m and1500m) and style (freestyle, backstroke, breaststroke, butterfly and 

medleys)), and (ii) the inherent capacity of each athlete, it is essential to customise and 

individualise training to optimise progress. Equally training strategies must be adaptive 

to accommodate changes in performance and ensure optimal progression, e.g. if a 

swimmer improves their times throughout training it is essential to adapt training 
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strategies to maintain the overload level (whilst ensuring adequate rest and recovery is 

included), otherwise further improvements may not be achieved [McArdle et al, 2001].  

Actuation in Figure 1-1 refers to devices or technologies which may be used to provide a 

training stimulus for the athlete. For swimming these may be out of water devices such 

as weights or swimming ergometers [Vasa, 2010, Weba, 2010], whereas in water these 

could be, for example, snorkels or drag resistance devices.  It is essential that these 

Actuation components are calibrated properly and tested to ensure that they are safe 

for the athlete to use. 

 

The athlete/swimmer has been referred to in Figure 1-1 as a distributed and 

multivariable component to be actuated and monitored. In this context, distributed 

refers to a component which is not necessarily a singular object in one space, i.e. there 

may be multiple swimmers to consider and/or multiple components of a single 

swimmer. Multivariable describes the fact that there are a number of different 

variables that have been monitored to determine the performance capability of the 

athlete.  

 

Sensor feedback provides information regarding athlete specific monitored variables. 

These variables have been broken into three core areas for consideration, namely, 

physiological, kinematic and psychological. In addition to these athlete parameters, 

external factors (e.g. the environment and the technology), also have to be monitored to 

ensure that information regarding athlete performance can be readily understood 

within the context of the performance (i.e. environment) and is complete, consistent 

and correct (i.e. technology). For a swimmer, the environment is relatively well 

controlled [fina.org, 2010] compared with a sport such as running where terrain, 

weather and altitude are all important factors that influence overall performance 

[Saunders et al, 2004, Ely et al 2007]. The most relevant external factors currently 

faced by swimmers relate to technological changes within the sport, namely swim suit 

technology and swimming start block form, both of which have experienced influential 

changes in the last two years [Omega (OSB11), 2010, Speedo, 2010]. 

 

Four key requirements have been identified as important features for successful athlete 

monitoring. Any technology and analysis must be: (i) minimally / non-invasive, (ii) 

distributed, (iii) sport specific and (iv) real-time. In swimming, aspects such as 

streamlining, body form and technique are essential for optimum performance and 

hence tools and technologies used for monitoring athlete performance variables must 
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be non-invasive and non-encumbering to the athlete to minimise the impact on their 

overall performance. For a sports such as cycling, streamlining, body form and 

technique are also key contributing factors for performance, however, the presence of 

the bicycle and helmet mean that there are more available opportunities for 

implementing monitoring technologies without adversely affecting performance. For a 

swimmer, equivalent options are limited to direct mounting onto the athlete or within 

skin tight garments.  

 

Monitoring of athlete performance has to be distributed, i.e. it should not be isolated to 

a one on one situation. Typical training scenarios involve a coach being required to 

monitor the timing performance of each of the athletes within their training group. At 

the elite level this equates to five to ten athletes. To achieve this a coach will have a 

stopwatch capable of timing multiple events (i.e. splits) for multiple athletes, requiring 

“distributed” monitoring capability at its most basic level. Note: A monitoring system 

capable of monitoring a single feature, such as timing, for a single athlete that is not 

capable of distributing the information cannot provide real-time feedback in a real life 

training scenario. 

 

It is essential that monitoring is specific for the athlete and sport / event. In swimming, 

different measurement parameters will be more relevant for certain athletes 

depending on their strengths and weaknesses in their given event. For example in the 

1500m event the swimmers ability to perform consistently when turning is essential, as 

with 14 turns this can greatly impact overall performance. However, for a 50m sprinter, 

(a race with no turns), optimising the starting performance is vital since small 

improvements (~1%) are significant when compared with typical winning margins. 

The information that has to be measured is predominantly driven by the coaches and 

sport scientists, who have “opinions” and “experiential knowledge” on how to improve 

overall performance for individual athletes. However to date, the ability to measure 

these parameters has been limited by capabilities of the technology that can perform 

within the harsh swimming environment.  

 

Athletes are able to respond and adapt performance better if feedback to the athlete, 

for example regarding issues with their technique, is supplied at the time of the event 

[Kirby, 2009] and it has been found that supplementing verbal feedback with visual 

feedback increases an athlete’s ability to effectively make changes [Hume, 2005, 

Tzetzis, 1999, Sanders, 1995]. For this reason is it a key requirement that feedback is 
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supplied to the athlete as close to the time of observation as possible to optimise the 

adaptation possible the swimmer.  

 

Based on the real-time observations, a coach, sports scientist or athlete can make 

timely judgements on swimmers progression and performance and hence more readily 

develop adaptive training strategies that focus the athlete on the optimum progression 

towards their goals. 

1.3 9BStakeholder measurement requirements 

Table 1-1: Free swimming measurement parameter requirements 
 

 Simple Compound 

Starts  • Time from gun to first 
movement 

• Block time 
• Angle of entry 
• Time to entry 
• Distance of entry 
• Maximum depth 
• Break out distance 
• Break out time 
• First stroke timing  

• Velocity off blocks 
• Velocity of glide 
• Velocity at break out  

Free 
swimming  

• Stroke count 
• Distance per stroke 
• Stroke duration 
• Rotation during the 

stroke: longitudinal 
and vertical  

• Stroke rate 
• Swimming velocity  
• Variations in velocity 

throughout a stroke cycle  

Turns  • Last stroke to wall 
timing 

• Rotation information 
• Time of wall contact 
• Wall contact duration 
• Depth profile 
• Break out distance 
• First stroke timing 

• Velocity into/out of the 
turn, also glide, start of 
initial swimming 

 

Stakeholder requirements were derived via interviews, questionnaires and protocol 

analysis of key members of the British swimming team [Kerrison et al, 2007] (see 498HTable 

1-1). The outcome is a number of variables that British Swimming would ideally 

monitor during training sessions, if it were possible. These variables deal exclusively 

with the kinematic aspect of athlete performance monitoring. They have been divided 

into two subgroups (i.e. simple and compound) pertaining to each phase of swimming 

(i.e. start, free swimming and turns) (see Table 1-1 499). Firstly, simple measurements 

refer to “one dimensional” parameters such as time and distance. Compound 
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measurements are predominantly concerned with velocities, which require a 

combination of simple measurements (e.g. time and distance) for their evaluation. 

Measurements that are currently routinely monitored (e.g. block time, time to entry, 

distance per stroke, stroke rate, last stroke to wall timing and time of wall contact) are 

highlighted in bold type in Table 1-1. It must be noted that significant manual effort is 

required to support the quantification of these parameter typically derived from the 

raw video data [Davey et al, 2008] 

1.4 10BEvaluation of current performance analysis techniques using the 
CIMOSA reference architecture 

 

 
 

 
 

Figure 1-2: CIMOSA context diagram for swimming domain 
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In order to appreciate the current AS-IS performance monitoring processes, formal 

modelling of the activities, information, resource utilisation and organisation has been 

undertaken using the Computer Integrated Manufacturing Open System Architecture 

(CIMOSA) [ESPRIT Consortium, 1993]. The CIMOSA approach (usually utilised in 

enterprise modelling projects [Berio and Vernadat, 200, Rahimifard and Weston 2007]) 

was adopted over alternative modelling architectures (e.g. PERA, GERAM [IFAC-IFIP 

Task Force, 1999, Williams and Li, 1998]) since there is significant experience of its 

usage and value at Loughborough University in defining the requirements of sporting, 

healthcare and software systems [Justham et al, 2008, West et al, 2007].  

 

CIMOSA was developed by the ESPRIT Consortium AMICE for enterprise modelling 

[ESPRIT Consortium, 1993]. The CIMOSA framework provides a language enabling end 

user domains to be modelled utilising a small set of core constructs representing, for 

example, activities, events, information, human resources and physical resources (see 

500HFigure 1-2). Complexity is addressed by structuring a hierarchical breakdown of the 

interactions of the constructs on a number of linked diagrams (e.g. context diagrams, 

structure, interaction [Monfared et al, 2002]). Lifecycle analysis can be readily 

accommodated within the CIMOSA architecture [Molina et al, 1998]. 

 

The CIMOSA context diagram supplies an overall vision of the core components (or 

domains) relating to swimming performance analysis (see 501HFigure 1-2). The scope of 

this research is focussed on developing an ability to monitor the technical aspects of 

swimming (i.e. domain process (DP1)). Knowledge of the technical aspects is critical to 

supporting advances in the other components of analysis (e.g. physiological, strength 

and conditioning and nutrition) which will ultimately provide a complete picture of a 

swimmers performance and optimised training strategy. 

 

There are three main elements contributing to technical aspects of swimming 

performance analysis: starts, free swimming and turns. The aim of this research is to 

establish robust testing technologies and protocols to accommodate analysis in all of 

these elements to enrich current knowledge of performance and technique and how 

they can impact on overall performance. 
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Figure 1-3: CIMOSA Interaction diagram for swimming domain 

 

The technical analysis domain process (DP1) can be broken into three individual 

business processes (BP’s): analysis of starts (BP1), free swimming (BP2) and turns 

(BP3) (see 502HFigure 1-3). The high-level interaction diagram illustrated in 503HFigure 1-3, 

helps to demonstrate the flow of information between each element of the domain 

process, i.e. how the business processes link and generate the relevant information to 

support the overall performance analysis of the technical aspects of swimming. In the 

example given, staff at British Swimming collate analysis from each of the swim phases 

into a single Access database.  

 

 
Figure 1-4: CIMOSA Structure diagram for swimming domain 
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A structure diagram (504HFigure 1-4) is used to illustrate how each of the business 

processes are decomposed into individual enterprise activities (EA), i.e. the core 

activities that have to be performed to support the overall business and domain 

processes. These enterprise activities are different for each BP and can be further 

decomposed into discrete tasks and flows of information. For each of the BP’s the EA’s 

have been divided into activities supporting PRE-TESTING, (i.e. involving equipment set 

up), IN SITU (i.e. recording video and supplying real-time feedback on timing), and 

POST ACTIVITY (i.e. activities and events supporting post processing of data or entry of 

results into a database). An interaction diagram illustrating this decomposition for the 

Analysis of Starts (BP1) is given below in 505HFigure 1-5. 
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Figure 1-5: CIMOSA Interaction diagram for the Analysis of Starts 

 

The current Analysis of starts process (i.e. BP1) integrates video recording with hand 

timing of events IN SITU and relies on limited analysis using manual digitisation 

techniques POST ACTIVITIES training. Results on the athletes “Time to 15m” 

performance coupled with subjective analysis of video is discussed during the session. 

Time to the feet leaving the blocks (i.e. Block Time: 506HTable 1-1) and time to head entry 



 12 

(EA1.3.2) are then measured post event and a report is supplied to the coach for their 

reference and feedback sessions after training. All videos are stored in a central Access 

database for archiving purposes along with a report on the athlete performance and 

training session structure for future reference. 

 

The AS-IS process requires full time support from two users to enable analysis. Typical 

set up of a video camera with the appropriate trigger input and playback display takes 

approximately five minutes for one person to initiate. Recording of the starts is 

obviously performed in real-time. Post processing of dives involves the transfer of 

video data to the computer, analysis, parameter storage (i.e. data entry) and report 

production. The majority of time (and cost) in the current method is the result of EA1.3 

(i.e. Post processing) and can be attributed to the use of the manual digitisation and data 

entry techniques employed. Set up testing, EA1.1, can also a major contributor if the 

facility doesn’t have a permanent, fixed set up. In addition the stakeholders specified 

that any adopted system must portable such that it can be transported and used in 

different pools throughout the UK (for training) and the World (for events). Therefore, 

a permanent set up would not be appropriate for this application.   
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Figure 1-6: CIMOSA Interaction diagram for the Analysis of Free Swimming 

 

Current processes employed for the Analysis of free swimming (BP2) are more primitive 

than those used for the Analysis of starts (BP1) and Analysis of turns (BP3) (compare 

507HFigure 1-6 with 508HFigure 1-5 and 509HFigure 1-7 respectively). There is currently no adopted 

protocol and no standard measurements taken to analyse the free swimming stage of 
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the session. Video recording can be taken during the session and a viewing screen 

made available to re-watch swimming and provide verbal feedback as is appropriate. 

Hand timing is routinely performed by coaches to monitor the lap times of athletes. 

However, a single coach will often be monitoring up to 5-10 athletes in the same 

session and inaccuracies, lack of coverage and loss of data cannot be avoided.  

 
Figure 1-7: CIMOSA Interaction diagram for the Analysis of turns business process (BP3) 
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The procedure for the Analysis of turns (BP3) shares many elements with the Analysis of 

starts (BP1), the major difference being the use of an underwater rather than over 

water camera system. Time and costs are highest in the Post processing phase, (i.e. 

EA3.3), where manual digitisation and data entry create high demands on user input. At 

this phase measurements of the time of the last stroke to wall timing (see Table 1-1) 

and the time the feet touch the wall (i.e. the time of wall contact) are derived. Times and 

video are stored into the appropriate database and a report is given to the coach 

following the session. 

 

Dividing the current processes into domain processes, business processes and 

enterprise activities enables the procedures used for the entire current performance 

analysis methods to be understood better. Currently the range of analysis routinely 

undertaken is limited, especially considering the range of requirements specified as 

vital for this system by the relevant stakeholders in Table 1. Current processes tend to 

have high resource utilisation in terms of time and labour intensity and hence cost. In 

both the starts and turns business processes, sub-processes BP1.3 and BP3.3 have been 

identified as key contributors to this cost. The research undertaken in this thesis has 

been targeted at streamlining these business processes while generating additional 

quantitative measurements of performance in line with the complete spectrum of 

requirements as specified by the user (see 510HTable 1-2). 
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1.5 11BStakeholder process requirements 

 
Table 1-2: Stakeholder process requirements 

No. Requirement  Ranking 

1. Repeatable measures – i.e. comparisons can be drawn 
between the same swimmer on different days, different 
swimmers and swimmers in different locations 

9 

2. Sport/skill specific measures 9 

3. Easy to understand results and feedback – i.e. direct 
measures of performance, confidence in techniques and how 
to interpret data in a meaningful way 

8 

4. Real-time/In situ – results can be supplied during the session 8 

5. Easy to communicate useful feedback to athletes in a way 
that they understand and can respond to  

8 

6. Suitable for multi-athlete analysis 8 

7. Low time cost and labour intensity to retrieve useable data 7 

8. Easy to use – can be set up and operated by one person 7 

9. Non invasive and non encumbering to the athlete while 
swimming 

7 

10. Accessible – affordable, easy to get hold of, easy to apply in 
swimming 

5 

11. Does not impact on ability to run session, e.g. minimal kit 
that does not encroach on space around pool, limiting coach 
mobility around a session 

5 

 

In addition to the measurement requirements provided in 511HTable 1-1, swimming 

coaches and support staff were interviewed to ascertain their operational and non-

functional needs (e.g. usability) for any solutions developed. The main requirements 

are listed in 512HTable 1-2; along with the users’ ranking of the importance of each 

statement (a high value indicates a high ranking).  The degree of importance varied 

depending on the different stakeholders interviewed therefore the average is given in 

513HTable 1-2 as an indication of overall importance of each requirement to the swimming 

team.  

 

Repeatability was marked as one of the most important parameters (Ranking 9). The 

necessity to produce repeatable measures from session to session would enable the 

ongoing monitoring of an individual athlete and to draw comparisons between multiple 
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time-sequenced sessions and multiple athletes. For British Swimming repeatability was 

vital since they have athletes distributed across five primary Intensive Training Centres 

(ITC’s) throughout the UK (i.e. Loughborough, Bath, Sterling, Swansea and Stockport). 

Any technologies adopted have to facilitate comparisons between athletes at different 

centres and allow support the movement of an athlete between different centres whilst 

receiving consistent complete and correct feedback. 

 

Sport specificity was ranked alongside repeatability (Rank 9) as the most important 

feature of the system. Swimming is notoriously difficult to monitor due to the harsh 

environment presented by the water. In addition movements are complex and skills 

vary within each swim phase, i.e. start to free swimming to turns. Within each of these 

swim phases there are a number of subdivisions in terms of techniques which must 

also be considered (e.g. stroke rate, rotation, arm coordination, arm-leg coordination). 

The term “event specific” may be a more effective term.  The technical nature and 

uniqueness of swimming mean that it was considered essential that technologies 

address performance specifically to provide most useful feedback depending on the 

individual swimmer, the event and the phase within the event. 

 

The requirements that were considered to be of the next level of importance (i.e. 

Ranking 8) were that the system: (i) is easy to understand in terms of the results and 

feedback that are generated, (ii) it is easy to communicate useful feedback to athletes in 

a way that they understand and can respond to, (iii) results can be supplied in real-time 

during the session and (iv) suitable for multi-athlete analysis. For both support staff and 

coaches it is very important that results are easy to comprehend such that useful 

feedback may be derived from the additional data. There was a strong concern that 

new technologies may provide new technical data that would not be understood, i.e. the 

impact on performance would not be clear, and therefore would be difficult to assess 

the impact on current strategies and support the develop of alternatives. Similarly it 

was important that useful feedback could be given to athletes in a usable format. For 

example athletes are accustomed to watching video to supplement a coach’s feedback 

as they can use the visual stimulus to help understand what is being explained. 

Summary statistics, colour coding and normalised graphs, supplemented with video, 

were suggested as acceptable feedback methods. These were favourable to the use of 

raw data, absolute values and the removal of all visual input. It was also important that 

this feedback would be available in a timely manner, ideally real-time. This would 

enable coaches to process data while the event was still at the front of their mind and 
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therefore supply more detailed feedback to athletes, who, in turn would also be able to 

act more effectively on feedback.  

 

Within each training session it is important for coaches to be able to monitor their 

entire squad simultaneously at certain times. Currently coaches monitor split times by 

running run up and down the poolside operating a multi-function stop watch. This 

process means that the coach cannot concentrate completely on the athlete 

performance and the measurements suffers from inherent user variability. A 

technology that enabled parameters, such as split times, to be monitored for a squad 

would relieve the coach and allow them to focus on the skill of coaching. This capability 

was considered a major benefit. In some situations this functionality may not be 

required or appropriate, for example, where start performance is analysed in a one to 

one environment, but where appropriate it should be integral to designs and 

development. 

 

It was generally agreed that developed solutions must be non-invasive and non-

encumbering to the swimmer (Ranking 7). The obvious reason for this was so that the 

swimmers technique and ability to swim would not be inhibited by using the 

technology. However the coaches stated that the swimmers would be willing to endure 

some disruption to their working environment, e.g. cabling, additional equipment, 

should it produce useful and usable information. 

 

Ease of use was given a ranking of 7 predominantly by support staff, who would be the 

primary enablers of the technology, in terms of set up, operation, maintenance, data 

collection and analysis. It was specified that the equipment should be appropriate to be 

set up, operated and maintained by a single person who would be principally 

responsible for the implementation of the technologies used in testing (i.e. currently 

this would refer to vision systems). If multiple personnel are required to set up 

developed technology the uptake may be limited as there may not physically be enough 

people available to support the system. 

 

The requirement to ensure efficient resource utilisation resulted in Low time cost and 

labour intensity to retrieve useable data to be considered of high importance to both 

coaches and support staff (Ranking 7). Currently vision techniques have been shown to 

be costly in terms of time and labour and produce limited analysis results post session. 

In addition these manual techniques also suffer from variability introduced by the 
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reliance on human judgement. The processing time means that results cannot be fed 

back in a timely manner and therefore the effectiveness of feedback is reduced. A 

system which could reduce both time and labour intensity should enable more timely 

feedback and potentially increase the range of measurement parameters that can 

provide useful insight into performance enhancement. 

 

The two lowest ranked (i.e. ranking 5) requirements were Accessibility and the Impact 

on the ability to run a session. Accessibility can be viewed from either stakeholder or 

researcher perspectives. Stakeholder concerns were with the cost and funding of 

development, whereas, researcher accessibility referred to the ease of accessing 

appropriate equipment and applying technologies in a swimming domain. For British 

Swimming, currently the cost would have to be integrated into budgets that were 

already secured for the research project. The impact on the ability to run a session is 

concerned with ensuring that the kit is minimally invasive from a coach’s perspective 

and still allows them to manoeuvre around the pool to monitor performance and 

converse with athletes.  
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1.6 12BSummary 

 

Two types of needs which must be satisfied to ensure successful outcomes, i.e. 

measurement requirements and process requirements have been described in this 

Chapter. The measurement requirements were defined by British Swimming to 

encompass certain measurement parameters that were desirable for providing more 

thorough feedback on performance, for example angle of entry, distance of entry and 

time to first stroke after the dive (see 514HTable 1-1). Via interviewing, questionnaires and 

protocol analysis of end users, process needs were established. These needs define how 

the technologies should be developed to add most value to the user. The main 

considerations for these requirements were that systems developed should support 

specific, real-time, non invasive and distributed monitoring of athletes, with minimal 

time and operator input and minimal impact on how the coaches currently run their 

training sessions (see 515HTable 1-2). In addition to this it was important that, as with 

current methods, summary data must be available to coaches in a format that they can 

understand and consequentially use to supply useful feedback either directly to the 

athlete or indirectly by using the information to adapt and specify future training 

strategies. 

1.6.1 42BRQ1 Stakeholder Requirements 

 

An overview of an elite athlete training system has been described to illustrate the 

context of research within this Thesis. The research presented in this chapter can be 

considered as part of the Sensor Feedback element of the control loop to enable more 

informed value judgment by coaches and support staff (see 516HFigure 1-1). A number of 

measurement needs were specified by the end user, these were divided into the three 

phases of swimming: starts, free swimming and turns.  

 

Evaluating existing methods of analysis allowed current measurement parameters to 

be identified and also the processes involved to achieve those measurements. It was 

found that manual vision analysis was the predominant method used, which required 

high levels of operator expertise, time costs and suffered inherent variability. It was 

also noted that only limited measurement parameters (6 out of a total desired 26: see 

517HTable 1-1) were currently derived.  
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Interviewing was undertaken with the end users, i.e. coaches, support staff and 

athletes, to determine a number of process needs and their priority within the system. 

Key themes were that developed technologies should be non-encumbering to the 

athlete, real-time, i.e. can be fed back within a session and measurements should be 

easy to understand and presented in such a way that coaches and athletes can apply 

effectively. 

 

 

 

 



 22 

Chapter 2 

 

 

 

 

2. 1BLITERATURE REVIEW 

2.1 13BChapter Overview 

 

Current research has been reviewed within this chapter, addressing literature for all 

relevant areas to work undertaken in the thesis. Firstly, the current state of the art in 

swimming research is evaluated for each phase of the swim, i.e. starts, free swimming 

and turns. The types of measurements taken and methods used to ascertain these 

measures are summarised. Further to this, supporting literature for the development of 

component technologies is discussed. This includes relevant literature relating to 

human motion analysis via automated vision techniques and the development of body 

sensor networks. 

2.1.1 43BResearch Questions (RQs) 

 

RQ1 Swimming research 

a. What are the current measurement parameters and methods used for 

the analysis of starts, free swimming and turn performance in 

swimming? 

RQ2 Body sensor networks 

a. What are the current technologies, implications and considerations 

associated with body sensor networks and their implementation? 
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RQ3 Automated vision analysis 

a. What are the current technologies, implications and considerations 

associated with automated vision analysis techniques and their 

implementation? 

 

2.1.2 44BChapter Structure  

The current state of the art in swimming research has been reviewed for starts, free 

swimming and turns. The ability of these methods to provide specific feedback on 

performance has been evaluated against the stakeholder requirements, specified in 

Chapter 1: Quantification of the Stakeholder Requirements. This evaluation refers to 

both measurement and process needs, i.e. what measurements are required and what 

methods are appropriate to achieve these measurements. 

 

An overview of current research on body sensor networks has been carried out and 

several applications reviewed. Processes associated with implementing a body sensor 

network are discussed with reference to a swimming application. 

 

Finally automated vision analysis for human motion tracking is explored. Typical 

processes, assumptions and methods have been summarised and their implications for 

application in a swimming environment assessed. 
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2.2 14BCurrent state of the art in swimming research 

 

 
 

Figure 2-1: Analysis of start and turn contribution in Women's freestyle events, Beijing Olympics 2008 
 
Swimming events can be broken into three elements that contribute to overall race 

time, i.e. the start, free swimming and turns.  The contribution of each of these elements 

is event dependent, for example in a 50m event there are no turns, however, the start 

will contribute significantly. The contribution of the start was analysed for three events 

in the Beijing Olympics, 518HFigure 2-1. The events analysed were the 50m, 100m and 200m 

freestyle women’s races. For each of these races, start time was defined as the time the 

athlete took to reach 15m; an average for all athletes was calculated to give an 

indication of typical start time for this level of athlete.  

 

A 1% improvement in the typical start time was plotted. The time difference in 

finishing times for the podium athletes was plotted to put the effect of an improved 

start time into context. For this example a 1% improvement in start time, i.e. 0.07s, 

would have altered the order of 1st and 2nd podium places for both the 50m and 100m 

events. For the 50m event the contribution of the start was 26% of total race time. This 

percentage degraded as the length of the race increased. 
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Similarly, the contribution of the turns has been considered for each of the races. Turn 

time was defined as the time from 5m into and 10m out of the wall. A 1% improvement 

in typical turn time was plotted. It was found that, for this example, a 1% turn 

improvement would affect the podium placing in the 100m event for 1st and 2nd places. 

More significantly it would alter the entire podium in the 200m event, where a 1% 

improvement equated to 0.24s. This time improvement was greater than the finishing 

time difference between each of the podium positions. 

 

Unlike the start, the contribution of the turn was more significant with increasing race 

length. For this example, the contribution of the turn was 21% of total race time for the 

200m event. For the events analysed the free swim contribution remained the most 

significant proportion, for 50m free swimming this accounts for 74% and for the 200m 

approximately 72%. 

2.2.1 45BSwimming starts research 

 

Swimming research for each of the start, free swimming and turns, has been reviewed 

respectively. A key aim was to establish what parameters were currently measured to 

indicate performance and what methods were used to obtain these measurements.   

The block start can be broken into four key components, namely, the block phase, flight 

phase, underwater phase and break out. Within papers reviewed, summarised in 519HFigure 

2-2, measurements were taken pertaining to some or all of these phases to provide an 

analysis of starting performance. 

 

During the block phase the most recurring measured parameter reported in the 

literature was the block time, typically reported as between 0.75s and 0.85s. Other less 

reported measurement parameters were concerned with velocities leaving the block 

and forces off the block. Of the papers that reported force off the block, a number 

suggested that maximum horizontal force was correlated to better start performance 

[Galbraith et al 2008, Mason et al 2007, Arellano et al 2005]. As force is related to a 

change in velocity over a time period, it can be assumed that horizontal force and/or 

impulse will have some influence on subsequent horizontal velocity leaving the block, 

and therefore, potentially affect overall performance. 
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The flight phase is defined as the time between the swimmer leaving the block and the 

time at which they enter the water. During this phase the most common measurement 

parameter reported in the literature was the flight time. It was noted that flight times 

reported were very similar for all papers reviewed, i.e. ~ 0.34s. This can be expected 

due to the predominant force acting on a swimmer in flight is gravity (9.81ms-2) and 

given all swimmers projecting at a relatively flat angle, from a similar height, it would 

be expected that flight time would exhibit little variability from one swimmer to the 

next. 

 

 
Figure 2-2: Review of swimming starts research 

 

Flight distance and angle of entry were reported in few of the papers reviewed. Flight 

distance is considered an important performance variable as a swimmer can travel 
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faster through air than through water [Breed and Young 2003], therefore, it is 

preferable that the swimmer travels as far as possible before entering the water. This 

sentiment was supported in papers by Cossor and Mason 2001, Ruschel 2007 and 

Pearson et al 1998, who reported that start time to 15m had been correlated to flight 

distance. Another recurring sentiment in papers reviewed, was that with all other 

things equal, the instantaneous horizontal velocity off the blocks would have the 

biggest effect on the distance the swimmer travels before entry [Breed and Young 

2003, Welcher et al 2008, Mason et al 2007], therefore, a higher horizontal velocity at 

take off is preferential. However, it was also noted that although a critical component, 

horizontal velocity at take off cannot be used to assess start performance in isolation 

[Welcher et al 2008]. Mason 2007 reported that time on the blocks and horizontal 

velocity at take off were two parameters affecting start performance, and suggested 

that average acceleration would be a more useful performance measurement as it 

combines both parameters.   

 

Angle of entry provides an indication of how the swimmer enters the water. In the two 

papers reviewed that reported angle of entry, little is discussed as to how the angle of 

entry affected overall starting performance [Breed and Young, 2003, Ruschel et al 

2007]. It is speculated that the angle of entry affects the subsequent depth of the dive, 

which impacts the rest of the start phase. Ruschel et al 2007 suggested that higher 

angle of entry values corresponded to longer times to 15m. 

 

The underwater phase has the largest impact on overall start time, as this is where the 

swimmer spends the greatest amount of time during the start phase, compared with 

block and flight phases [Mason et al 2007].  However, it is noted that the block and 

flight phases initiate the underwater phase, and therefore remain important [Mason et 

al 2007].  Measurements recorded regarding the underwater phase looked at time, 

depth, distance and velocity measurement parameters. The underwater phase 

encompasses the transition from water to air and finally the start of free swimming. 

There are two key elements within this phase; the glide, i.e. where the swimmer holds a 

fixed body position and then the phase prior to break out, where the swimmer may 

perform some movement before resuming the stroke, e.g. underwater kicking in 

freestyle events. Cossor and Mason 2001 reported that in the Sydney Olympics a 

negative correlation was found between underwater velocity and start time, i.e. time to 

15m. This supports the need for swimmers to preserve their in-flight velocity through 

the transition into water, to maximise start performance. 
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Break out is the point at which the swimmer breaks the surface of the water and starts 

to stroke. Rather than report the distance or time of break out, papers tend to record 

the time taken for a swimmer to reach a predefined distance from the wall. These 

distances varied from 5m [Seifert et al 2007, Mason et al 2007, Ruschel et al 2007, 

Issurin et al 2002] to 15m [Welcher et al 2008, Mason et al 2007, Arellano et al 2005]. 

 

Welcher et al 2008 reported that given the number of research papers on swimming 

starts, there still seems to be little consensus on which parameters contribute most to 

overall swimming start performance. This sentiment is supported by the literature 

reviewed in this chapter, where no standardised sets of measurement parameters or 

methods were found for analysing the swimming start. Typically, for the papers 

reviewed, common measurement parameters were the block time, flight time and time 

to a given, non-standard, distance. In all cases, parameters were measured in one of 

two ways, most frequently, using manual video analysis techniques, and in the case of 

force measurements, using instrumented start platforms. 
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2.2.2 46BFree swimming research 

 

 
Figure 2-3: Review of free swimming research 

 
Literature reviewed with reference to free swimming performance analysis was 

divided into the four major swimming strokes, freestyle, backstroke, butterfly and 

breaststroke, see 520HFigure 2-3. Each stroke has cyclic phases associated with the arm and 

leg components of movement. Definitions of these phases varied to a degree in the 

literature reviewed, however, typical descriptions have been summarised.  

 

Freestyle and backstroke share the same descriptors for arm and leg phases. The hand 

entry and catch is the point where the swimmer enters their hand into the water and 

gets a ‘hold’ of the water. The pull defines the first half of the stroke where the 
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swimmer pulls their arm from a position stretched in front of their body to a medial 

point. The push describes the hand as it moves from the medial point towards the feet 

of the swimmer. The recovery is the action of the swimmers arm as it leaves the water 

and is returned to the starting point for re-entry. Leg phases are simply defined as an 

upbeat and downbeat, one describing the movement of the foot from a deeper to 

shallower position and vice versa. Similar descriptions are used for butterfly and 

breaststroke to describe the motion of the arms and legs. These definitions are 

important as they assist in the analysis of the different parts of the stroke; most 

importantly, perhaps, they are used in the analysis of coordination. 

 

Contributors to free swimming performance were categorised into three major areas, 

performance, physiology and skill or technique. A number of papers have been 

reviewed that report research on each of these categories. All papers reviewed used 

vision analysis techniques to derive performance parameters.  LeBlanc et al 2005 and 

Chollet et al 2004, supplement traditional vision analysis techniques with a tethered 

system to determine velocity of the swimmer. 

 

Performance parameters dealt with gross measurements of movement such as stroke 

rate, stroke distance and velocity. It is accepted that relationships between said 

parameters give an indication of swimming performance. LeBlanc et al 2005 reported 

that within their study of breaststroke, increases in velocity were associated to an 

increase in stroke rate and a decrease in stroke duration, which supported similar 

findings by Chollet et al 2004. It was also noted that more competent swimmers 

performed a stroke characterised by a shorter glide phase and longer propulsive and 

recovery phases, than less accomplished counterparts at the same speed. Hellard et al 

2008, reported that stroke rate, stroke length and stroke rate variability were 

influenced by the standard of swimmer. For example, it was noted that semi finalists in 

the Olympics demonstrated lower stroke rate variability than semi finalists in French 

national championships. These examples demonstrate how basic performance 

parameters may be applied to the monitoring and development of swimmers. 

 

Skill or technique parameters addressed more technical aspects of swimming 

performance such as the coordination of swimming strokes. An index of coordination 

(IdC) was often used to describe a swimmers technique, referring to the coordination of 

the arm cycle in relation to the other arm, or in relation to the legs. For example in 

freestyle, the IdC deals with the arms only and there are three index types, namely 
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catch-up, opposition and superposition. Catch-up is the term used when one arm 

completes the propulsive phase of a stroke before the other starts the propulsive phase 

of its stroke cycle. Opposition explains a point where one arm starts the propulsive 

phase of a stroke at the same time the other completes the propulsive phase of stroke 

cycle. Superposition is where the second arm starts the propulsive phase of the stroke 

cycle before the first has completed its propulsive phase. A study by Potdevin et al 

2006, investigated whether arm coordination at different stroke rates differs with 

swimmer expertise. Distinguishing time gaps between the phases of the arm and legs 

has been used to monitor how a swimmer has adapted their stroke, for example, 

Chollet et al 2004, where stroke phases and timing of phases were used to evaluate flat 

breaststroke. 

 

The relevance of physiological measurements within this project is limited due to the 

absence of any specification in the outlined stakeholder requirements. The most 

important thing to note for all papers reviewed that reported physiological parameters, 

was that all measurements were taken post swim, i.e. there was no capability for 

monitoring physiology in real-time. Heart rate systems are available that can monitor 

in real-time, [Hosand TMAQUA, 2010], although this technology was not applied in any 

of the reviewed literature. Blood, lactate and breathing parameters must be assessed 

post swim. Although not directly relevant to this project, it was considered that any 

developed solutions might need to be compatible with potential physiological 

measurement methods in the future.  

2.2.3 47BSwim turn research 

 

In the same manner as for the start and free swimming, it is conventional to divide the 

turn into phases. In swimming there are two types of turn, the tumble turn and the 

open turn. Tumble turns are used for both freestyle and backstroke events where the 

swimmer performs a forward roll as they approach to the wall and push off the wall 

with only their feet. The open turn is used in butterfly and breaststroke events where 

the swimmer touches both hands on the wall and then pushes off with their feet. The 

research reviewed was predominantly focused on the tumble turn technique, 

summarised in 521HFigure 2-4. For this reason papers have been categorised into phases 

relevant for this type of turn, i.e. Approach, Rotation, Wall contact, Glide and Stroke 

Preparation, see 522HFigure 2-4. Phases translate to the open turn with the exception of the 
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rotation phase and the wall contact phase is divided into hand and foot contact as in 

Tourny-Chollet 2002. 

 

 
Figure 2-4: Summary of swimming turn research 

 
The approach phase is defined as the time between a predefined distance from the wall 

or the last arm pull before the turn and the initiation of the turn, i.e. where the 

swimmer starts to rotate from a prone position. For Tourny-Chollet et al 2002, the 

distance from the wall used was 7.5m to determine the approach time. At 7.5m and 5m 

from the wall the velocity of the swimmer was recorded. No other papers reviewed 

directly dealt with the approach phase.  

 

Little is reported about the rotation phase, which deals with the time during which the 

swimmer starts to rotate from a prone position to the point where their feet contact the 

wall. A tuck index, reported by Blanksby et al 2004 and Prins et al 2006, refers to the 

distance of the greater trochanter of the femur from the wall at foot contact divided by 

the standing height of the trochanter with straight legs. A higher tuck index implies the 

swimmer is contacting the wall with straighter legs. Blanksby et al 2004 reported that 
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it may be beneficial for backstroke swimmers to turn with straighter legs, to reduce the 

distance the swimmer must travel in and out of the wall and reduce the resistance 

created when a swimmer compresses into a more bunched up position with a higher 

frontal area. Conversely Prins et al 2006 reported a negative correlation between tuck 

index and push off velocity, suggesting a more tucked position is better for turning. 

However, it is important to note that Blanksby et al 2004 used round trip time (RTT) to 

determine turn performance, whereas Prins et al 2006 used velocity out of the turn to 

determine performance. The swimmer’s body position out of the turn will affect their 

ability to maintain their velocity off the wall and therefore it should be noted that a 

faster velocity off the wall may not result in the quickest turning time, if the swimmer is 

unable to maintain the velocity they have generated off the wall. 

 

During the wall contact phase two types of measurements were reported, firstly wall 

contact time and secondly forces associated with this contact phase. For butterfly and 

breaststroke turns, contact times were divided into hand and foot components. Force 

measurements were facilitated by instrumenting the turning wall with force plate 

technology [Blanksby et al 2004, Lyttle et al 2004 and Cossor et al 1999]. Lyttle et al 

1999 and Blanksby et al 2004 both reported that a higher peak force perpendicular to 

the wall resulted in better turning performance, however, neither reported similar 

correlations with perpendicular impulse. Prins et al reported a foot-plant index, which 

similarly to the tuck index, was a ratio of trochanter height but related to the depth of 

foot contact. It was reported that there was no significant relationship between foot 

plant index and push off velocity, though it should be noted that this is the only paper 

which discusses any aspect relating to the position of foot contact. Equally, none of the 

papers reviewed dealt with the orientation of the feet at contact, the area of foot 

contact or whether there was a greater force generated from one foot or the other.  

 

The glide phase is the time after the swimmers feet have left the wall, where a 

streamlined position is assumed, up to the point where they prepare to recommence 

the stroke. Analysis of this phase is given by measuring velocities at predefined 

distances from the wall. In the literature reviewed, variability in protocols suggested 

there was no standard distance at which velocity was measured that best indicated 

turning performance. Velocities off the wall were higher than free swimming pace, 

which is typically just under 2ms-1 closer to the wall and degraded until free swimming 

was resumed. One outlier was a paper by Cronin et al 2007, which reported velocities 

of over 5.5m/s at 2-4m from the wall, diminishing to 3.75m/s at 8-10m from the wall. 



 34 

At the latter distance from the wall it can be assumed that the swimmer will have 

returned to the stroke. At the paces recorded, this paper suggests that swimmers tested 

left the wall at velocities greater than they could typically achieve during the start and 

were free swimming at over 3.5m/s, both of which are unrealistic values and highly 

inconsistent with other papers. For this reason this paper was considered inaccurate 

and unreliable.  

 

The stroke preparation phase is the time where the swimmer stops gliding and 

resumes free swimming. The time and distance of stroke resumption have been 

reported in literature by Blanksby et al 2004. Tourny-Chollet et al 2002 reported the 

time to 7.5m from the wall, a point at which the swimmer will have begun the stroke.  

Overall, turning performance was typically reviewed by considering the round trip time 

(RTT). This is the time from the swimmer passing a predetermined distance from the 

wall on approach, and returning to this distance from the wall after completing the 

turn. Papers reviewed reported on two distances, 2.5m and 5m RTT. Considering the 

papers reviewed here, it can be assumed that there is no standard technique that is 

considered most effective for analysing turning performance.  

 

The number of papers pertaining specifically to swimming turning performance 

suggests that this is the least researched area of the three swimming phases, i.e. starts, 

free swimming and turns. Similarly to starts and free swimming, papers reviewed 

depended on manual vision analysis techniques to establish measurement parameters, 

with some testing supplemented with force plate analysis. It was concluded that 

relationships between contact time, forces and positioning on the wall must be better 

understood to generate future recommendations for turning performance.  

2.2.4 48BDiscussion: How current research satisfies stakeholder requirements 

The reviewed literature was found to address a number, but not all, of the 

measurement requirements specified by British Swimming, as highlighted in bold type 

in 523HTable 2-1. Manual vision analysis was a common method used in all papers reviewed. 

Additional technologies used were start blocks instrumented with force transducers, 

tethered systems for measuring velocity and turning walls instrumented with force 

transducers. These additional technologies allowed direct measurements to be taken 

that would not be possible using vision. The use of force plate technologies and 

tethered systems in the literature reviewed represented the exception in terms of 
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testing methods and protocols, and were not systems implemented in day-to-day 

monitoring. 

 
Table 2-1: Currently satisfied measurement requirements 

 

Simple Compound 

Starts  • Time from gun to first 
movement 

• Block time 
• Angle of entry 
• Time to entry 
• Distance of entry 
• Maximum depth 
• Time of first kick 

(relative to entry) 
• Break out distance 
• Break out time 
• First stroke timing  

• Velocity off blocks 
• Velocity of glide 
• Velocity at break out  

Free swimming  • Stroke count 
• Distance per stroke 
• Stroke duration 
• Rotation during the 

stroke: longitudinal 
and vertical  

• Stroke rate 
• Swimming velocity  
• Variations in velocity 

throughout a stroke cycle  

Turns  • Last stroke to wall 
timing 

• Rotation information 
• Time of wall contact 
• Wall contact 

duration 
• Depth profile 
• Break out distance 
• First stroke timing 
• Time of first kick 

• Velocity into/out of the 
turn, also glide, start of 
initial swimming 

 

The process requirements specified by stakeholders were summarised in 524HTable 2-2. 

The compliance of current research to satisfy these process requirements was 

assessed. Colour coding has been used to distinguish needs that are entirely satisfied as 

green, and those which are satisfied to an extent as orange, see 525HTable 2-3. Vision 

provides the least invasive method of data collection, which can be easily understood 

and analysed in real-time for subjective measurements. However, analysis that requires 

post processing cannot be supplied in real-time, but analysed post session. 

Repeatability was also highlighted as a need that cannot be completely satisfied using 

vision techniques. The reliance on human operator input and variability between 

operators introduces inherent uncertainty into the process.  Two major shortcomings 
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of vision were identified as the time and labour costs associated with manual analysis 

techniques, i.e. digitising, and the inability to monitor multiple athletes simultaneously. 

One paper by Naemi et al 2008, looked at the development of an automated vision 

system for analysis of the glide performance. Markers that were automatically tracked 

allowed real-time feedback on start performance. This example has currently only been 

applied in a limited capacity, i.e. to analyse the underwater phase, specifically the glide, 

after start entry and gliding phase after the push off from a turn.  

 
Table 2-2: Process requirements defined by the user 

No.  Requirement  Ranking 

1.  Sport/skill specific measures 9 

2.  Repeatable measures – i.e. comparisons can be drawn 
between the same swimmer on different days, different 
swimmers and swimmers in different locations 

9 

3.  Easy to understand results and feedback – i.e. direct measures 
of performance, confidence in techniques and how to interpret 
data in a meaningful way 

8 

4.  Real-time/In situ – results can be supplied during the session 8 
5.  Easy to communicate useful feedback to athletes in a way that 

they understand and can respond to  
8 

6.  Suitable for multi-athlete analysis 8 

7.  Low time cost and labour intensity to retrieve useable data 7 

8.  Easy to use – can be set up and operated by one person 7 

9.  Non invasive and non encumbering to the athlete while 
swimming 

7 

10.  Accessible – affordable, easy to get hold of, easy to apply in 
swimming 

5 

11. Does not impact on ability to run session, e.g. minimal kit that 
does not encroach on space around pool, limiting coach 
mobility around a session 

5 

 

 
Table 2-3: Assessment of current technologies against process needs 

Technology 1 2 3 4 5 6 7 8 9 10 11 

Vision ● ● ● ● ● ● ● ● ●   

Tethered   ● ● ● ● ● ●  ●  

Force ● ●  ● ● ● ●     
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Tethered systems provided repeatable, real-time, easy to understand data concerning 

swimming performance, e.g. velocity. It was accepted that athletes and coaches were 

able to process the data presented to them, i.e. velocity information, however, in the 

absence of a complementary vision system it may be difficult for interpretation of the 

data to be achieved. For example, if a swimmer displays large fluctuations in their 

forward velocity it may be hard to distinguish at what point in the stroke the weakness 

is occurring without having concurrent vision data to supplement the velocity data, i.e. 

velocity is not useful as a standalone metric, but more an integrated component. There 

were, however, a number of needs that were not satisfied by tethered systems. Most 

importantly perhaps is the potential effect the physical attachment of a tether would 

have on the swimmer and subsequently their ability to perform normal swimming, i.e. 

the technology would be more invasive and encumbering than ideal. Another limitation 

was that the tethered system would limit lane use to a single swimmer, to ensure other 

swimmers are not at risk of becoming tangled in the tether. Tethered systems are also 

not standard pieces of equipment present for use at every poolside and therefore they 

are not freely accessible. Similarly to vision, tethered systems do not enable multi 

athlete analysis. 

 

Force plate technologies, as with tethered systems, were considered successful in 

providing repeatable, real-time measurements that were sports specific. Typically it 

was considered that equipment would be reasonably unobtrusive, however, a badly 

designed solution may not have the same feel or characteristics that a swimmer is used 

to, which may prove problematic. The major drawback of using force plates was 

identified as the lack of knowledge and understanding regarding the data. Limited 

research studies were found that used force plate technologies, of which made some 

loose correlations between collected data and subsequent performance. Due to the 

minimal research using force plate technologies there is a gap in understanding how 

force generation impacts performance in the start and turns [Mason et al 2007, 

Arellano et al 2005, Blanksby et al 2004, Lyttle et al 1999, Cossor et al 1999.  

 

It was concluded that current swimming analysis was heavily reliant on manual vision 

analysis techniques whose major failings were identified as measurement variability 

due to human judgement, non real-time quantitative feedback and high costs in terms 

of time and labour intensity. Alternative technologies were successful in providing 

additional measurements of performance, however, these were not useful in isolation 

and currently could be encumbering to the athlete. It was considered that enabling 
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technologies developed should work towards automated, integrated processing 

components that maintained visual data to validate processes. The vision component is 

necessary to increase understanding of new types of data and supply the coach and 

athlete with an additional feedback stimulus that they are comfortable with 

interpreting and applying.  

2.2.5 49BAutomation vision analysis for human motion analysis 

Technologies currently used for performance analysis of swimmers have been 

discussed. Video analysis was the predominant technique used to determine 

performance, either qualitatively or quantitatively. To establish quantitative measures 

of performance, vision data was manually digitised. Despite vision being the standard 

tool used for performance analysis there were key problems associated with these 

methods. Namely, these were resource intensive in terms of time and expertise, and the 

reliance on human judgement for analysis meant that measurements taken suffered 

from an inherent variability.  To analyse a length of swimming data would minimally 

take the playback time of the video and be dependent on the number and type of 

measurements required that would further extend this analysis time. A trained 

member of personnel, to ensure reliability and a degree of repeatability of results, must 

perform the analysis. Despite these draw backs it was considered that vision would be 

an essential component in any solution developed. The use of a visual stimulus 

increases the ability of the user to explain and understand results and subsequently 

provide more informed feedback to athletes. It was considered that introducing 

automation to vision analysis processes would reduce the time and expertise resource 

in analysis while ensuring repeatable results.  

 
Figure 2-5: Stages of human motion capture 
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Human motion analysis using automated vision processes has been applied in a 

number of different domains, see 526HFigure 2-6. Each system is built on a number of 

fundamental principles. Applications can be categorised into three subject areas, 

namely surveillance, control and analysis. Vision systems have been used within 

surveillance to monitor people, e.g. Fuentes and Velastin 2006 and Landabase et al 

2004, and vehicles, e.g. Coifman et al 1998. Control refers to vision systems used to 

control something else, for example Chai et al 2003 discuss the use of vision to control 

facial expressions on a computer animation or Betke et al 2002 developed an on screen 

computer mouse controlled by the users’ movements, intended for severely disabled 

subjects. Analysis applications are where data from the vision system is used to 

evaluate the activity being captured. For example, this has been seen in sporting 

situations where players have been tracked in handball [Pers and Kovavic 2002] and 

football [Iwase and Saito 2004, Misu et al 2002]. 

 

For each of the applications, four standard process stages were used to enable analysis. 

These phases were identified as: initialising, tracking, pose estimation and recognition. 

Initialising refers to actions that allow the system to be correctly set up. Actions at this 

stage varied depending on the application but typically include camera calibration, 

adjustment for scene characteristics and, where appropriate, model initialisation 

[Moeslund and Granum 2001]. 

 

The tracking phase relies on the ability to segment the area of interest (AOI). In human 

tracking this is the identification of the human figure/subject from within the 

background scene. Processes in this stage include segmentation of the image to isolate 

and track the AOI and then representation, which refers to the way in which the 

segmented figure is represented, for example using blobs, stick figures or silhouettes. 

 

Pose estimation can be achieved with or without predefined models. In cases that use 

models, predefined expectations of pose and movement are used to improve tracking; 

this is possible where general movement is predictable. Alternatively model-free 

tracking is be used where no prior models or estimations are inputted into the system. 

Recognition can either be by reconstruction or directly. Reconstruction involves the 

recreation of the image scene and subsequent recognition of what is occurring within it. 

Direct recognition is concerned with using the raw segmented representations, such as 

blobs, to recognise motion, without rebuilding the entire image. 
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A swimming analysis application would fall into the analysis area of human motion 

capture. The automated human motion system would be used to replace manual 

techniques that are currently used. This would reduce the resources required to 

perform analysis and would also provide reliable outputs that would not suffer from 

the inherent variability associated with manual techniques. This would allow any 

operator to perform analysis and obtain comparable results, whether they were skilled 

or not. Another advantage of using an automated system would be that results would 

be processed on a computer and therefore outputs could be automatically stored to a 

database, increasing the knowledge base for ongoing monitoring. 

 

 
Figure 2-6: Typical assumptions made when applying automated vision for human motion analysis 

 
Moeslund and Granum 2001 identified a number of assumptions that are typically 

made when implementing a vision-based human motion system, presented in 527HFigure 

2-6. It is important to note that the fulfilment of these assumptions will be unique for 

every application and that not all will hold for every situation. These assumptions were 

categorised as either movement assumptions, of the camera or subject or appearance 

assumptions relating to the environment or the subject. Each of these assumptions is 

discussed in relation to a swimming application.  

 

Occlusion assumptions were included in the movement section, whereby it was 

assumed that the entire subject and motion would be visible throughout all images. 

This would not necessarily be the case in a swimming application using a single, or 
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even multiple cameras. For example, during a swimming start the nearside limbs would 

occlude, at least in part, the far side of the body.  

 

Additional assumptions were based on the camera and subject behaviour. It was 

assumed that the camera would be in a fixed position or would travel along a known 

path. The tracked subject was assumed to be moving in a single plane of motion and 

that movements would be smooth and continuous, i.e. would not display erratic 

behaviour. It was also assumed that only a single subject is present at any one time.  

 

With regards to the appearance of the frame, typical assumptions included constant 

lighting, a stationary background and in some cases, such as chroma-keying, a uniform 

background was assumed [Yoo and Nixon, 2003]. These assumptions would not hold in 

a swimming pool environment where lighting and background characteristics would be 

difficult to control and water movement would create unavoidable reflection patterns 

that would prohibit the ability to employ a completely static background. It is possible 

that a Polaroid filter may be capable of removing reflections, however, the movement of 

the water would still rule out a stationary background. 

 

Assumptions pertaining to the appearance of the subject include references to pose and 

specific markers [Campbell and Bobick, 1995, Goncalves et al 1998] or known features, 

such as clothing characteristics [Bharatkumar et al , 1994] . In some cases the initial 

pose of the subject is known, and compliance with this pose is required for initiation of 

the process, though not in all cases, i.e. those that do not employ model-based pose 

estimation. Clothing with specific characteristics, such as colour or markers, may also 

be used to assist the successful identification of features. 
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Figure 2-7: Phases of an automated vision system 

 

The four process stages identified in 528HFigure 2-7. Initialising a system involves actions 

such as camera calibration, as discussed in Narayanan et al , 1998 and Hilton et al, 
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2000], accounting for scene characteristics such as lighting and where relevant models 

are initialised [Rohr, 1997]. Tracking can be described in three phases, segmentation, 

representation and tracking. The ability to segment the AOI is fundamental to the 

success of the system. Segmentation can be performed by two means, temporally or 

spatially. Temporal segmentation describes methods which track the difference in 

pixels over time [Amat et al 1999], whereas spatial segmentation looks at pixel values, 

for example in research by Cho et al, 1997, where spatial segmentation is used to 

segment skin colour. Assumptions discussed previously will affect the methods and 

eventual success of segmentation.  

 

The segmented area must them be represented, this can be achieved using object or 

image based methods. Object-based representation use such as silhouettes or blobs, to 

characterise tracked AOI’s, for example in Liu et al 2004 and Munkelt et al 1998, where 

people are represented by silhouettes and points, respectively. Image-based 

representation methods use the pixels in the image, such as tracking edges or features 

[Rohr, et al 1997], to portray movement. Examples of tracking are described in Rigoll, 

et al 2000, Figueroa et al, 2003 and McKenna et al 2000. 

 

Pose estimation can be performed using one of three methods, i.e. model free, indirect 

modelling or direct modelling. Model free methods assume no prior knowledge 

regarding the expected pose or movement of the tracked object, examples of which can 

be found in Little et al 1998, Schiele 2006 and Nakazawa et al 1998. Indirect methods 

use models to aid pose estimation, for example they may use look-up tables to guide the 

prediction of pose. An example of this is in Haritaoglu et al 1998, where ratios of body 

segments are used to better predict pose and track objects. Direct modelling uses a 

model that is updated throughout the tracking process, for example, Hu, et al 2000, 

Wren et al 2000, Yamamoto et al 2000 and Niyogi et al 1994. 

 

Recognition of the object can be either static or dynamic. Static describes a method for 

recognising spatial information in a single frame, for example to define poses. An 

example of this is by Bobick et al, 2001, where gait is analysed by defining features 

within a frame such as the distance between the subjects head and foot, the distance 

between the head and the pelvis and the difference between the left and right foot. 

Dynamic methods analyse data temporally, i.e. movement between frames. Bobick et al 

2001 used this to recognise human movement such as waving arms, sitting down and 

squatting. Recognition can also be achieved using reconstructive or direct methods, i.e. 
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by reconstructing the frame to understand the tracked object or by recognising motion 

based on tracking of low-level feature representation, such as in Polana and Nelson  

Considerations and implications of applying an automated vision system for the 

analysis of swimming have been discussed. A number of typical assumptions made in 

the implementation of automated vision systems were identified. It was found that a 

number of these assumptions did not hold true for a swimming application, 

highlighting the challenging environment that must be overcome to implement a 

successful automated vision system. For this reason it was considered that robust 

segmentation of the AOI would be the most important challenge to overcome in order 

to enable the automation of vision analysis. 

 

In addition to vision analysis techniques alternative technologies have been discussed 

in literature. These include the development of swimmer worn sensor nodes that 

enable the collection of accelerometer data, which can be analysed to assess swimming 

performance. These technologies allow a greater resolution of measurement to be 

achieved, compared to vision techniques, and provide quantitative measurements of 

movement, rather than derived parameters. 

2.3 15BBody sensor networks 

 

Emerging technologies in swimming research have begun to address the shortcomings 

of current accepted methods of performance analysis. These systems look at the use of 

non-encumbering, swimmer worn ‘nodes’ to monitor performance, using sensors such 

as accelerometers. [Ohji et al 2003, 2005, James et al 2004, Davey et al 2008]. 
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Table 2-4: Overview of accelerometry technologies in research and commercial applications 
 

 

Commercial Research 

Paper/product Description Paper/product Description 

R
ea

l-
ti

m
e 

(w
ir

el
es

s)
 

On
e 

to
 o

ne
 

 
• KinetiSense  
 

 
• Wireless inertial sensing and EMG  

(electromyography). A number of nodes 
wired together in one system, e.g. to position 
on different parts of the body  

 

 
• Tapia et al 2007 

 
• Youngbum et al 2007  

 
• Davey et al 2004 
 
• Fong et al 2004  

 
• Physical activity recognition (including sitting, walking, cycling 

and running) and heart rate 
• Monitoring of ‘activities of daily living’ (ADL) and ECG for heart 

rate. 
• MEM’s unit with basic processing, e.g. Maximum, minimum, 

standard deviation. Building block for future applications. 
• Wireless motion sensing for sports science application, used to 

monitor hand movement while running.  

N
et

w
or

k  
• Toumaz sensium  
 

 
• Physiological monitor, e.g. temperature, 

heart rate, ECG. Potential to add 
accelerometer. Up to 8 node network.  

 
• Youngbum et al 2007  
 

 
• Fall detection, with ZigBee wireless network  
 

D
at

a-
lo

gg
in

g 

 
• Actigraph  

 
• Omron 
• Nokia step 

counter  
 

 
• Activity monitor, primarily step 

counter/pedometer. 
• Pedometer 
• Pedometer  
 

 
• Gopalai et al 2008 
 
• Welk et al 2004 
• Rodriguez et al 2005 
• Wixted et al 2007 
• Luinge et al 2005 
 

 
• 2D human motion regeneration of bowling motion. Need more 

than an accelerometer, i.e. Other sensors, to assess 3D motion. 
• Reliability of accelerometer based activity monitors assessed. 
• GPS used to compliment accelerometer activity sensor. 
• Energy expenditure for walking a running using accelerometer. 
• Orientation of body segments using Kalman filter. 
 

  SWIMMING 
 

• James et al 2004 
• Davey et al 2008 

 
 
• Callaway et al 2009 

 
• Ohji et al 2003 
 
• Ohji 2006 
 

 
• Traqua’ development to assess swimming performance. 
• Validation of ‘Traqua’, accelerometer based swimming monitor. 

Video used for validation. Lap count, stroke rate, stroke count 
and stroke recognition compared. 

• Comparison of video and accelerometer analysis techniques in 
swimming. 

• Stroke phase discrimination in breaststroke, using acceleration 
of the wrist. Technique used as a stroke counter. 

• Discrimination of stroke phases using acceleration. 
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The use of accelerometers for monitoring human movement has emerged commercially 

for applications such as activity monitoring [e.g. Actigraph, Omron, Nokia Step Counter 

and KinetiSense] and health care [e.g. Toumaz Sensium].  Equally, accelerometers have 

been used in research for applications such as physical activity recognition [Tapia et al 

2007], fall detection [Youngbum et al 2007], and predicting energy expenditure 

[Wixted et al 2007]. 

 

Current uses of accelerometry for monitoring of people have been divided in to real-

time and data logging subsections and further into commercial and research 

applications, presented in 529HTable 2-4. It was found that swimming specific applications 

grouped into a single category, namely data logging solutions within research. The 

literature presented validation trials for the use of accelerometers in swim specific 

analysis. It was reported that accelerometer data, mounted on the small of the back, 

could be analysed to derive lap count and timing to +/-1s in 90% of cases, stroke rate 

and stroke count to +/- 1 stroke for 90% of cases and stroke recognition for 95% of 

trials [Davey et al 2008].  Furthermore, Ohji et al 2003 found that acceleration traces 

from the wrist could be used to discriminate stroke phases, however, this was achieved 

by integrating synchronised video with the acceleration data.  

 

Research to date has supplied confidence in the usefulness of accelerometer data for 

the performance analysis of swimming. Solutions have demonstrated that algorithms 

could be used to successfully monitor parameters such as stroke rate and duration, 

without the need for manual vision analysis techniques, which would be traditionally 

used. This means that analysis of multiple parameters could be completed in less than a 

second, rather than the minutes or tens of minutes associated with vision techniques. In 

addition to this, results had a greater reliability as consistent techniques were used to 

derive performance parameters that no longer relied on human judgement. 

Furthermore, it is believed that due to the increase in measurement resolution of 

sensors, such as accelerometers, compared with current vision data, more complex 

movements may be analysed. 

 

The greatest shortcoming of current research is that the technologies developed do not 

possess a real-time capability and operate one-to-one, i.e. they cannot be networked. To 

achieve real-time analysis a move towards wireless technology would be necessary, 

where a network could be implemented, enabling multiple athletes to be monitored at 

concurrently. 
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2.4 16BWireless Sensor Networks 

                       
Figure 2-8: Wireless sensor network domains 
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Wireless Sensor Networks (WSN’s) is an umbrella term for a range of technologies used 

for different applications. These enable distributed monitoring via sensors that 

communicate results and feedback wirelessly. There are three key application types for 

WSN’s, namely, object, environment or an object integrating within and environment. 

These subdivisions can be seen in Figure 2-8 530H. WSN’s to monitor objects may be used 

too for people, such as in healthcare [Bauer et al 2000, Otto et al 2006, Jovanov et at 

2005, Liu et al 2009], military [Winterhalter et al 2005] or sports [Walsh et al 2006]. 

Also, objects may include animals, such as for wildlife tracking [Juang et al 2002], 

habitat monitoring [Mainwaring et al 2002] and things, such as cold chain management 

[Riem et al 2004] or furniture assembly [Antifakos et al 2002].  

 

Environmental WSN’s can be applied in indoor environments, such as in-home security, 

or heating control, and outdoor environments, such as in avalanche risk management 

[Barrenrtxea et al 2009] or landslide monitoring [Man-chao et al 2009]. Objects 

integrating within an environment WSN are concerned with monitoring how a person, 

animal or thing interacts with an environment. For example, in vehicle tracking [Duarte 

and Hu 2004, Liu et al 2003], monitoring radioactive materials [Ding et al 2009] or 

avalanche rescue [Michahellas et al 2003].  

 

WSN’s that monitor people, for example in sports and healthcare applications, often use 

body worn sensors that communicate to a local processing unit. This specific type of 

WSN has been termed a ‘Body Sensor Network’ (BSN) and is considered a separate 

platform type that has evolved from the WSN platform.   
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2.4.1 50BBody Sensor Networks 

 
Figure 2-9: Body sensor network, component overview 

 

A BSN has a number of standard components that are common throughout all 

applications. These have been summarised in 531HFigure 2-9 as distributed sensor 

monitoring, wireless communication, local processing and storage and networked 

server. Distributed sensor monitoring can be achieved using implantable or wearable 

sensors that monitor the human body, either in a physiological or kinematic capacity. 

These sensors wirelessly communicate data to a local processing unit, for example a 

laptop or Personal Digital Assistant (PDA). Wireless communication allows real-time 

monitoring, which is essential for applications such as healthcare of a vulnerable 

patient. Typically the local processing unit stores sensor data into a database and 

enables analysis and feedback to be supplied to the monitored person. Alternatively 

this feedback can be directly relayed to external parties, e.g. in the case of healthcare 

this may be a doctor. This facilitates analysis of a patient’s condition and feedback of 

results to be undertaken without the need for direct contact. For healthcare 

applications this also could also be used to flag emergency situations and enable action 

to be initiated. Equally it allows data to be shared remotely among external parties 

located in different geographical regions; this could be within a building, county, 

country or worldwide.   

 

Within the context of this project it was believed that a swimmer-based BSN to monitor 

athlete performance would enable real-time data capture, analysis and feedback that 

could be shared among Intensive Training Centres (ITC’s) across the country. This 
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could facilitate the construction of a large data library that would increase the current 

knowledge base, i.e. where data would be normally noted on a piece of paper by hand 

and ‘filed’, this data could be stored over time and trends may be derived. Equally it 

was important to note that the structure within British Swimming is such that there is 

only one biomechanist, one strength and conditioning coach, one nutritionalist and one 

physiotherapist. This means that only one ITC could be serviced at any one time by 

each of these professionals. A networked server would enable constant monitoring of 

athletes across the country such that priority could be made to ensure these 

professionals were at the most appropriate location to best add value, and equally, 

where appropriate, feedback could be given to athletes remotely based on evaluation of 

shared data. 

2.4.1.1 91BChallenges of implementing a BSN 

Table 2-5: Technical challenges associated with implementing a body sensor network within a swimming 
environment. Table adapted from Yang, 2006 

Features  Technical challenges (specific to swimming application)  

Size  Needs to operate in a confined space, i.e. Small enough that the 
swimmer does not mind wearing it.  

Power  Must be capable of recording a complete session, i.e. Up to 2 ½ hours 
before requiring recharging/replacement of batteries/power.  

Cost  At the research and development minimal implications of cost.  

Lifetime  Dependant on cost. If they are expensive then the lifetime must be 
longer than if they are manufactured inexpensively hence opening 
up the options for disposable devices, e.g. Potentially use for one 
session.  

Wireless  Range, bandwidth, standards, protocols – Operation in a harsh 
environment, i.e. Submerged.  

Network  How many swimmers, what is the bandwidth available, proximity  

Sensors  Measurement types, specifications, size.  

Electronics  Analogue/digital. Hardware/software.  

Packaging  Waterproof, submersible, antenna operation underwater.  

 

A number of technical challenges have been identified that are associated with the 

implementation of a BSN. The implications of these have been discussed with reference 

to a swimming based application in 532HTable 2-5. Stakeholder requirements defined that 

the size of sensing units, or nodes, must be small enough that they can be worn without 

being encumbering to the swimmer.  The nature of swimming is such that there is little 

opportunity to embed sensors into garments and little to mount sensors onto. For this 
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reason the size and form of any developed solutions were identified as important to 

ensure comfort for the swimmer. Any discomfort or perceived performance detriment 

would not be acceptable for the final developed solution, as this would likely prevent 

uptake and use of the product. The largest component associated with a sensor node is 

the power supply and therefore a compromise between battery life and battery size 

would be required. It was expected that preliminary iterations would have a larger than 

ideal footprint due to the nature of development equipment, however, an eventual 

optimised size would be paramount to success. 

 

The research and development of electronic devices attribute the biggest overall cost. 

Once a design has been consolidated and volumes are manufactured the cost per unit 

would be more significantly influenced by the research and development phase than 

the cost of materials and manufacture. The unit cost of solutions becomes more 

important once they are developed for commercial use, which is beyond the scope of 

this project. 

 

The lifetime of developed solutions was not specified at this stage. If a low cost solution 

is developed it may be appropriate to consider units as disposable after a given period 

of usage. However, should costs associated with specialised microcontrollers, sensors 

and packaging increase the total unit price then a solution with a longer lifetime that 

reflects the additional cost, would be preferred. 

 

Wireless communication was considered the most challenging feature in establishing a 

BSN for swimming. The water-air interface creates a challenging environment for 

wireless communications. Technologies such as acoustic transmission are successfully 

applied in open water, sea applications. These are, however, limited in bandwidth and 

assume an infinite body of water and therefore experience little, if any, noise from 

reflections. Overcoming this communications challenge was one of the biggest steps in 

enabling the establishment of a swimming sensor network. 

 

The network capability of the final system would be influenced by the wireless 

communication solution. Aspects such as bandwidth, proximity and number of sensors 

would affect the maximum size of the network. Decisions regarding sensor types, 

sensor numbers, data rates and transmission rates need to be taken to achieve a 

compromise between functionality and network size. For example, for a typical squad 

size of eight athletes, given a node on each athlete, the maximum capacity of the system 



 52 

would have to be calculated such that the bandwidth would be effectively used but not 

exceeded for eight nodes. 

 

Electronics are concerned with the hardware of the node. Decisions about the 

microcontroller, for example, would include whether to have an integrated transceiver 

or whether to interface to an external transceiver. The microcontroller and transceiver 

were considered the most influential parts of the electronics. These components would 

limit aspects such as, the number and types of sensors that could be interfaced, the 

bandwidth available for communications and the memory available for both 

programming functionality and storing data. 

 

Packaging was an important consideration for the final developed solution. It was 

essential that packaging provided a waterproof enclosure for all of the components. 

During the development process it was preferred that packaging allowed easy access to 

components for reconfiguration, which would be a lower priority beyond the prototype 

phases. 

 

2.3.2.2 Components of a BSN 

 

 
Figure 2-10: Components of a wireless node. Adapted from Yang, 2006. 

 

A wireless node is built of six main components; the processor, power supply, memory, 

operating system, sensor interface and wireless communication, see 533HFigure 2-10. The 

processor is the core component that interlinks all of the other components. Each of 

these components has been individually discussed with reference to a swimming 

system application.   
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Figure 2-11: Considerations for wireless node design 
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Decisions pertaining to the six components, 534HFigure 2-10, are reviewed in 535HFigure 2-11 

and considered in this section in further detail. 

2.4.1.2 92BWireless Communications: network topology 

 

The wireless communications element has three key considerations; the radio 

transceiver, antenna and communication protocol.  Decisions relating to the radio 

transceiver primarily relate to the frequency selection and whether to use an 

integrated or standalone radio transceiver.  The antenna selection is constrained by 

elements driven by the frequency of the transmission. There are multiple antenna types 

that may be considered including a standard whip, typical for development, printed 

circuit board (PCB), wire and ceramic options. The final antenna must be designed to 

optimise transmission in terms of range, directionality and minimise data losses.  It 

must also take into consideration its overall footprint and form given that a swimmer 

must wear it. 

 
Figure 2-12: Network protocol stack layers 

 

The network protocol stack may be supplied with the transceiver or may require 

development. Where applicable it should be designed to optimise efficient 

communications and minimise data losses, given a network of multiple nodes. A 

network protocol stack typically has five associated layers, see 536HFigure 2-12. These 

layers link the physical components of the node hardware to high level programming 

used to control components and facilitate structured communications between a 

number of nodes. 



 55 

 
Figure 2-13: Network topology considerations 

 
A networking capability was considered essential for any solutions developed to enable 

simultaneous multi athlete monitoring. Network topology would be selected based on a 

number of requirements. Typical considerations, summarised in 537HFigure 2-13, are 

scalability, power consumption, robustness, proximity, latency and bandwidth.  

 

For a swimmer-based application the number of nodes would depend on the 

measurement type, i.e. measuring the start, free swimming or turns, squad size and 

number of nodes per athlete. Starts and turns analysis tend to focus on individual 

athletes, whereas free swimming monitoring, e.g. of split times, may be required for an 

entire squad simultaneously.  

 
Table 2-6: Point to point and star network topology descriptions 

Topology Diagram Description Advantages Disadvantages 

Point to 
point  
 

 
 

 

A one to one link 
between devices  
 

• Simple 
 

• No scalability 
• Limited spatial 

coverage  
 

Star  
 

 

 
 

A number of nodes 
connected to a 
central node. 
Master-slave, all 
communication goes 
through the master  
 

• Simple 
• Low power 

consumption of 
slaves 

• Easy to configure 
• Low latency and 

high bandwidth 
• Centralised 
• Scalable 

 

• Dedicated central 
node 

• Limited spatial 
coverage 

• Inefficient slave to 
slave  
communications  

 

 



 56 

Network topology describes the way in which communication between nodes is 

organised. In the literature reviewed relating to sensor nodes used in swimming, all 

applications have been developed on a point-to-point basis, using wired 

communications. 538HTable 2-6 provides an overview of features associated to a point-to-

point network. The move towards wireless technology would present the opportunity 

to create a network of nodes. The first iteration of this development would be to 

employ a star network, which supplies a basic master slave function between a 

network of nodes, see 539HTable 2-6. Future developments may require increasing 

complexity of communications and therefore alternate topologies would be considered, 

e.g. that allowed inter-node communication or hopping of messages. 

 

The power consumption of nodes was considered important due to the effect power 

requirements would have on its footprint. Ideally, to minimise size, the power 

consumption of the swimmer worn nodes would be low. 

 

Robustness describes the reliability of communications, i.e. how well are messages 

being sent and received. It was considered essential that communications are highly 

robust to ensure minimal data losses. However, given the challenges of transmitting 

through an air-water interface, it was considered that robust communications may not 

always be achievable and therefore to minimise data losses, nodes must have available 

memory capacity for storing data as well as transmitting.   
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2.4.1.3 93BWireless Communication: in water 

 

 
Figure 2-14: Attenuation of Radio waves in fresh water 

 

The attenuation of radio waves in fresh water can be described by: 

Attenuation (α) in dBm = 0.0173√fσ 

 

Where  f = frequency (Hz) 

            σ = conductivity in mhos/metre 

 

Given this equation, attenuation was plotted for frequencies from 400MHz to 2.5GHz, 

540HFigure 2-14. Radio waves at 2.4GHz attenuated more than 200% more than at 433MHz. 

This suggested a lower frequency would be attenuated less than a signal transmitted at 

a higher frequency when travelling through water. This assumed pool water follows a 

similar trend to fresh water. 

2.4.2 51BSensor Interface 

 

The sensor interface, detailed in 541HFigure 2-11, would be determined by the choice of 

microprocessor. The number and type of channel inputs was an important 

microcontroller feature as this would constrain the number and types of sensors that 

could be interfaced to the node. Sensor interfaces were either analogue or digital. 
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Sensor specifications, e.g. type, resolution and whether analogue/digital, would drive 

how the available inputs are used and the resolutions required of them. 

 

2.4.3 52BOperating System  

 

The operating system component associated with the node allows control and 

programming of the microprocessor and subsequently all of the peripheral components 

and functions on the board. The processor selection determines whether there is an 

operating system available or whether the chip must be programmed at the low level, 

i.e. whether functionality must be programmed at a pin level. 

2.4.4 53BMemory 

 

This may be supplied as part of the processor chip; alternatively there may be options 

to connect additional memory through one of the available interfaces. The type and size 

of memory would be important to ensure data can be stored and accessed as required 

by the system. 

2.4.5 54BPower  

 

The power supply for the wireless node was expected to be the most significant 

contributor to the overall footprint. Given that the form of the node was very important 

for a swimmer worn application, it was essential to minimise the footprint of the power 

supply while ensuring there was sufficient power supplied to each of the components. 

A compromise needed to be achieved between power availability and power-cell size to 

best satisfy the application. 
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2.5 17BSummary 

 

2.5.1 55BRQ1 Current state of the art in swimming research 

 

Current research pertaining to the performance analysis of starts, free swimming and 

turns has been reviewed. Manual vision analysis has been consistently used as a 

performance measurement technique. Other methods used for analysis included: 

starting blocks and turning walls instrumented with force transducers and tethered 

systems for measuring swimming velocity. The current limitations of research are such 

that a number of measurement and process stakeholder requirements, specified in the 

needs, are not currently satisfied. Manual vision analysis, the most common analysis 

technology, suffers from high time and expertise resource requirements. The reliance 

on human judgement reduces the reliability of results due to the inherent variability 

arising from either single user, (intra-person variability) or between measurements 

taken by different users (inter-person variability).  

2.5.2 56BRQ2 Body sensor networks 

 

The use of accelerometers for the analysis of swimming was identified as an emerging 

technology. Current applications of accelerometer-based analysis were discussed for 

both swimmer applications and alternative applications, such as activity monitoring. A 

review of body sensor networks has been carried out. Challenges, design 

considerations and implications of implementing a BSN for swimmer analysis have 

been presented. 

2.5.3 57BRQ3 Automation vision analysis for human motion analysis 

 

Automated vision systems for human motion analysis have been identified as an 

established area of research. Basic processes for successful implementation have been 

discussed and the implication of these processes evaluated within the context of a 

swimming application. A number of typical assumptions made in the implementation of 

automated vision systems have been identified. A number of these assumptions were 

not satisfied within the swimming environment, i.e. a swimming pool was identified as 
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a challenging environment in which to implement automated vision techniques. It was 

concluded that to successfully apply an automated vision system, the ability to segment 

the swimmer, or feature pertaining to the swimmer, must be proven.  
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Chapter 3 

 

 

 

 

3. 2BDEVELOPMENT OF COMPONENT TECHNOLOGIES 

3.1 18BChapter Overview 

 

Work presented in this chapter is concerned with the development of component 

technologies to enable performance analysis of starts, free swimming and turns. Each of 

the components was designed to minimise operator input in terms of time and 

expertise and maximise measurement output, i.e. satisfy as many of the stakeholder 

requirements as possible. Components were designed and validated in isolation but 

were conceived to work as an integrated system. 

3.1.1 58BResearch Questions (RQs) 

 

RQ1 Automated Vision 

a. What are the limitations of using current manual measurement 

techniques? 

b. What processes are involved in the design and implementation of 

automated vision techniques in this application domain? 

RQ2 Force Plate 

a. What is required for the design and calibration of an instrumented 

starting platform? 

RQ3 Wireless Node 

a. What processes are involved in the design and implementation of a 

wireless sensor node? 
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b. What processes are used in the analysis of data obtained from wireless 

sensor technologies? 

3.1.2 59BChapter Structure  

The variability of current vision analysis techniques, i.e. manual digitisation, was 

quantified using a study of dive angle measurement. Dive angle could then be used to 

validate any automated techniques developed. The principles behind automated vision 

systems are discussed pertaining to the development of a swimming specific system, in 

terms of components and processes. LED markers were designed to provide a marker 

system for use over and underwater. 

 

The design and development of a start block instrumented with force transducers is 

detailed. Calibration of the block in three axes is detailed and results are discussed. 

 

The design and development of a wireless sensor node is explained in terms of 

hardware selection, wireless communications and network protocol. Basic principles of 

feature extraction are outlined, specifically filter design and the use of time or 

frequency domain characteristics to analyse data. 

3.2 19BVision methods for automated vision analysis  

 

 
Figure 3-1: Hand measurement of dive angle by two different people 

 

Current methods employ the use of vision analysis in two ways: subjective analyses and 

manual digitisation, both of which have inherent variability due to their reliance on 

human operator input and experience. This variability is highlighted by the variability 

in the measurement of the same dive (∆θ = 3o) by two different people of different 

levels of experience, 542HFigure 3-1. Given that these methods are accepted as the state of 
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the art in current use it was considered that this variability should be quantified in 

detail. Future tools could then be measured against this standard variation value. 

 

 
Figure 3-2: Distribution of hand measured variability for inter and intra person measurement 

 
Dive angle is a performance measurement that is, among others, one of the desired 

requirements specified by the user (see Chapter 1: Quantification of Stakeholder 

Requirements, Table 1-1).  Currently technologies available to enable this 

measurement are limited to manual digitisation of video. Manual methods suffer from 

two key limitations:  

1. intra person variability, i.e. if a person measures the same angle on two 

different occasions how far will each value deviate.  

2. inter person variability, i.e. if two different people measure the same thing how 

far will their values deviate.  

To gather these data, two separate tests were undertaken, the results of which are 

plotted in 543HFigure 3-2. Firstly the intra measurement variability of a single user was 

considered. Three subjects, who were from a technical background, were given an 

image of a swimmer as their fingers touched the water during the dive. They were 

asked to measure the angle of the swimmer’s dive over a series of ten days. Separating 

measurement by this amount of time aimed to replicate typical current practise. 

Results showed that the standard deviation of a single user’s measurements ranged 
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from 0.8° - 1.4 ° (1 d.p.). On average the standard deviation of the three subjects’ 

measurements was 1.1°. 

 

The variability of multiple users was then addressed by asking ten subjects, from a 

technical background, to measure the angle of entry of a given dive. In this case the 

standard deviation of measurements was 2.8°, reflecting the influence of personal 

judgement on the consistency of measurement outcomes. 

 

Using this study, the variability of manual measurement based on human judgement 

has been quantified. As a result, it can be concluded that when using hand 

measurement techniques, 68% of dives will fall within one standard deviation of the 

mean, i.e. ±1.1°, 95% within two and 99% within three (assuming measurements can 

be represented by a normal distribution , i.e. measurements are unbiased). This value 

gives an indication of acceptable performance for any systems and solutions developed. 

An automated method that is capable of generating analyses comparable to those 

achieved using manual methods and that can reduce operator input was the desired 

outcome of this work. 

 

 
Figure 3-3: Overview of proposed image processing system 
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It was proposed that an automated image processing system be developed that will 

have the capacity to satisfy a number of the users’ needs in a more efficient manner 

than current performance analysis methods.  Fundamentally the system included a 

camera to capture video of the swimmer in the start, free swim or turning phase of 

their swim. This video is then processed on a computer using software algorithms 

developed to threshold the image and extract performance parameters about the 

swimmer (see 544HFigure 3-3 and Chapter 2: Literature Review, Section 2.4). Temporal or 

spatial thresholding may be used to achieve these measurements, depending on the 

nature of the environment to which the image system is applied. 

 

3.2.1 60BImage processing development components 

 

 
Figure 3-4: Core components of an automated image processing system 

 
Image processing systems are built up from a set of core components [Acharya, T, 

2005] that are tailored for the specific application, namely these are the computer, 

storage, image display, camera and image processing software, see 545HFigure 3-4. Central to 

the system is the camera, since decisions made regarding this element impact directly 

on all other system components. Typical considerations for camera selection include 
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colour or monochrome, frame rate, resolution and field of view. Within the swimming 

application there are a number of different requirements for camera specification, i.e. 

for starts, free swimming and turns.   

 

There are three key driving factors for camera selection. Firstly, the functional aspects 

of use, e.g. for the start a relatively large field of view is required to allow the whole 

start to be viewed, ~7m x 4m, whereas, for a turn the area of interest is contained 

within a smaller area, ~ 5m x 1m. Similarly the function of the two cameras will differ 

as one will be required to operate underwater and the other above the water. The 

second driving factor is related to the stakeholder requirements. These drivers include 

real-time processing, cost and desired resolution of measurement (see Chapter 1: 

Quantification of Stakeholder Requirements, Table 2). Finally, the availability and 

capability of current technologies will ultimately impact on the final choice of camera. 

There will be a series of tradeoffs associated with balancing these needs to optimise the 

overall solution. 

 

The computer serves as a link between hardware and software, facilitates storage and 

provides processing capabilities. The primary decision is whether to choose a desktop 

or laptop system. Given the swimming application, where portability is essential, a 

laptop provides a viable solution whereas a desktop would prove to be less fit for 

purpose. The choice of computer will inherently affect the size of storage available. A 

laptop will provide less memory space however, supplementary storage could be 

provided using external hard drives for archiving videos. The choice of camera will 

affect the amount of storage needed in the overall system, e.g. choosing a colour camera 

over a monochrome camera will increase each file size by a factor of three. 

 

A software component is required to enable processing of the captured video for 

automated analysis of performance. There are a number of tools that can be used to 

develop software algorithms, (e.g. Matlab) which can then be embedded into the 

system, e.g. onto a real-time camera with embedded processing (e.g. Dalsa Boa Smart 

Camera [http://www.stemmer-imaging.co.uk/]) or into a PC located graphical user 

interface that can be accessed and operated by any person. 

 

An image display is the final component associated with the overall system. This 

enables the operator and other users to view and re watch the activity. This is 

especially important in the given application, as coaches and athletes respond well to 
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visual stimuli and rely on video sessions to feedback subjective analysis of 

performance, which is at the core of all analysis currently undertaken. For the operator 

an image display offers reassurance whereby a “by eye” check can be undertaken to 

ensure everything appears as expected. 

 

Each of the components selected for the prototype system should aim to address the 

needs of the user and the needs of the application whilst complying with the current 

state of the art in the technologies available. 

3.2.2 61BVision analysis processes 

 

 
Figure 3-5: Processes for the development of image processing algorithms 

 

To develop an image processing algorithm there are a number of standard functions 

that can be performed to ensure the best possible outcome, outlined in 546HFigure 3-5. The 

first stage of the process is to capture the video. The storage of which will be 
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determined by the camera choice which in turn will affect the storage requirements 

and file types.  

 

Once the image is captured there are processes that can be undertaken to optimise the 

image for thresholding and feature extraction. These include image cropping, filtering 

to remove or minimise noise and subtraction of background images to try to eliminate 

unnecessary detail.  

 

To threshold the resulting image, the Area Of Interest (AOI) must be identified. Ideally 

this AOI will have distinguishing characteristics which allow it to be identified as a 

feature within the image. The image can be separated into its individual colour 

channels which can be individually thresholded and recombined. The resultant binary 

image can then be used to provide measurement characteristics of the AOI by tracing 

the boundary and then deriving parameters from this boundary. 

 
Figure 3-6: Using image histograms to determine feature pixel values 

 

An image can be separated into its individual colour channels for thresholding, i.e. a 

colour image is made up of individual red, green and blue (RGB) images. Different 

colour channel types can be thresholded, for example, RGB and hue, saturation and 

value (HSV). RGB thresholding is typically good for colour images where the AOI can be 

distinguished by colour e.g. in skin thresholding. HSV is also often used for thresholding 
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skin tone, for example in Cho et al, 1997. A discussion of the different spatial methods 

for skin segmentation can be found in Vezhnevets at al 2007. 

 

Each of the separate colour channels contains information regarding the number of 

pixels in the image occurring at different intensities. The intensity range is on a scale of 

0-255. In a black and white image 0 would represent the black pixels and 255 the 

white, with a range of grey scale between. Image histograms give a graphical 

representation of the tonal distribution within an image.   

 

An image histogram supplies information about an image and gives an indication of 

whether a certain component of the image, e.g. a swimmer or specific marker feature, 

can be easily discriminated. In the example in 547HFigure 3-6, three individual features in 

the image have been isolated namely; the swimsuit the swimmer is wearing, the start 

block and the water.  Comparing the histogram for each of the features with the 

background histogram it becomes apparent where features can be clearly 

discriminated from the background and where they may be lost in the noise. The 

swimsuit in this example appears to create a clear feature within the background 

histogram and therefore it may be possible to isolate this feature from the background. 

An image histogram of an AOI can also be used to determine appropriate threshold 

boundaries for each colour channel. By locating peaks in colour intensity and 

thresholding about these peaks for each of the channels allows the AOI to be isolated in 

colour space. Recombining the thresholded channels allows a binary image of the AOI 

to be generated. The success of this process is determined by the ability to distinguish 

the feature from the background characteristics. 
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Figure 3-7: Boundary tracing using connective component algorithms 

 

Boundary tracing follows the edge of a feature within a (typically) binary image. The 

boundary is determined by an algorithm designed to identify and locate pixels with the 

same value (see 548HFigure 3-7). Once the edge has been detected measurements can be 

made with regards to the shape (i.e. extremes in x and y directions, centre of gravity, 

moments about axes) and size of the bounded area. 

 

A typical connective component algorithm initially determines the starting pixel i.e. the 

top left pixel of the image and then searches to find first adjacent white pixel in a black 
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image or vice versa. From this pixel the algorithm determines the values of the adjacent 

pixels in an anticlockwise direction. When a same value pixel is found the algorithm 

will step on and repeat the same process. There are two types of connectivity 

algorithm, a 4 connectivity or 8 connectivity, see 549HFigure 3-7. In 4 connectivity pixels in 

north, south, east and west adjacency are tested. In 8 connectivity pixels in north west, 

south west, south east and north east will also be tested.  

 

 

 
Figure 3-8: Using boundary tracing to derive angle of entry 

 

Once the boundary of the feature has been traced, parameters may be derived from this 

boundary. An example of this can be used to calculate the dive angle of a swimmer (see 

550HFigure 3-8) assuming the boundary of the swimmers body can be established. This 

process involves estimating the fingertip point of the swimmer as the maximum point 

of the object, for a swimmer diving from left to right in the field of view. The boundary 

is then traced back by a given percentage in both positive and negative directions to 

estimate points either side of the hip. Taking the midpoint of these two point locations, 

the hip can be approximated on the image. A line can be “drawn” between the fingertips 

and hip point to give an indication of body angle. Given the assumption that the 

waterline is horizontal, the angle between the body and the water may be calculated.  

Similar algorithms may be developed to derive other performance parameters (e.g. 

relative angles of body segments) relating to the same object. Using smaller positional 

markers on the swimmer’s body may allow for more specific measurements to be taken 

to a better resolution.  
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Figure 3-9: Process of applying a temporal segmentation algorithm for the analysis of the dive 
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The successful application of an automated image processing method for the analysis of 

starts is dependent on the ability of the algorithm to differentiate the swimmer from 

the background. It was initially conceived that it would be possible to discriminate the 

swimmer from the background because the swimmer is the only moving object within 

the field of view. The fundamental principle within this process is an “absolute 

difference” function whereby the background image is compared to each subsequent 

frame and only the difference is displayed in the processed image (see 551HFigure 3-9).  

This type of thresholding is described as temporal segmentation. The subtracted image 

is then thresholded to give a binary image (in 552HFigure 3-9 the swimmer is represented in 

white on a black background). By tracing the boundary of this white object parameters 

of interest could then be calculated, e.g. angle of entry. 

 

The successful application of temporal segmentation techniques is limited by subtle 

variations in the background image (e.g. reflections off the surface of the water, 

movement of lane ropes, other individuals within the image and the inconsistency in 

lighting (see Chapter 4: Case Study – Starts, Section 4.2). To address these issues spatial 

segmentation techniques can be utilised including, for example, skin, garment and 

wearable marker thresholding. To enable successful spatial thresholding, the AOI must 

have distinguishable pixel characteristics. To enhance the signal to noise ratio, specific 

markers have been developed that could be used in both under and over water 

environments. These used a series of red LED’s designed onto a wearable band to 

create a unique feature within the image. 

 

The decision to use powered LED’s rather than non light markers was made due to the 

problems incurred in testing whereby shadowing affected the consistency of a colour 

within a feature (see Chapter 4: Case Study – Starts, Section 4.2). Shadowing 

inconsistencies can be minimised (see Chapter 4: Case Study – Starts, Section 4.2.2.2) 

by using a distinguishable dark marker, i.e. a single coloured cover up swimsuit. For 

underwater applications, there are a number of sources of noise when using a dark 

marker, e.g. arising from the swimmer’s suit, tiles and shadowed areas such as the 

underside of lane ropes.  The other limitation of defining the swimmer’s body as one 

“blob” is the difficulty in tracking specific landmarks would have to be predicted from a 

variable single boundary. For these reasons, combined with a reluctance by the end 

user to wear a full body suit in routine training lead to the development of less 

encumbering markers. It was also conceived that markers could result in a more usable 

solution whereby more specific analysis could be undertaken. In addition, a powered 
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illuminated marker results in a more consistent feature that is not as sensitive to 

lighting changes within the background image.  

 

Initial trials used simple waterproofed bicycle lights manufactured using two red LED’s. 

Preliminary video analysis indicated that, although the LED’s were clearly visible under 

the water, their directionality (∆θ = +/- 12.5°, see Figure 3-10(b)) limits their visibility 

within the field of view of the single fixed camera angle used in the trials. To overcome 

this problem it was decided that a prototype marker consisting of an array of LED’s (i.e. 

a strip) should be implemented as a single marker.  
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Figure 3-10: LED specification, - wavelength and viewing angle 

 

A red LED was chosen for the marker, despite red light being the mostly highly 

attenuated colour in water, see Figure 10(a). Visible light at the blue/green end of the 

spectrum are the most prevalent colours within the background of the image i.e. the 

water. Therefore, it was hypothesised that a red LED of sufficient intensity would give 

the greatest potential for discrimination from the background. The chosen LED had a 

wavelength of 630 nm and a viewing angle of 25°.  



 76 

 
Figure 3-11: LED design - circuit diagram, voltage requirements and predicted battery life 

 
The developed marker incorporates five rows of three LED’s, i.e. 15 LED’s see  553HFigure 

3-11(a). A 9 volt battery is used to power the marker to ensure the forward voltage 

requirements of the LED’s (3 x 2.1V = 6.3V) were achieved (see 554HFigure 3-11 (b)).   

 

Since the current drawn for the desired LED intensity is 14mA, a service life of 55 hours 

per band is possible ( 555HFigure 3-11(c)). This is far in excess of the demands of a single 

swimming training session and in theory would support a number of sessions over a 
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period of several weeks. The developed markers have been evaluated in each phase of 

swimming, i.e. starts, free swimming and turns (see Chapters 4, 5 and 6, Sections 

4.2.2.3, 5.2.2 and 6.2). 

3.3 20BDesign and development of an instrumented starting platform 

 

 
Figure 3-12: Instrumented start block design 

 

An instrumented start block was designed of exact dimensions (plan area, height) and 

top plate angle (θ = 5°) to current blocks (i.e. preceding the latest OSB11 block with the 

integrated wedge, Omega, 2010 incorporating four force transducers sandwiched 

between the base construction and top plate, 556HFigure 3-12. The four transducers (9317B, 

Kistler, 2010) were mounted towards the corners of the block to provide the maximum 

measurement area.  
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Figure 3-13: Components of the instrumented start block 

 
The block components include the four transducers interfaced via a summing box 

mounted on the underside of the start block. Each of the four transducers measures 

force in three axes, output via three cables per transducer. At the summing box the 12 

inputs, i.e. three axes of force for four transducers, are converted to eight by summing 

the x and y components into two pairs to support the fundamental force analysis 

provided by Kistler, e.g. fx1 and fx2 wires are soldered together becoming one output, 

fx12 (see 557HFigure 3-13, 558HTable 3-1 and following sections) The eight analogue outputs are 

then passed to the interface components, i.e. the charge amplifier, junction box and 

PCMCIA cards which convert the charges output by the force transducers into voltages 

and then digital representations via PCMCIA analogue to digital converters. The 

junction box enables additional channels such as an analogue or digital trigger to be 

integrated. The software used to capture and display the data was Bioware, a Kistler 

specific product which is interfaced to the PCMCIA cards via third party device drivers. 

The force data can be output from the Bioware software into a readable file type for 

further analysis. 
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Table 3-1: Measurements taken from the force plate, taken from Kistler data sheet, 2009 
 
Parameter  Calculation  Description  

Fx  = fx12 + fx34  Medio-lateral force  

Fy  = fy14 + fy23  Anterior-posterior force  

Fz  = fz1 + fz2 + fz3 + fz4  Vertical force  

My  = b * (fz1 + fz2 – fz3 – fz4)  Plate moment about x axis  

Mx  = a * (-fz1 + fz2 + fz3 – fz4)  Plate moment about y axis  

ax  = -My / Fz  X coordinate of force application point 

(Centre of Pressure, CoP)  

ay  = Mx/Fz  Y coordinate of force application point 

(CoP)  

 

 

The parameters output from the Kistler force plate system (e.g. Fx, Fy, Fz) and details on 

how they are derived from the raw data are summarised in 559HTable 3-1. These include 

raw forces and derived parameters such as centre of pressure (i.e. ax and ay). Force 

readings from the transducers are output as two channels of x and y force and four 

channels of z force. Combining these separate channels produced the overall readings 

for force in three axes. From these forces other parameters are derived, within the 

Bioware software. For example the moments of force My and Mx are used to determine 

the centre of pressure of the force on the top of the block. The centre of pressure 

provides an indication of how the swimmer moves their weight and force (back to front 

and left to right) throughout the dive. 
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Figure 3-14: Axis orientation on the developed block 

 
Transducers in the block were set up such that, x represented lateral (i.e. left to right) 

movement, y represented horizontal force (i.e. front to back) and z represented vertical 

force, see 560HFigure 3-14. These were oriented such that movements in the directions left 

to right, front to back and top to bottom forces produced positive results. 
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3.3.1 62BBlock calibration 

 

 
Figure 3-15: Preliminary test results using the force plate 

 

Preliminary testing using the developed starting block included a subject of a known 

mass standing on the blocks and then jumping from it (see 561HFigure 3-15). The block was 

physically attached to a separate floor mounted 3-axis force plate and data was 

collected from both force platforms during the trial. A comparison of the adapted start 

block and floor mounted plate showed they were both providing equivalent traces. 

Additionally the expected contribution in each axis was predicted given the mass of the 

subject (i.e. 55 kg) and the 5°angle of the block. The force profile produced was 

consistent with the predicted results (see 562HFigure 3-15 for summary). 
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Figure 3-16: Calibration protocol for instrumented start block 

 

The instrumented start block was also calibrated using known weights applied to a 

single axes, as detailed in 563HFigure 3-16. The block was oriented for each specific axis 

using a digital spirit level (resolution <1 °) and fixed to ensure it was stable. I-bolts 

were screwed into holes drilled and tapped into the top plate, from which weights 

could be hung. Both the x and y axes were calibrated this way, with the z being 

calibrated by placing weights centrally onto the top plate. The procedure was that 

weights were applied to the block, the force plate was zeroed and then the weights 

were removed. This produced negative force profiles as the plate was unloaded.  

 

The x, y and z axes were calibrated using 20kg, 50kg and 80kg masses respectively to 

determine the linearity of the performance of the block and load the block with forces 

representative of what the block may experience during a swimming start. It was 

expected that the x axis would experience forces significantly less than one body 

weight, whereas the y would experience higher forces and the z forces equal to or 

greater than body weight. For this reason the y and z axis were loaded with higher 

weights corresponding to approximately a small and large swimmers body weight 

respectively. Three measurements of each load were taken for each axis and averaged.  
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Figure 3-17: Calculating expected force readings using instrumented start block 

 

Due to the 5° angle of the top plate of the block it was necessary to resolve the force in 

the y and z axes. Each of the axes would present a horizontal and vertical component 

when loaded, relative to the orientation of the block. For example in the vertical axis, z, 

the vertical component would be represented by (mg)cos(5) and the horizontal 

component would be (mg)sin(5), see 564HFigure 3-17 where m is the mass and g the 

acceleration due to gravity (i.e. 9.81 ms-2). Plots of measured force versus actual force 

are displayed in 565HFigure 3-18(a)-(c). 



 84 

 
Figure 3-18: Results from calibration testing 

 

In the z-axis, i.e. the vertical direction, it was found that on average the start block was 

measuring a force that was too low 10.6% for all weights tested up to 80kg (see 566HFigure 

3-18(a)). Horizontally, i.e. the y-axis, the start block was found on average to measure 

forces that were 1.28% larger than the expected value, see 567HFigure 3-18(b).  
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Unfortunately the lateral calibration revealed a problem with the force plate. The 

reading was found to be lower than the expected value by 51.55% on average see 

568HFigure 3-18(c). This is the result of fx12 reading values close to zero, even when loaded.  

The primary axes of force generated in the swimming start are in the horizontal and 

vertical directions as they define with how much force the swimmer is generating 

forwards, i.e. out into the pool, and what angle of elevation is achieved. Lateral forces, 

from this point of view, are less important as it is preferable for the swimmer to 

generate force in a straight line in the forwards direction, rather than applying 

significant force side to side. Resolution of the errors on the lateral axis, x, have yet to 

be resolved despite significant effort from both Kistler and university staff. 

3.4 21BDesign and development of a wireless sensor node 

 

The features required within wireless sensor systems that have to be developed for 

each specific application have been discussed in, Chapter 2: Literature Review. For 

example wireless communication considerations include frequency, bandwidth, 

network capability, antenna and radio transceiver selection.  
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Table 3-2: Technologies assessed as potential wireless communication solutions for swimming 
applications 

 
Technology Frequency Data 

rates 

Transm

it power 

Range in 

water 

Comments 

Bluetooth  
(IEEE 
802.15.1) 

2.4GHz  721kbps  4dBm 
 (Class 2) 

<10cm at 
<1cm 
depth 
(Class 2) 

Very limited range and 
depth of transmission  

UHF Ti 
CC1110 

433MHz  250kbps  10dBm  35m at 
25cm 
depth 

Wireless protocol stack 
available for 
development 
(SimpliciTI), up to 8 
analogue inputs and 21 
general purpose digital 
inputs and data rates up 
to 250kbps. 

Nordic 
NRF905 

433MHz  50kbps  10dBm  25-30m at 
1.5m 
depth 

Limited on board 
functionality, only 4 
ADC channels, relatively 
low data rates, no 
available wireless 
protocol for network 
purposes, limited 
support. 

Ezurio 
power 
amplified 
bluetooth  

2.4GHz  300kbps  18dBm  50m at 
10cm 
depth 

High sensitivity, high 
gain antenna used to 
provide better range. 
Only 2 analogue inputs. 
Supports audio. 

 

A number of potential development technologies were tested and their transmission 

capabilities in water assessed, see 569HTable 3-2. The lower, 433MHz, frequencies showed a 

greater penetration than the 2.4 GHz in water although the power amplified Bluetooth 

solution showed some capability, i.e. 10cm depth at 50m range. the Ti CC1110 and the 

Nordic NRF905, were able to transmit data through the pool water (25cm and 1.5m 

depth at 35m and 30m range respectively). The class 2 Bluetooth radio had almost no 

capability to transmit through any depth of water. (Note: The power amplified 

Bluetooth system had a specially developed antenna designed to maximise range of 

transmission. In addition this board had only had two analogue inputs, severely 

limiting the choice of sensors that could be interfaced). 

 

Of the two 433MHz solutions the Ti CC1110 was chosen as it was capable of higher data 

rates, i.e. 250kbps rather than 50kbps, double the analogue inputs and supported a 

SimpliciTI protocol stack for the development of wireless network capabilities. The 

Nordic NRF905 was a more basic board with no support for network capability and 
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therefore it would be necessary to develop the protocol stack “in house” to enable such 

functionality.  
Table 3-3: Rates of movement in swimming 

Feature Maximum rates Maximal rate 

Stroking:  
One stroke (both arms) freestyle 
sprint 
 

60/min average for 50m Men’s 
freestyle 

1 Hz 

Kicking:  
One kick (one foot) freestyle 
sprint 
 

360/min (6 beat kick given fastest 
stroke rate) 

6 Hz 

Velocity:  
Maximum velocity 

At dive phase based on testing of 
15 University squad of higher 
swimmers: distance of entry/flight 
time 

<4m/s  

Rotation:  
Tumble turn rotation– from start 
(last hand entry) to finish of 
rotation (return to prone position) 
 

360°/1.5 second 240°/s 

Rotation:  
Body roll – freestyle swimming  
 

60°/stroke (one stroke taking 0.5 
seconds) 

60°/s  

 

To determine the sensor requirements it was essential to understand the monitoring 

needs of the system, i.e. the fastest rates of gross movements in swimming which are 

observed in the men’s 50m freestyle. Stroking, kicking, velocities and rotation rates have 

been determined, see 570HTable 3-3. During this event, maximum stroking rates can reach 

one hertz, i.e. one full arm cycle (both left and right) per second.  Typically when 

swimming freestyle either 2 beat, 4 beat or 6 beat kicking is employed. This means that 

for every arm pull the swimmer will kick 2, 4 or 6 times. In sprinting swimmers tend to 

favour the 6 beat technique. This equates to a maximal movement frequency of 6Hz. 

Nyquist theory suggests that sampling frequency must be at least twice the highest 

frequency that is being measured to ensure the signal is not lost, i.e. to pick out the 

swimmers kick it would be recommended to sample at least 12Hz. However, to allow 

more in depth analysis of pulses, a higher number of samples are needed. It was 

suggested that a minimum of five samples per movement would provide sufficient data 

to enable pulse analysis, i.e. for the kick this was 30Hz.    

 

The fastest part of the swim is experienced during the start phase. Estimate of these 

velocities (v) and subsequent accelerations (a) were determined by analysing a number 

of dives performed by swimmers of a University squad or higher ability. Digitisation 
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recorded maximal velocities at up to 4m/s equating to maximal accelerations of 

~12m/s/s.  

 

In free swimming the largest rotations are associated with the longitudinal roll (i.e. side 

to side throughout the stoking) in both freestyle and back stroke swimming. It has been 

reported (Liu et al 1993, Alberty et al, 2005) that maximal body roll in freestyle 

swimming is ~60°, for a single arm pull, i.e. half of a complete stroke. Given the 

maximal stroking rates in freestyle this equates to 60° rotation in 0.5 seconds, or 

120°/s rotation.  

 

In freestyle and backstroke events swimmers perform a tumble turn between each 

length. This involves the swimmer rotating 360° in both saggital and longitudinal 

planes (reference – see Chapter 6: Case Study – Turns, Figure 11). The time over which 

this rotation occurs is approximately 1.5 seconds, producing an overall rotation rate for 

the turn of 240°/s.  
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Figure 3-19: Phases of the freestyle swimming stroke 

 
The freestyle arm pull can be divided into four key phases; the catch and entry, the pull, 

the push and the recovery, see 571HFigure 3-19. It has been reported that these phases 

contribute to the total arm pull activity in the following timing ratios: 35%, 16%, 22% 

and 27% respectively (Liu, et al 1993). 
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The fastest phase is during the pull element of the stroke, only taking 16% of the total 

stroke time. Given that a typically stroke can take approximately 0.5s to complete, 16% 

is equal to 0.08s or 12.5Hz.  

 
Table 3-4: Possible sensor types required for the different measurement variables 

Measurement 

parameter  

Possible sensor type  No. of channels 

required  

Range of sensor 

(min)  

Timing of events,  
e.g. Stroke rates, 
time to first stroke 
after turn  

Accelerometer 
 (1,2 or 3 axis)  

1-3  +/-2g  

Rotation information  Gyroscope  
(1-2 axis -rate of change 
of angle)  
or Inclinometer / 
magnetometer 
(1 axis angle)  

1-2 gyroscope 
1 inclinometer  

+/- 300°/s (gyro)  

Velocities  Accelerometer integrated 
with 
gyroscope/inclinometer  

1-3 accelerometer 
1-2 gyroscope  

As above  

Depth  Depth sensor  
Pressure transducer 

1  Up to 2m 
(University pool)  

 

To select the most appropriate hardware solution for the wireless node, the types of 

sensors, their specifications and interfacing requirements were considered, see 572HTable 

3-4. Note: the major requirements for sensor data include timing of swimming 

characteristics from laps to strokes, rotation information in free swimming and turns, 

velocities and depth profiling.  

 

Acceleration data had been proven to provide information regarding stroking and 

timing information in swimming [Ohji et al 2003, 2006, Davey et al 2008, James et al, 

2004].  The number of axes required and range and sensitivity of the sensors are key 

considerations when specifying both accelerometer and gyroscope (i.e. velocity of 

rotation) sensors.  Given that maximal gross accelerations during the swimming start 

were measured at less than 12m/s/s it was decided that a sensor capable of measuring 

+/-2g would supply a large enough range to monitor swimming. Given the three 

dimensional nature of the swimming action a three axis accelerometer would be 

required using three channels of ADC input. 
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Gyroscopes are available with either 1, 2 or 3 axis / axes solutions [IDG-300, Analog  

Adxrs150, St Microelectronics: LPY430AL].  Since the tumble turn presents the highest 

rotation rates of up to 240°/s a minimum range of +/- 300°/s was selected to ensure 

the sensor would not saturate. A 2 axis solution was preferred due to the rotations and 

twists about orthogonal axes evident in typical swimming turns.  

 

A depth sensor would be required to work in depths of up to 2m. It was considered that 

2cm resolution (i.e. 1.0 % of maximum) or better would supply adequate detail 

regarding the depth profile of the swimmer.  

 
Table 3-5: Components specified for development sensor node 

Component  Specification  

Microprocessor  Texas Instruments CC1110  

Sensor interface  10bit ADC, using 5 out of 8 channels (3 axis acceleration, 2 axis 

gyroscope)  

Wireless communications  433MHz, wireless protocol from adapted SimpliciTI Texas 

Instruments protocol  

Power supply  9V battery  

Memory  On board EEPROM (32kbits) for programming, additional 

FRAM (32kbytes) for buffer  

Operating system  Non supplied with the chip  

Antenna  ¼ length whip  

 

The components selected for the wireless sensor node are summarised in 573HTable 3-5. 

The microprocessor selected was the Texas Instruments CC1110 with integrated 

transceiver. The chip is supplied with an 8 channel, 10bit ADC used to interface to the 

selected sensors, i.e. a three axis accelerometer (ADXL330) and a dual axis gyroscope 

(IDG300). The wireless transceiver operates at 433MHz and used the SimpliciTI 

wireless protocol for network development. 

 

The board was supplied with power requirements for a standard 9 V battery.  The 

antenna supplied with the development environment was a ¼ length whip (i.e.14 cm), 

which was used for the initial prototyping. Both the power and antenna solutions 

detailed above were adopted for prototype evaluation. The intention was to develop 

more specific and practical solutions once the efficacy of the system was proven.  
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Thirty-two kilobits of EEPROM memory onboard the CC1110 was used for 

programming and a further 32kbytes of FRAM were connected to allow storage buffers 

for data. No operating system [e.g Tiny OS, http://www.tinyos.net/ , Contiki, 

http://www.sics.se/contiki/] is supplied with the system, and therefore development 

of code was carried out in C low level using a Keil µVision 3Compiler[www.keil.com]. 

 

 
Figure 3-20: Developed board layout 

 

The CC1110 development kits are such that the boards have large footprints that were 

not ideal for a swimmer worn application. For this reason a smaller solution was 

designed to reduce the footprint, by eliminating non-essential components and 

integrating the sensors into the board design rather than attaching them via break-out 

boards. The board was designed to include only the microcontroller including its 

onboard ADC with associated sensors, digital interface to enable the connection of 

additional memory, the crystal oscillator, radio components and power solution, see 

574HFigure 3-20. This resulted in a board with a much smaller footprint, i.e. 90mm x 40mm, 

rather than 1250mm x 1250mm. 
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Figure 3-21: Adapted SimpliciTI protocol stack for the swimming application 

 

A custom protocol stack has been derived from the Texas Instruments SimpliciTI stack 

[http://focus.ti.com/docs/toolsw/folders/print/simpliciti.html]. The SimpliciTI stack 

enables network communications on 433MHz and relatively easy adaption of the 

protocol for specific applications as compared with other standards such as IEEE 

802.15.4 [http://www.ieee802.org/15/pub/TG4.html]. The layers adopted were the 

physical/ medium access control layers (PHY/MAC), the network /simple message passing 

library layers (NWK/SMPL), the Transport Control Layer (TCL) and finally the customer 

application layer, see 575HFigure 3-21. The physical layer is board specific and includes the 

Board Support Package (BSP), Minimum Radio Frequency Interface (MRFI) and the 

timer. This layer talks to and controls the hardware components of the board. The 

timer is included in the microcontroller and provides counter functionality. 

 

The network layer configures, establishes and manages network connections between 

nodes. The TCL layer functions to ensure that messages a reliably sent and checks that 

packages are not lost. It is necessary to have this layer when using the external memory 

buffer. It provides a two-way handshake that verifies communication between the base 

station and wireless node. The customer application layer is concerned with specific 

actions for the application. In the case of a swimmer worn node this includes actions 

such as adding a swimmer to a session, displaying data to the coach and processing 

data to derive performance parameters. 
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Figure 3-22: Block diagram of data flow in the system 

 

The flow of data within the monitoring node is described using the block diagram of 

576HFigure 3-22. Data collected by the sensors is converted by the analogue to digital 

converter (ADC) where it can be read by the microcontroller. FRAM was interfaced to 

the microcontroller via the serial peripheral interface (SPI) allowing the digital data to 

be stored into the buffer before transmission. Data from the buffer was passed to the 

radio via the symbol generator where it is modulated using Gaussian Frequency Shift 

Keying (GFSK). The transmitted data is received by a base station node and  stored via 

serial communications into the PC. 

 
Figure 3-23: Overview of developed system 
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An overview of the  capabilities of the node, communications and base station is 

presented in 577HFigure 3-23. The designed node utilised five of the eight analogue inputs 

integrating a three axis accelerometer and a two axis gyroscope. Each channel is 

sampled at 50Hz at 10bit resolution.  Wireless communications at 433MHz are used to 

transmit data to the base station. The maximum capacity of the wireless transfer is 

250kbits/s. The base station has a physical link to the PC via an RS232 connection 

configured to 115200bit/s. 

 

 
Figure 3-24:Packet structure for SimpliciTI protocol 

 
To transmit data using the adapted SimpliciTI protocol a formalised data structure 

must be used, see 578HFigure 3-24. To set up the transmission, 62 bytes of information are 

included in the message structure although not all of these are utilised for the radio 

transmission, i.e. only 57 of the 62 bytes are required as detailed in 579HTable 3-8. The 

complete message structure included a PREAMBLE, SYNC and frame check sequence 

(FCS). The first three bytes serve to synchronise the radio with the FCS used to 

complete the message and give an indication of the quality of the message. The LENGTH 

byte indicated the number of remaining bytes included in the message. MISC bytes are 

radio dependant and may be required for future IEEE support, currently there are no 

bytes used. The destination and source addresses (DSTADDR and SRCADDR) specify 

where the message is being sent from and where it is being delivered to. The port 

number (PORT) defines where in the destination address the message should be sent. 

Device information (DEVICE INFO) explains the type of node and its behaviour, e.g. 

always on, always off and polling.  The transaction ID (TRACTID) is an incrementing 
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counter relating to the number of the transaction. This can be used to prevent messages 

being received twice or to indicate where packets may have been lost.  

 

The application payload (APP PAYLOAD) is the sensor data being transmitted. The 

capacity of the developed protocol was a maximum payload of 50 bytes. All other parts 

of the message can be considered as overhead values that cannot be changed without 

using an alternate protocol, i.e. the application payload is the only part of the message 

structure than can be adapted for the specific application.  It is preferable to maximise 

the payload content to minimise the ratio of overhead to payload size and therefore 

increase the efficiency of the transmission.  

 
Figure 3-25: Message structure for swimming data 

 

For the prototype application a payload size of 45 bytes was used, see 580HFigure 3-25. This 

was constructed of readings from five sensors; x, y and z acceleration, ϕ and α rotation 

and a counter. All sensor data is recorded at 10 bit resolution with the counter 

resolution being 16 bit. This totals 66 bits per readings. To optimise the use of the 

payload five readings were transmitted in each packet and structured such that they 

filled each byte in a sequence, see Figure 3-26 and discussion below.  
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Figure 3-26: Wireless transmission capacity 

 

The maximum capability of the wireless transmission has been considered with 

reference to optimising message structure. The bit rate capacity of the wireless 

transmission was 250kbit/s, i.e. 256000bits/s. The message overhead, associated with 

the wireless protocol, was 96bits, therefore the total message size totalled 96bits plus 

the payload. For a single message, i.e. one reading from each of the five sensors plus the 

counter, 72bits were required to package the data. By combining the header, payload 

and frequency of transmission, the theoretical maximum capacity of the system was 

calculated, a sampling rate of 50Hz .was assumed. 

 

It was calculated that given the transmission of just one reading in each packet of data, 

that the maximum number of nodes available on the network would be ~30. For 100 
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readings per packet this number increased to ~70 nodes. Increasing the overall packet 

size increases the maximum number of nodes that can operate on the network. This 

relationship is not linear and is shown to diminish significantly, see 581HFigure 3-26.  For 

example, packaging five messages, rather than sending a single message, increases the 

capacity of the system from 30 to 56, i.e. an 84% increase. However, the difference 

between sending five or ten messages in each packet is only 11% and the difference 

between 10 to 50 messages a further 10%.  

 

 
Figure 23: Transmission structure of data between the access point and the PC 

 

The structure of the serial messages between the access point and the PC and 

theoretical capacity of the current system is presented in 582HFigure 3-27. Six parameters 

are transmitted from each node; three axes of acceleration, two axes of gyroscope and a 
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counter, which allowed sequential stamping of messages such that failed sending could 

be identified,  i.e. if messages marked 1, 2, 3, 4, 7 were received it could be noted that 5 

and 6 were missing. Sensor data are sampled at a 10 bit resolution whereas the counter 

has 16 bit resolution. The structure of data transmitted down the serial line is built up 

of 34 characters (see 583HFigure 3-27). Each message is initiated with a link ID (i.e. the 

unique identifier of the node), followed by the raw data and terminated with a stop bit. 

A comma, separates the data values. Using an ADC with a 10 bit resolution implies that 

the maximum digital ranges of the sensors  are limited to 0-1024, i.e. 210. One way of 

encoding this is to utilise four characters (i.e. 4 x 8bits) for each of these readings. 

Similarly the 16 bit counter had a maximum value of 65536, i.e. five characters of data. 

Each character of data comprises a start bit, eight bits of data and a stop bit, i.e. a total 

of 10 bits. The data rate from each node  Nb: 

 (number of characters) x ( number of bits per character) x (sampling rate) = 

17000bits/s.  

 

Given the baud rate of the serial line, 115200bits/s this would theoretically allow the 

data from six nodes to be communicated in real-time before the system was saturated. 

The serial line interface to PC is hence the main bottleneck in the current system in 

terms of the real-time maximum data rate capacity. (Note: if PC communications were 

supported via USB hardware and protocols then a data rates could increase from 

115200bits/s to 480Mbits/s, i.e. by over 4000%. 
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Figure 3-27: Message buffer structure 

 

A data buffer has been developed for the system, (see 584HFigure 3-27), using external 

FRAM memory, to minimise the effect of possible data losses via communication losses 

when a node may be too deep under water to transmit real-time data successfully. Data 

from the sensors, captured at 50Hz, is hence transferred from the CC1110 

microcontroller into a msgbuffer. Five data readings are collected into the on chip 

msgbuffer before being stored into the external memory (FRAM). An address buffer in 

the internal memory is used to “point” to the location of the data in the external memory 

buffer.  
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Figure 3-28: Movement of data into and out of the message buffer 

 

The movement of data into and out of the msgbuffer and external memory stores has 

been described using a flow diagram in 585HFigure 3-28. From the external memory the 

message is sent to the radio and waits for an acknowledge signal from the receiving 

node before transmission. If an acknowledge is not received the packet remains in the 

external memory that is augmented with subsequent packets until transmission is 

possible. With each packet stored into the memory the address buffer stop index is 

incremented. 
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Table 3-6: Overview of network topologies 
Topology Diagram Description Advantages Disadvantages 

Point to 

point 

 

 
 

 

A one to one link 
between devices 

• Simple 
 

• No scalability 
• Limited spatial 

coverage 

Star 

 

 

 
 

A number of nodes 
connected to a 
central node. 
Master-slave, all 
communication 
goes through the 
master 
 

• Simple 
• Low power 

consumption 
of slaves 

• Easy to 
configure 

• Low latency 
and high 
bandwidth 

• Centralised 
 

• Dedicated central 
node 

• Limited spatial 
coverage 

• Low scalability 
• Inefficient slave to 

slave 
communications 

 

Mesh 

 

 

 
 

Any device can 
communicate with 
any other device 
that is within 
range. Can use 
multi hop to 
communicate with 
devices out of 
range 
 

• Peer to peer 
communicatio
n 

• Scalable 
• Low/medium 

complexity 
• Large spatial 

coverage 
• Power 

consumption 
can be 
balanced 
among nodes 

 

• High latency and 
low bandwidth 

• Routing 
complexity 

• Nodes must have 
same basic 
functions, i.e. may 
require excessive 
functionality for 
purpose 

 

Star 

mesh 

 

 

 
 

Connects a mesh 
network with 
one/a number of 
star networks. 
 

• Low/medium 
complexity 

• Low latency 
and high 
bandwidth 

• High reliability 
possible 

• Large spatial 
coverage 

• Scalable 
• Power 

consumption 
can be 
balanced 
among master 
nodes 

 

• High complexity 
• High latency and 

low bandwidth for 
multi hop 
communications 

 

Cluster 

tree 

 

 

 
 

Multi hop network 
where there is only 
a single path 
between two 
devices. The first 
device becomes 
the root of the tree. 
Other devices join 
as ‘child’/’leaf’ 
devices. 
 

• Large spatial 
coverage 

• Scalable – 
many nodes 
possible 

• Medium 
complexity 

• Low power 
consumption 
of leaf nodes 

 

• Root of tree is 
bottleneck to 
scalability 

• Low reliability 
• High latency and 

low bandwidth 
• Nodes must have 

same basic 
functions, i.e. may 
require excessive 
functionality for 
purpose 

 

 

There are a number of physical topologies available when developing wireless 

networks, see 586HTable 3-6 [Yang, 2006, Holger, 2005]. The requirements of the system 

determine the most appropriate topology. The simplest topology is a point to point 
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structure where a single node can communicate with another single node. To enable 

communication between multiple nodes more complex topologies must be established. 

 

A star network connects a number of nodes via a central master node. While still 

relatively simple this enables communications between multiple nodes. A major 

advantage of this topology is the low power consumption of slave nodes.  This would be 

preferable to minimise the footprint of swimmer worn nodes.  

 

Mesh networks allow direct communication between any of the nodes. Power in a mesh 

network is distributed across the nodes. Latency is high and bandwidths are lower due 

to the additional complexity of the network. Mesh networks are capable of multi hop 

communications, which allow a larger spatial coverage. 

 

 A star-mesh network connects a mesh network with one or a number of star networks. 

Multi-hop communications are possible but have a high latency and low bandwidths. 

The use of the connecting star network enables low latencies and high bandwidths. The 

combination of both topologies facilitates a higher spatial coverage than just using a 

star topology. 

 

Cluster tree is a multi-hop network whereby there is only a single path between any 

two nodes. Devices join the network as child devices, the first node being the ”parent” 

node. This type of topology allows large spatial coverage and is scalable. The leaf 

devices that connect to the root of the tree have low power consumption. Limitations 

include high latency and low bandwidths. Equally nodes must have the same basic 

function, which means that nodes may have excessive functionality for their intended 

purpose. 
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Table 3-7: Review of fulfilment of stakeholder requirements against features for different network 
topologies 
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Point to point ● ● ●   

Star ● ● ● ● ● 

Mesh   ●  ● 

Star mesh ● ● ●  ● 

Cluster tree   ● ● ● 

 

Requirements for the swimmer system have been compared with the features of the 

different network topologies in 587HTable 3-7. Key requirements for the swimming 

monitoring application are defined as low latency, high bandwidth, spatial coverage at 

least 65m, low power consumption of swimmer worn nodes to minimise their size and a 

minimum of six node capability. 

 

Low latency ensures quick communications, which is essential for the real-time nature 

of the system. High bandwidth is preferable as it facilitates the scalable nature of the 

design, i.e. if more sensors or more nodes are required then the network capability will 

be able to cope with these additional demands. The spatial coverage is determined by 

the size of the pool, i.e. 50m by 25m. The biggest limitation in terms of spatial coverage 

was the presence of the water, which creates a very harsh operating environment. 

Specifying low power consumption of swimmer worn nodes minimises the footprint of 

the nodes, which are to be attached to the swimmer. Note: the scale of the current 

network is limited by the data capacity of the prototype system, typically six nodes for 

real-time transmission of raw data.  
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A star network was selected as the preferred topology for the prototype system as it 

was found to satisfy all of the requirements specified for the system. Future 

developments may require a shift towards a different topology, e.g. if a significant 

increase in the number of nodes or spatial coverage is necessary. 

 
Table 3-8: Components of packet information 

Field Definition Comments 

PREAMBLE Radio synchronization Inserted by Radio Hardware (HW) 

SYNC Radio synchronization Inserted by Radio HW 

LENGTH Length of remaining frame in 
bytes 

Inserted by Firmware (FW) on Transmit (Tx), 
Partially filterable on Receive (Rx). 

MISC Radio dependent (needed for 
future IEEE radio support) 

Currently set to 0. 

DSTADDR Destination address Inserted by FW. Least Significant Byte (LSB) 
filterable. 0x00 and 0xFF LSB values reserved 
for broadcast. LSB: Most Significant Byte 
(MSB) formatted. 

SRCADDR Source address Inserted by FW 
PORT Application port number 

(Bits 5-0) 
Inserted by FW. Port 0x20-0x3D for customer 
applications, Port 0x00-0x1F for Network 
(NWK) applications 

DEVICE 
INFO 

Receiver type (bit 7-6), Sender 
Type (5-4) & Hop count (2-0) 

Inserted by FW. 

TRACTID Transaction ID Inserted by FW. Discipline depends on 
context. 

APP 
PAYLOAD 

Application data 0 < n < 52 (50 if Frame Check Sequence 
(FCS)) 

FCS Radio append bytes Cyclic Redundancy Check (CRC) checksum 
(Tx), Received Signal Strength Indicator 
(RSSI), Link Quality Indicator (LQI) and CRC 
status (Rx) 

 

In addition to the physical broadcasting nature of a wireless channel, the logical 

topology of the network should be referred to. For the prototype system developed, a 

Carrier Sense Multiple Access (CSMA) system was employed, specifically a CSMA/ 

Collision Detection (CD) protocol. Within a CSMA protocol each node listens for a free 

channel before transmitting the message. A free channel is indicated by a low received 

signal strength indication (RSSI) value at the input of the transmitting node. Within the 

/CD variation, if two nodes transmit simultaneously and their messages collide, each of 

the nodes reset and waits an random period of time before attempting to retransmit. 

Alternatively a /Bitwise Arbitration (BA) method can be used, whereby nodes have a 

ranking assigned, such that if simultaneous transmission occurs, one has predefined 

priority. Due to the small scale of the current network and limited spatial coverage, 
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CSMA/CD was  found to be capable of generating robust communications for this 

prototype. 

 
Figure 3-29: Buffer usage in swimming trials 

 
 
Testing was undertaken on the prototype solution to quantify typical data losses with 

and without the external memory buffer functionality. Freestyle, breaststroke and 

backstroke were tested where the node was positioned in the small of the back for the 

prone strokes and on the stomach for backstroke. A number of 100m trials were used 
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to collect the data, in each stroke two lengths were recorded with and two without the 

buffer, the results of which are presented in 588HFigure 3-29. 

 

It was found that without an external memory buffer data losses ranged from 15% in 

backstroke to almost 40% in freestyle. Using the developed buffer 0% drop out rate 

was observed.  During the buffered testing the percentage of the buffer capacity filled 

was monitored. The maximum buffer use was recorded during breaststroke where 

40% of the buffer was used. These testing outcomes suggest that the developed buffer 

was successful in eliminating data losses and that the buffer size appeared to be ample 

for the application. 
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Figure 3-30: Results from antenna testing in the swimming pool 

 

The developed prototype was also tested in the pool using different antenna solutions. 

Three antennas were tested, a standard ¼ length whip antenna, a printed circuit board 

(PCB) antenna and a ¼ length wire loop antenna. The whip and PCB antennas were 

tested in both parallel and perpendicular orientations, the PCB just in the 

perpendicular orientation. Each test was carried out in the opposite corner to the 

access point in a 25m pool set up, i.e. the furthest point from the access point.  Each set 

up was tested at increments of 5cm in depth until signal was lost, see 589HFigure 3-30.  
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It was found that the whip antenna positioned perpendicularly to the receiving node 

performed to a depth of 25cm before losing transmission. The wire loop antenna 

performed the worst of all the solutions, i.e. communications were lost at half of the 

depth achieved with the whip antenna. 

3.4.1 63BSignal processing of node data 

 

 
Figure 3-31: Components of swimming selected for initial analysis 

 

Pool swimming can be broken into three core components; starts, free swimming and 

turns, see 590HFigure 3-31. The start can either be from the block, as is the case for freestyle, 

backstroke and breaststroke, or in the water, as in backstroke. Block starts can be 

further decomposed into grab or track techniques. Track starts can be either rear 

weighted, front weighted or a swing start used in relay events. A rear weight start 

describes a technique whereby as the swimmer is stood on the block in their ‘take your 
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marks’ position, their weight is on their back leg, a front weighted describes the 

opposite, i.e. with weighting occurring on the front leg. 

 

The free swim component includes four competition strokes: backstroke, breaststroke, 

freestyle and butterfly. These are either performed as individual events or may be all 

included within a single event, i.e. the individual medley, where butterfly is followed by 

backstroke, breaststroke and freestyle. 

 

The type of turn used is dependent on the event.  Butterfly and breaststroke use open 

turns where the swimmer touches both hands on the wall and then pushes away with 

their feet. The tumble turn is used for freestyle events, where the swimmer performs a 

kind of forward roll into the wall, pushing off with only their feet. In backstroke a 

similar tumble turn technique is used but instead of the swimmer rotating back into a 

prone position out of the turn they remain on their back. 

 

An individual component of each start, free swim and turn was selected to provide the 

focus for initial investigation. The block start was selected as they are used in the 

majority of events. The track start was specifically targeted as it represented the 

preferred start technique of the university and elite swimmers based at Loughborough. 

Freestyle was selected as the focus for free swim analysis as freestyle represents a 

significant volume of all swimmers training, regardless of their preferred competition 

stroke. This meant that there was a large potential testing population, all of which who 

were competent at performing freestyle swimming. As freestyle was selected as the 

predominant free swim stroke it was decided that the associated turn technique, i.e. the 

tumble turn, should also provide the focus for initial investigation. 
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Figure 3-32: Processes of data analysis 

 
To derive information automatically from data three basic procedures were followed, 

pre processing, feature extraction and analysis, see 591HFigure 3-32. Firstly data were pre 

processed to a point where it was in a workable format for subsequent processing. This 

included functions such as converting raw data values to useable units, e.g. m/s/s or 

gravity (g), cropping data to remove unnecessary volume and filtering data to remove 

noise. 

 

Feature extraction algorithms were applied to the pre processed data. Features taken 

from the data varied from simple threshold crossings to more complicated pulse 

analysis. Analysis of the extracted features is the point  where relevant parameters 

pertaining to swimming performance are derived. For example, zero crossings 

algorithms allowed stroke counts to be derived, pulse analysis of these strokes gave 

more information regarding timing and consistency of the athlete. The three stage 

method outlined above has been applied to each of the aspects of swimming (see 592HFigure 

3-32). 
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Figure 3-33: Diagram of data level fusion (top) and feature level fusion (bottom) of data processes. 

Adapted from Yang, 2006 
 
The process outlined above in which data from sensors is transformed into relevant 

features can be described by three levels: data level fusion, feature level fusion and 

decision level fusion. When describing feature extraction, three additional classifications 

may be used to explain how sensor data is used: competitive, complementary and 

cooperative. Competitive fusion is where sensors provide equivalent data, typically this 

is useful for calibration situations to ensure sensors are operating reliably. 

Complementary fusion describes a system where sensors produce different 

information outputs, for example, a swimmer worn node may provide acceleration data 

in three individual axes. Cooperative fusion explains a process where sensor data must 

be integrated in order to derive information, that could not be possible with a single 

sensor, for example systems where acceleration, gyroscope and magnetometer data is 

integrated to establish position coordinates of movement. 

 

The use of data fusion within the analysis presented in this thesis include both data 

level fusion and feature level fusion. Data level fusion has been used as a calibration tool 

for sensors where multiple nodes return the same sensor data about a certain event, i.e. 
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swim phases as outlined in the top image in 593HFigure 3-33. Features have been extracted 

from these data, e.g. maxima/minima, to indicate whether sensors or nodes were 

performing as intended. An example of this type of fusion is used for the calibration of 

three axes of acceleration where the node was oriented in positions perpendicular to 

gravity and readings were adjusted to ensure that each axis reads +/- 1g as they were 

rotated through 90 degree increments. 

 

Feature level fusion has been  used to derive swimming specific performance 

parameters from sensor data, see bottom image in 594HFigure 3-33. Algorithms have been 

developed to enable features to be extracted from acceleration sensor data. These 

features are combined to provide information during the start, free swim and turning 

phase of swimming (see Chapters 4, 5 and 6, Sections 4.3, 5.3 and 6.3). Decisions are 

then made as to whether parameters values are significant and if so what useful 

feedback can be provided. An example of this would be analysing swimming data 

during a succession of lap repetitions. Lap times, stroke counts and stroke durations, 

derived from the features in the data, could be integrated to provide information 

regarding a swimmers consistency and fatigue. This may allow coaches to understand 

better when their athlete is tired and how they demonstrate this fatigue in variations in 

performance features. 

 

Currently the complete data fusion process is structured such that the hardware is used 

to collect the data, features are extracted by software algorithms and decisions are 

made by personnel, i.e. humans, to give insight into what the features actually mean. 

 

 
Figure 3-34: Diagram of decision level fusion. Adapted from Yang, 2006 
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It is envisaged that ultimately a decision level structure would be implemented to 

provide real-time feedback to athletes. A key difference of the envisaged system is a 

shift of the feature extraction in software embedded  onto the hardware node, see 

595HFigure 3-34, leaving the software functionality to present the data in appropriate 

manner to the coach. The advantage of this structure, even more so than feature level 

fusion, is that by extracting features and being able to recognise their relevance and 

impact on performance means that the amount of data transmitted by the system is 

minimised to summary statistics. These statistics can then be presented to the coach in 

a way in which they can understand and therefore make decisions on performance. 

Future iterations of this development will further reduce the need for human 

judgement as with volume of data, knowledge can be established where relevant 

features can be associated with performance indicators. It is important to note that a 

realistic prototype will require some processing on the embedded hardware, i.e. where 

processing is commonly repeated for all operations, however, an ideal solution will 

integrate a development environment with an easy to use human machine interface 

(HMI) for continuing progression of analysis. 

 
Table 3-9: Filter types and associated advantages and disadvantages 

Filter  Advantages  Disadvantages  

Moving average  • Simple  • Can flatten signals which are 
ideally preserved as equal 
emphasis is placed on each 
point 

Low pass filter – 
perfect  

• Simple 
• Digital cut off transition  

• Cannot be performed in real-
time  

Butterworth low 
pass  

• Can be implemented in real-
time 

• Can alter order to minimise 
memory  

• No pass band ripple  

• Less steep cut off transition 
than perfect and Chebyshev 
filters  

Chebyshev low pass  • Can be implemented in real-
time 

• Can alter order to minimise 
memory  

• Steeper transition than 
Butterworth  

• Pass band ripple introduces 
noise into the data  

 

A key pre process method used in the data analysis was the application of an 

appropriate filter to smooth the data by removing noise without removing important 

information. A number of filters were considered to perform this operation as listed in 

596HTable 3-9. A moving average filter presents a simple solution, however, it can 
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significantly flatten peaks in signals which may remove important information from 

data, especially if features such a signal amplitudes are considered important.  

 

A perfect low pass filter has a “digital” cut off transition and removes high frequency 

noise above a defined frequency. The disadvantage of this filter is that it cannot be 

implemented in real-time as it requires all data points in a set before it can be applied. 

Two alternative low pass filters were considered that are relevant to real-time 

applications. The Butterworth filter provides a low pass filter that results in no pass 

band ripple, however, has a less steep cut off than the perfect filter. The order of the 

filter can be selected to optimise memory usage. 

 

As with the Butterworth filter, a Chebyshev filter can be implemented in real-time and 

the order of the filter can be selected to optimise the performance (e.g. memory usage). 

The advantage of the Chebyshev filter is that the cut off transition can be steeper than 

the Butterworth. However, this filter does suffer from pass band ripple which can 

introduce noise into the data.   
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Figure 3-35: Applying different filters to swimming data 
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 Three filter types were tested for the pre processing of data: a moving average filter of 

different orders, a perfect filter with a 2Hz cut off frequency and a fourth order 

Butterworth filter with a 2Hz cut off frequency, presented in 597HFigure 3-35. Both the 

perfect and Butterworth filters treat the data in the frequency domain and return 

outputs in the time domain. It was found that the moving average filter tended to 

reduce the amplitude of peaks in the data significantly. The perfect filter was able to 

maintain the amplitude and shapes of the signal while removing noise components. The 

cut of frequency of 2Hz smoothed the data to a very simple wave form. A higher cut off 

frequency would allow the preservation of the shapes in the signal. 

 

The Butterworth filter with an order of four had the same 2Hz cut off frequency as the 

perfect filter. The results were similar to those of the perfect filter with the advantage of 

supporting real-time implementation. The order of the filter determines the gradient of 

the cut off transition. A higher order equates to a steeper cut off. However, a higher 

order requires a larger number of data points to be collected before the algorithm can 

be implemented. 

 
Figure 3-36: Comparison of perfect and Butterworth filter applied to raw swimming data 

 

The transfer functions of the perfect and Butterworth filter are plotted in, 598HFigure 3-36. 

The digital nature of the perfect filter means that all values associated with events 

occurring at less than 4Hz were preserved completely and all higher frequency 

contributions were completely removed. The Butterworth filter however has a 

transition band and some higher frequency components were still included, in part, in 

the output signal. The filter applied used a 4Hz frequency cut off, allowing the shape of 

the signals to be preserved better than the previously observed 2Hz cut off. The 

Butterworth filter was of order 4. This relatively low order presented a solution with a 
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quick initiation time and low memory requirements, however, the transition band was 

not particularly steep. 

 
Figure 3-37: Different Butterworth filter masks applied to raw data 

 

Increasing the order of the Butterworth filter increases the gradient of the transition 

band, which means that less high frequency components, above the cut off are included 

in the output signal. This trend was observed when varying filter orders were applied 

to the same data set, see 599HFigure 3-37. A higher order filter was found to minimise peaks 

associated with higher frequency components in the signal, whereas the lower orders 

were not able to remove these components. 
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Figure 3-38: Butterworth filter equation 

 

Initial analysis implemented a Butterworth filter in Matlab, future developments 

transferred these operations to C to enable the filter to be embedded within the 

hardware. The Butterworth filter requires three key input variables to run: the filter 

order, the sampling frequency of the data and the required cut off frequency, see 600HFigure 

3-38. The filter generates coefficients which were used to develop the filter mask.  The 

filter mask is then applied to the data in the frequency domain and then returned to the 

time domain as a smoothed signal. 

 

Having pre processed the data, features are extracted from the signals to try and qualify 

characteristics and eventually associate them with performance indicators. Feature 

extraction has been approached from the time domain and the frequency domain, 

examples of which are shown in Chapter 5: Case Study – Free Swimming, Sections 5.3.2 

and 5.3.3. Time domain features include waveform characteristics and statistics. 

Characteristics quantify simple features within the signal such as maxima/minima, 

pulse durations and pulse repetitions. In addition waveform statistics quantify how 

these characteristics vary within the data stream, for example zero crossings were used 

to establish strokes and then the time between the occurrences of these crossings was 

used to indicate stroke durations. The stroke durations were then statistically analysed 
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over a number of lengths to establish the swimmers consistency by looking at their 

standard deviation to indicate how their stroke cycle varied. Subsequent lengths and 

data from different athletes were observed to identify difference that may occur due to 

swimmer fatigue or traits demonstrated by individual swimmers. 

 
Table 3-10: Time and frequency domain characteristics of data 

Time domain analysis Frequency domain analysis 

Waveform characteristics, e.g. amplitudes, 
maxima/minima, pulse duration, pulse 
repetition intervals, zero crossings 

Periodic frequency structures in 
time domain 

Waveform statistics, e.g. Mean, standard 
deviation, peak to valley ratio 

Fourier analysis 

 

Frequency domain characteristics were concerned with the number of times a feature 

occurred during a known time period. Fourier analysis was used to observe the 

spectrum of  frequencies present in the pre processed signal. It was thought that 

repetitive, cyclic features such as stroke rate would be readily extracted from the data 

through this analysis. 
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3.5 22BSummary 

 

3.5.1 64BRQ1 Vision methods for automated vision analysis  

 

Variability of currently used manual vision analysis techniques has been quantified to 

give an indication of inter and intra person consistency. The outcome of this analysis is 

used as a performance benchmark against which automated methods are compared.  

 

The development of automated vision systems and processes associated with their 

implementation have been discussed. Temporal and spatial methods are explored and 

their appropriateness for the analysis of swimming performance evaluated. LED 

markers were designed to maximise signal to noise ratio of the AOI and therefore 

maximise the potential to segment specific landmarks robustly from the image. 

 

3.5.2 65BRQ2 Design and development of an instrumented starting platform 

 

An instrumented starting platform was design to be consistent with current blocks in 

terms of dimensions and texture. Four Kistler force transducers were mounted into the 

top plate allowing measurement of force in three axes during the block phase of the 

swimming start. The resulting block was calibrated by loading each axis individually 

with known weights. Horizontal (y) and vertical (z) axes were calibrated and found to 

be accurate to 1.28% and 10.63% respectively. It was found that the x axis, pertaining 

to lateral motion, did not read out expected forces, but instead forces equating to 

approximately 50% of the actual load. This was diagnosed as a problem with the read 

out from two of the force components. This axes, therefore could not be considered as 

reliable when testing. It was possible, however, to determine centre of pressure (CoP) 

values to provide an indication of sideways movement, as this did not require x forces 

to be calculated. 
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3.5.3 66BRQ3 Design and development of a wireless sensor node 

 

A wireless sensor node was developed to allow real-time analysis of swimming 

performance. Hardware was specified that incorporated an integrated transceiver 

operating at 433MHz, tri axis accelerometer, dual axis gyroscope and memory to allow 

a buffer capacity. A network protocol was developed around the basic SimpliTi protocol 

provided with the CC1110 processor. An external memory buffer has been 

implemented to eliminate data loss through loss of communications in the water. In 

this case data are stored in the buffer and re-transmitted once communications has 

been re-established. 

 

Processes for signal processing and feature extraction were discussed. A simple filter 

was applied to data to smooth noise and ease further analysis. More specific examples 

of how signals were processed and relevant features extracted are detailed in future 

chapters. 
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Chapter 4 

 

 

 

 

4. 3BCASE STUDY – STARTS 

 

4.1 23BChapter Overview 

 

The parameters that are required to categorise fully the swimming start have been 

determined in Chapter 1: Quantification of the Stakeholder Requirements.  A summary 

of the simple i.e. single measurement and compound parameters (i.e. derived from a 

combination of simple measurements) are re-visited in 601HTable 4-1. Analysis of currently 

measured swimming start performance parameters, highlighted in bold, are routinely 

obtained via manual vision analysis techniques that require a high time penalty, 

operator expertise, cost and suffer from inherent variability due to human judgement. 

The focus of the research outlined in this Chapter is targeted on the evaluation of a 

complete solution enabling the measurement of the specified needs listed in 602HTable 4-1 

in a reliable, timely and efficient manner. 

 
Table 4-1: Start measurement parameter requirements 

 Simple Compound 

Starts  • Time from gun to first 
movement 

• Block time 
• Angle of entry 
• Time to entry 
• Distance of entry 
• Maximum depth 
• Break out distance 
• Break out time 
• First stroke timing  

• Velocity off blocks 
• Velocity of glide 
• Velocity at break out  
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Figure 4-1: Component set up for starts testing 

 
The research presented in this Chapter is concerned with the development of system 

components suitable for the analysis of swimming starts. Analysis methods include the 

use of automated vision, force plate and wireless sensor node technologies (see 603HFigure 

4-1). Data collection is synchronised for each of the components to allow integrated 

investigation. Individual components were initially developed and validated in isolation 

and then integrated as part of a complete system.  

4.1.1 67BResearch Questions (RQs) 

 

RQ1 Automated Vision 

a. Are there any vision-based methods that can provide a robust and 

acceptable solution targeted analysis of swimming start performance, 

pertaining to the requirements of the stakeholders? 

b. What techniques are available to maximise the signal to noise ratio 

within the pool environment to allow robust automated vision analysis? 

RQ2 Force Plate 

a. What are the performance indicators that can be derived from the force 

generated during the block phase of the start? 
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RQ3 Wireless Node 

                    a. What start specific parameters are evident in accelerometer data? 

 

4.1.2 68BChapter Structure 

 

The structure of this Chapter is divided into three core themes addressing each of the 

stated research questions. Vision methods are applied to enable automated analysis of 

the starts. Both temporal and spatial thresholding techniques are tested to determine 

the most appropriate solution for this application. 

Performance measurements during the block phase are explored using a starting 

platform instrumented with force transducers. Performance indicators are sought from 

raw data. Further to this, raw data is used to predict initial and subsequent flight 

characteristics and results are discussed. Finally observations of measurement 

parameters and their relationships with swimmer competency is considered. 

A wireless accelerometer node is synchronised with force plate and vision data to give 

a greater insight into performance parameters pertaining to the start. An example is 

presented and discussed. 
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4.2 24BVision methods for automated vision analysis of starts 

 

The use of manual vision-based techniques combined with hand timing is the most 

prevalent method reported in literature on swimming starts analysis. However manual 

analysis is costly in terms of setup, analysis and maintenance time and suffers from 

inherent variability between measurements and users.  

 

Two methods of image segmentation, i.e. temporal and spatial thresholding, can be 

applied to distinguish a feature from an image [Amat et al 1999, Cho et al, 1997]. 

Temporal thresholding enables an object of interest to be extracted from background 

noise in the image by observing the difference between one frame and the next in time. 

Spatial thresholding on the other hand is concerned with determining object specific 

features from the individual pixel values in an image. Initially it was hypothesised that, 

assuming no other swimmers were within the field of view (as is usually the case for 

starts training), the image of a swimmer performing a dive could be discriminated from 

the background via temporal thresholding. This relies on the fact that the swimmer 

would be the only object within the image frame that was moving through time.  
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4.2.1 69BTemporal thresholding 

 
Figure 4-2: Comparison of hand measured dive angle and automated technique using temporal 

thresholding 
 

Filming of 55 dives was undertaken at a Loughborough University swimming club 

training session. Swimmers were filmed performing their normal dive training during 

the session. Dive analysis was then performed in two ways, firstly using manual 

digitisation methods and secondly using the developed automated process (see 604HFigure 
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4-2). The process of temporal thresholding, developed in Matlab, involved determining 

the absolute difference between a frame and the subsequent frame in each case. It was 

thought that this would isolate the swimmer as their movement would be represented 

by the difference in each frame, assuming the background was stationary. Using the 

absolute difference image, the frame could be thresholded into a binary (i.e. black and 

white pixels only) and the boundary of the “swimmer” could be traced. 

 

For the manual analysis, each of the dives was hand measured three times and an 

average of these measurements was taken as the “dive angle”. Typically, repeated hand 

measurement of the dive angle by the same “experienced” person results in a standard 

deviation (SD) of ±1.1° (n=3). Comparisons of the manual dive angle and the angle 

measured using the movement thresholding algorithm, were used to give an indication 

of the accuracy and repeatability of the algorithm. Given a normal distribution it is 

expected that 68% of angles should fall within 1 SD of the hand measured mean, 95% 

within two SD’s and 99% within three SD’s.  A measurement outside of 3 SD’s is 

considered an unacceptable result as it is not within reasonable constraints of 

variability. 

 

Of the 55 dives filmed, only 21 dives returned a dive angle using the automated 

algorithm, i.e. 38% success rate.  Of these dives one fell within one standard deviation 

of the hand measured mean, four within two standard deviations and the remaining 

angles were outside three standard deviations of the mean. This equates to 24% of the 

dives that returned an angle that were considered reasonable measurements of dive 

angle. However in the context of the total sample, i.e. 55 dives, only 9% measured gave 

a reasonable measurement of dive angle using the original algorithm. 

 

A typical boundary tracing outcome for one of the successful automated analyses is 

given in 605HFigure 4-2. This demonstrates the limited level of resolution that was achieved 

using the movement thresholding algorithm. It can be seen that the boundary deviates 

from the true outline of the swimmer which impacts of the ability to extract 

performance measurements with confidence. Additionally other objects moving in the 

field of view create noise, e.g. other people, the movement of the water and the affects 

of changing lighting. These were the main reasons for the limited success of using the 

algorithm on raw image data.  
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4.2.2 70BSpatial thresholding 

 
Figure 4-3: Using histograms to identify pixel characteristics for “skin” spatial thresholding 
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Spatial thresholding can be used to segment the swimmer from the background by 

specifying specific pixel characteristics unique to the swimmer to determine an area of 

interest (AOI). By separating colour channels within an image, each channel can be 

individually thresholded to isolate the AOI and then recombined to produce a single 

binary image (see Figure 4-3). The potential of thresholding the swimmer from the 

background with no additional controls in place (i.e. coloured garments, hats, lighting) 

was first considered using the an area of exposed body as the thresholding feature (see 

Figure 4-307) as this would impact least on set up and processing methods, i.e. current 

procedures would be maintained. An overview of the flow of processes that were used 

to perform spatial thresholding is given in Figure 4-5. In this case a raw video image is 

captured and the field of view is cropped appropriately. Red, green and blue (RGB) 

colour channels are separated and individually thresholded to segment the AOI, in this 

case the swimmers garment. The resulting image is binarised and the boundary traced. 

From this boundary, performance metrics could be determined.  

 

4.2.2.1 94BSpatial thresholding: skin 

In normal training a male swimmer will tend to wear briefs and a female swimmer a 

regular swimsuit, i.e. minimal swimwear. This means that typically there is a large 

amount of skin exposure on a swimmer. For this reason it was assumed that 

thresholding using the colour content of the skin would provide potential for 

differentiating the swimmer from the background. 

 

It has been reported that using the hue, saturation, value (HSV) colour channels yield 

the best results when performing skin thresholding for face recognition (Cho et al, 

2001). Based on this, an algorithm that segmented the swimmer by thresholding the 

HSV colour channels was developed. A flow diagram and sample Matlab code are 

illustrated in 608HFigure 4-3.  

 

Histograms were used to determine the threshold boundaries that should be applied to 

the image. The raw image histogram in HSV is given in 609HFigure 4-3(b). An area of interest 

(AOI) centre on the exposed diver’s torso was identified and a histogram was generated 

for this isolated region. The difficulty in thresholding the skin from the raw image can 

be appreciated by comparing histograms for the raw image and the AOI in 610HFigure 

4-3(b) and (c) respectively. There is significant contribution in the raw image in the 

AOI channels of the skin area that is due to features other than the swimmers skin 
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present in the image. It is unlikely that the remaining skin area (i.e. outside the selected 

AOI) is the reason for this overlap. Hence there is likely to be a significant background 

noise level in the thresholded image.  The algorithm, developed in Matlab that 

separated the HSV colour channels, thresholded given the information on the histogram 

and then recombined the channels to give a resulting binary image is listed in 611HFigure 

4-5. This process allowed the central area of the swimmer to be differentiated from the 

background, however, when applying boundary tracing algorithms and subsequently 

deriving measurements from this boundary. 

 

 
Figure 4-4: Effects of shadowing and swimwear on the ability to threshold swimmer boundary 

 
Discrepancies occurred where the body was either shadowed or at the edges of the 

swimwear, see 612HFigure 4-4. This was particularly significant for female swimmers where 

swimwear distorted a large proportion of the torso (see 613HFigure 4-4). These limitations 

meant that when the boundary was traced it did not give a true representation of the 

outline of the swimmer and therefore measurements derived from this boundary were 

not accurate or realistic, this was the case in all videos tested, i.e. for a trial of 10 videos. 

Uniform characteristics in colour space of the complete body of the swimmer was 

required.  
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4.2.2.2 95BSpatial thresholding: garment 

 
Figure 4-5: Process flow of performing spatial thresholding 

 

An automated image processing algorithm was developed to segment the swimmer 

from the background image based on the (RGB) characteristics of their cover up suit 

using the process steps described in 614HFigure 4-5. Using this segmented binary image the 

boundary of the swimmer was traced and performance parameters extracted.  

 

The developed algorithm takes a raw video of a swimmer diving from the blocks as 

input. Calibration parameters are then entered to establish the physical scale within the 

image (Note: this step could be eliminated by establishing a set protocol which 

enforced camera position set up and zoom settings). The video is then cropped to 

eliminate unnecessary areas of the field of view and minimise the amount of image that 

requires processing, which in turn minimises the processing time the algorithm takes 
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to run. In the next step the RGB colour channels are separated and individually 

thresholded using the characteristics of the cover up suit. The RGB channels were then 

recombined to produce a single binary image. A boundary tracing algorithm was 

applied to the binary image to trace the area of interest (AOI), i.e. the body of the 

swimmer. In this case bwboundaries, a Matlab function, was used to perform the 

boundary tracing. This performs a connective component labelling function to derive 

the boundary line [Kong and Rosenfeld, 1996]. The boundary was then used to derive 

performance parameters such as angle and distance of entry. 

 

 
Figure 4-6: Observation of RGB image histograms for a complete and AOI within an image 

 

The current trend for competition swimmers has been to wear full body garments that 

cover from the wrists to the ankles. Using a uniform coloured swimsuit as a unique 

feature in the image could increase the success of the thresholding algorithm to 

differentiate robustly the swimmer from the background using automatic methods. To 

avoid the previous problems with shadowing, the swimmer was requested to wear a 

dark control garment. 
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As with previous methods, image histograms were used to determine threshold 

parameters for the complete swimsuit. Both HSV and RGB colour channels were 

evaluate in this trial. By scrutinising the image histograms it became apparent that 

there was a greater potential for success using the RGB thresholding over the HSV. 

When comparing the background histogram to the swimsuit in RGB colour space the 

suit properties could be clearly isolated as a feature in the background histogram 

(compare images in 615HFigure 4-6). However, in the HSV equivalent histograms this trend 

was not so apparent (compare 616HFigure 4-7 (b) and (c)). The clear discrimination of suit 

(i.e. RGB values) within the raw image gives increased confidence in the potential 

ability to isolate the suit as a component within the background.  
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Figure 4-7: Observation of HSV image histograms for a complete and AOI within an image 
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Figure 4-8: Comparison of automated and hand measured dive angles 

 

To test the robustness of the developed algorithm, 20 dives, filmed in two pool 

environments, were analysed using both manual and the automated methods of angle 

measurement. As discussed previously, each dive was hand measured three times and 

the average was taken as the “dive angle”. Comparisons of the manual “dive angle” and 

the angle measured using the RGB thresholding algorithm, were used to give an 

indication of the accuracy and robustness of the algorithm.  

 

The results indicate that 17 of the 20 dives fell within one standard deviation of the 

hand measured mean, i.e. within ±1.1°, i.e. 85% of the dives analysed (see 617HFigure 4-8). 

The three remaining dives all fell within   +/- two standard deviations. These results 

gave confidence in the ability of the algorithm to measure accurately dive angle in 

repeated trials. 

 

 There were two major limitations to using the complete swimsuit:  (i) body landmarks 

(e.g. wrist, elbow, shoulder) had to be approximated given the traced boundary and (ii) 

feedback from end users voiced concerns about the practicalities of having to put on a 

suit to enable analysis. Even considering the accuracy and robustness of the algorithm, 

using a complete (i.e. full body) swimsuit was considered impractical and unpopular 
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amongst coaches and swimmers and had too great an impact on the current starts 

analysis process to be adopted.  

4.2.2.3 96BSpatial thresholding: markers 

 

 
Figure 4-9: Tracking a wearable LED marker through a swimming block start 

 

A lightweight optical marker (using self illuminating red light emitting diodes (LED’s)) 

was developed that could be worn by the swimmer on specific body landmarks, such as 

the wrist, hip and ankle. These markers were designed to maximise signal to noise ratio 

in the pool environment, which was essential given their limited size within the 

camera’s field of view. For example when the field of view is set-up to include the 

complete dive (e.g. see 618HFigure 4-9) the size of the marker (e.g. ~100mm2) is such that it 

occupies approximately 100 pixels within a complete field of view (i.e. 1024x1024 

pixels) of 1 mega pixels.  

Thresholding techniques, (using RGB value (see 619HFigure 4-5)), were used to isolate the 

LED marker from the background in order to track it through the field of view in the 
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analysis of a dive (see 620HFigure 4-9). The frequency of the LED’s enable the markers to be 

readily traced within the images. However the directionality of the LED was such that 

depending on the orientation of the swimmers arm it was sometimes occluded (see 

621HFigure 4-9. The second revision of the design located LED’s around the entire 

circumference of the limb (using a flexible circuit substrate) to increase its visibility in 

all orientations. 

 

 
Figure 4-10: Tracking second generation LED markers during a swimming block start 

 

Three second generation LED markers were placed on the wrist, hip and ankle of a 

swimmer to investigate the robustness and accuracy of the marker system. As in 

previous cases, manual measurements were taken to analyse the angle of entry of the 

swimmer and the distance from the wall at which they entered the pool. An automated 
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algorithm was used to determine the same parameters by tracking the LED markers, 

using the thresholding methods outlined in 622HFigure 4-5.  

 

In this preliminary analysis only two dives were analysed in detail. It was found that 

using automated analysis the dive angles were 51.34° and 45.73° respectively, 

compared with 51.74° and 45.58° for manual techniques (see 623HFigure 4-10). The 

difference between the measurements were 0.4° and 0.15° respectively. These 

differences are not significant given the typical intra-person variability of manual 

measurements, i.e. 1.1°. Similarly the algorithm estimated distance of entry to +2cm 

and +5cm the manual measured equivalent.  

 

 

Figure 4-11: Example of foot movement between two frames at a frame rate of 50fps 
 
Vision based techniques have enabled automated analysis of core performance 

measurements identified in the stakeholder requirements (i.e. time of entry, angle of 

entry, distance of entry). However parameters such as time to first movement and 

block time could not be confidently extracted given the resolution of image processing 

techniques. For example, to determine block time, the time where the foot leaves the 

block must be confidently identified. Even at 50 frames per second, which is double the 

frame rate of the current cameras used by British Swimming, there is uncertainty 

associated with the exact time the foot leaves the block, see 624HFigure 4-11, due to the 

amount of movement occurring between two consecutive frames, i.e. 0.02s. For a 

‘normal’ camera, operating at 25fps this uncertainty is aggravated. For this reason it 

was considered that additional components, integrated with vision techniques, would 

have to be used to supplement analysis, provide additional performance metrics and 

ultimately satisfy more of the stakeholder requirements.  
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4.3 25BPerformance measurements during the block phase using force plate 
technology 

 

 
Figure 4-12: Force profile of a block start aligned with vision data 

 

Improvement in the initial part of a start depends on understanding how the athlete 

responds to the start trigger and generates forward velocity on the starting blocks. 

Detailed understanding can be best achieved by instrumenting the starting blocks (i.e. 

for force-time measurement) and integrating with other measurement technologies 

(e.g. vision systems, accelerometers). Using the instrumented starting block developed 

in Loughborough (see Chapter 3: Development of Component Technologies, Section 

3.3), force data were collected of a number of swimmers performing a block start (see 

625HFigure 4-12). The aim was to determine information on the required parameters Time 

from gun to first movement, Block time, Time to entry, Distance of Entry and Velocity off 

Blocks. It was also anticipated that other indicators of performance could be 

determined from the recorded force profiles.  

 

Data capture was initiated by a physical analogue trigger into the start block which also 

generated an audio signal to alert the athlete to start. A simultaneous capture trigger 

was input into the video camera (see 626HFigure 4-12). This allowed video and force data to 

be synchronised and hence force profile features could be attributed to actions seen on 

the video. Time from gun to first movement could be readily distinguished by the time 
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from the trigger to when the force profiles start to deviate from the baseline levels. In 

addition, when the back foot leaves the block during a track start (see 627HFigure 4-12), a 

step in the unload profile in both the y and z axes is produced. Hence Block time can be 

readily determined as the time between the start trigger and the time when the force 

profiles settle at an unloaded value. Note: the difference between the z axis baseline 

levels prior to the trigger and after the athlete has left the block equals the weight of 

the athlete. 

 

 
Figure 4-13: Orientation of axes on instrumented start block 
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Figure 4-14: Centre of Pressure (CoP) data for a track start 
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In addition to multi-axis force data, the time variation in the centre of pressure (CoP) on 

the block can obtained from the force plate (see Chapter 3: Development of Component 

Technologies, Section 3.3). The CoP enables the movement of the centre of force during 

the time on the blocks to be visualised. Sideways movement is described by the x CoP, 

while forward movement is indicated by the y CoP. Typical traces are given in Figures 

4.13 628HFigure 4-14(a), (b) and (c). For this dive the centre of pressure moved from 

slightly (~3cm) towards the left of centre, through to slightly to the right (~ 3cm) after 

0.5 s and returning towards the left of centre (~8cm) as the swimmer leaves the block 

after 0.9 s. This profile is expected where a swimmer is performing a track start with 

their left leg as their front foot, i.e. they will be expected to show a left dominant force 

on leaving the block as their right leg is no longer in contact with the block. It is 

important to note that although the swimmer appears to be shifting their force on the 

block, the values of displacement are in centimetres suggesting a relatively central 

force production overall.  The y CoP was seen to move from slightly in front of centre 

(~20cm) in the ready position, indicating a front weighted track start. Note: this 

identification of technique was confirmed in the video. The force then shifted (~25cm 

max) towards the back of the block (between 0.36 and 0.66s) as the swimmer pushed 

back and down onto their back leg. The CoP then returned to forward of centre 

(~30cm) as the swimmer’s centre of mass travels forward and leaves the block after 

0.9s. Note: The displacement of y CoP in this axis was much greater than the x CoP, i.e. 

+/- 20-25cm. This was expected as the swimmer shifted weight from a front weighted 

start position to then driving off the back and then front leg.  Only by integrating the 

video data with the force profile data was it possible to understand in detail the 

movement in the y axis in terms of the shifting of weight throughout the start. 
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Figure 4-15: Force profiles from two different athletes 

 

Force data have been collected for a number of different starting strategies for a 

number of different athletes of different capabilities such that variability’s in technique 

and ability could be observed. An example of these data for an elite and an amateur 

swimmer are given in 629HFigure 4-15(a)-(d). Both swimmers performed their preferred 

track starts from the block. Data are shown for two consecutive dives for the elite 

swimmer performed and three consecutive dives for the amateur. They were both 

instructed to dive maximally for each of their starts. The elite swimmer generated two 

highly consistent dives which were demonstrated in the “identical” nature of the timing 

and amplitude of the force profiles in both y and z directions. For these two dives the 

magnitude for the y and z axes were 1N and 23N, respectively, with a timing difference 

of 0.01s and 0.00s. The amateur swimmer however produced two force profiles 

displaying highly variable timing and amplitude outputs in both y and z directions, 

relative to the elite swimmer. For these two dives the magnitude for the y and z axes 

were 99N and 71N, respectively, with a timing difference of 0.19s and 0.06s. Even 

though the timing and magnitude for the values of the three dives were noticeably 

different, some shape consistency can be seen in 630HFigure 4-15(c) and (d). The observed 

profiles can easily identify one swimmer as performing with a consistent technique 

whereas the other was presenting very inconsistent outcomes, attributed to their 

ability and experience. 
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Figure 4-16: Force profiles from a single athlete performing two different techniques 

 

The ability of an elite swimmer to improve their technique and learn new skills is 

evident from the force profiles in Figure 4-16. The swimmer performed four track 

starts, the first two using their standard technique and the second with an alternative 

technique. Instead of gripping the front of the block with their thumbs resting on the 

top surface (i.e. normal) they were directed to bring the thumbs forward, such that the 

thumbs were not opposing the fingers and applying force onto the top of the block (i.e. 

adjusted). 

 

Results from the adjusted trials ( 631HFigure 4-16 (c) and (d)) produced force profiles which 

were slightly less consistent than the normal trials ( 632HFigure 4-16 (a) and (b)). This 

variability in timing and amplitude was attributed to the inexperience of the swimmer 

using the new technique i.e. developing a new skill. Nevertheless, both dives, normal 

and adjusted share similarities in shape which is not unexpected considering the minor 
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change in technique that was adopted. However it is interesting that the timing and 

magnitude profiles are different as evidenced by overlaying the four dives in 633HFigure 

4-16 (e) and (f). It was apparent that the new technique started to generate forward 

force earlier than the previous technique (∆ t= 0.1s). However, the negative peak in the 

z axis, circled in 634HFigure 4-16, probably due to the pull up of the arms, occurred later (∆t 

~ 0.06s) using the new technique. The impulse from the swimmers first two dives, i.e. 

using their normal technique, equated in both cases to 444N. Using the alternate 

technique impulse was reduced to 403N and 411N respectively.  Given the limited trial 

data it cannot be concluded whether this 10% reduction in impulse is significant for 

overall performance. Nevertheless the time between the arms pulling up on the block 

and the swimmer leaving the block was reduced  (∆t ~ 0.05s) using the new technique.  

 

Detailed understanding of the benefits of the adjusted starting technique could not be 

completely understood given this limited testing exercise. Nevertheless, the ability of 

force data to highlight differences in techniques and performance differences between 

different swimmers has been demonstrated. This in itself is useful in understanding the 

progression of athlete performance over time and in quickly quantifying how changing 

technique can affect overall dive characteristics.  

4.3.1 71BCalculating parameters from force data 

 

 
Figure 4-17: Resultant forces off the blocks 
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The initial phases of the start up until entry into the water are totally dependent on the 

forces generated on the block.  Once the athlete has left the block with an initial velocity 

it should be possible to determine time to entry and distances from Newton’s Laws of 

motion. In order to determine the vertical and horizontal forces with respect to the 

Earth’s surface (i.e. with gravity in the vertical plane) the forces (and / or velocities) 

measured from the start block data have to be corrected for the 5 degree angle of the 

block (i.e. angle α in 635HFigure 4-17). Additionally the height of the swimmers centre of 

mass has to be estimated and the height relative to the waterline for use when 

predicting the Time to entry parameter. 

4.3.1.1 97BPredicting velocity using the impulse-time relationship 

 
Figure 4-18: Predicting velocity off the blocks using force data 

 

The horizontal (vy0) and vertical components (vz0)of the velocity of the swimmer off the 

blocks can be predicted from the respective force-time (i.e. impulse) profiles as 

indicated in 636HFigure 4-18. Essentially the velocities can be determined by calculating the 

area under the respective profile and dividing by the mass of the swimmer. The limits 
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of the integration need to be chosen carefully since it is not immediately apparent from 

the profile which elements are contributing to the forward projection of the swimmer 

and which correspond to biomechanical movements that are part of the technique. In 

this case the force generated from the initial start signal (i.e. t=0s) up until the time the 

swimmer left the blocks (i.e. t=0.9s when it was unloaded), was used to determine the 

impulse (i.e. Σ Fz0|y0 t dt) of the start. Impulse was calculated using the trapezium rule 

and determined for both horizontal and vertical force components. The weight of the 

swimmer was subtracted from the raw vertical force data prior to the velocity 

calculations. The resulting output was a prediction for the instantaneous vertical and 

horizontal velocities  relative to the vertical and horizontal axes of the block. 

 

 
Figure 4-19: Calculating resultant velocities given block angle 

 

Velocities relative to the force plate were resolved into components relative to the 

waterline as detailed in 637HFigure 4-19 using the 5 degree angle of the plate. The resulting 

transformed velocities are made up from components of both the x and z velocities 

relative to the block (see 638HFigure 4-19). This transformation allows comparisons to be 

made between velocities predicted from force data and velocities measured using other 

techniques, such as digitising video images since as the coordinate frames (and origins) 

are the same. 
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Equation 4.1: Predicting velocity, constant acceleration equations 

� 

v = velocity final

u = velocityinitial

a = acceleration
t = time

v = u + at

horizontal
vx = velocityx

v x0= velocityat _ xo_ position

x = displacementx

xo = displacementat _ x0 _ position

vx = vx0 ⇒ x = x0 + vx0t ⇒ x = vx0t

vertical
vy = velocityy

v y0= velocityat _ yo_ position

y = displacementy

yo = displacementat _ y0 _ position

vy = vy0 − gt ⇒ y = y0 + uy0t −
1
2

gt 2 ⇒ y = vy0t −
1
2

gt 2

 
 

Knowledge of the components of velocity enables the calculation of flight time, flight 

distance and entry velocities using standard equations of motion (see 639HEquation 4.1). 

Calculation of the flight time (and subsequently the distance to entry) of the swimmer 

requires the height of the centre of gravity of the swimmer relative to the waterline to 

be known as they stood on the blocks. Rearranging 640HEquation 4.1for the vertical 

component resulted in a quadratic solution for the time to entry (see 641HEquation 4.2). 
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4.3.1.2 98BPredicting flight time and distance  

 
Equation 4.2: Solving quadratic equation for time 
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Solutions to 642HEquation 4.1 provide a prediction of flight time ( 643HEquation 4.2). The flight 

time multiplied by the predicted horizontal velocity at take off is used to generate an 

estimate of the flight distance. It is important to note that the predicted flight time and 

flight distance are relevant for the centre of mass of the swimmer (i.e. not the tips of the 

fingers) and therefore if results are to be compared with those derived from other 

techniques, for example manual digitising of video images, times and distances relevant 

for the centre of mass and not the swimmer’s from hands and /or toes need to be 

derived. 
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4.4 26BResults from force data predictions 

 
Figure 4-20: Comparison of the digitised horizontal velocity from video images with the force predicted 

horizontal velocity from the force plate data 
 

Force data was used to predict the instantaneous force predicted horizontal velocity 

(FPHV)of the swimmer on leaving the starting block for 18 track starts (see 644HEquation 

4.1). The range of the integral used for these predictions was from time zero, i.e. the 

start of the capture (the point when the starting signal was activated), to the point 

where the block was completely unloaded (as indicated in Figure 4-18). Each of the 

starts was concurrently filmed and the video was digitised to give an equivalent 

measure of velocity off the blocks . Digitising the time sequences of images was chosen 

as the standard method for determining components of velocity as it is the currently 

accepted method used in the swimming domain. When digitising the video, a point on 

the axis of the line between the small of the back and stomach was tracked to provide a 

consistent feature in a relatively central position on the swimmer. This position was 

chosen to give a prediction of overall, gross body movement. Video was calibrated 

using measured dimensions within the field of view (for distances) and knowledge of 

the frame capture rate (e.g. 50 fps for time).  

 

For the dives analysed the FPHV from the force plate data is lower than the digitised 

horizontal velocity (DHV) equivalent by on average 28%, (with a standard deviation of 

4%) (see 645HFigure 4-20). Nevertheless, a correlation between the digitised and force plate 
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predicted velocities is evident (i.e. best fit line equation was, y=0.8153x+1.68, with an 

R2 value of 0.49). 

 

Error bars have been used on the graph to indicate the level of uncertainty inherent in 

both the digitising and force analysis techniques. To ascertain these values for the 

digitised data, the same dive was analysed five times and the average variability of the 

calculated velocity in both horizontal and vertical directions was recorded. This 

equated to 6.3% and 7.9% for horizontal and vertical velocities respectively. The error 

in the FPHV’s were quantified by asking three experienced analysts to determine the 

point at which they would judge the block was unloaded. On average this equated to a 

3.9% variability. This variability could be eliminated in future analysis by using fixed 

thresholds and recognised features within the force profiles rather than human 

judgement to decide where the impulse integration limits. 

 

 
Figure 4-21: Prediction of vertical velocity off the blocks vs. digitised equivalent 

 

A comparison of the digitised vertical velocity (DVV) and force-predicted vertical 

velocity (FPVV)  components is given in 646HFigure 4-21. Error bars (determined by the 

methods outlined above) have been included to indicate inherent uncertainty. As with 

the horizontal velocity predictions, the vertical velocities are lower than the digitised 

equivalents (i.e. by 42% on average).  However it is important to note that the variation 

in these differences is high (i.e. standard deviation associated with these differences 
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was 36%) which implies indicates a high variability in the vertical force profile 

measurements of the swimmers. 

4.4.1.1 99BPredicting flight time and distance  

 

 
Figure 4-22: Prediction of flight time vs. digitised equivalent 

 

The flight time of the swimmer depends on the point that is chosen to determine the 

entry into the water (i.e. fingertips, head, centre of mass). The force predicted flight time 

(FPFT) determined using the FPVV (see 647HEquation 4.2) and an approximation of the 

height of the swimmers centre of mass on the start block is compared with the digitised 

flight time (DFT) in 648HFigure 4-22. The DFT represents the time from the point at which 

the swimmers feet leave the blocks to the point at which their central marker point 

enters the water. The average difference between the FPFT and the DFT was 26% with 

a standard deviation of 6%.   
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Figure 4-23: Prediction of flight distance vs. digitised equivalent 

 

Force predicted flight distance (FPFD) is determined by multiplying the FPHV by the 

FPFT. The digitised flight distance (DFD) was determined from the distance the central 

marker on the swimmer’s torso moved from the time the swimmer’s foot left the blocks 

to the time that the same marker entered the water. Note: the differences in the FPHV 

component ( 649HFigure 4-20) and FPFT ( 650HFigure 4-22) will be mirrored in FPDE values, see 

651HFigure 4-23.  

 

In the analysis above, the force predicted measures consistently underestimate the 

parameters when compared with the digitised values. The key factor determining the 

predicted values is the horizontal impulse of the start on the blocks. The time from the 

start of the capture to the unloading of the block may not be the most appropriate 

impulse time period to take (see 652HFigure 4-18). For example a better estimate of the 

impulse contributing to the generation of horizontal velocity may be derived by 

integrating between the time to first movement up to unloading of the block hence 

removing the negative contributions (i.e. forces in the opposite directions to motion) to 

the impulse (see 653HFigure 4-18). Time to first movement can be readily selected on a 

typical force profile at the start of the trace (see 654HFigure 4-12). The negative value at the 

start of the trace indicates that the swimmer was in a front weighted starting position. 

This negative value when multiplied by the reaction time (i.e. time to first movement) 

reduces the total impulse of the start which in turn would lower the predicted 
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horizontal velocity from the blocks hence reducing the differences between the 

predicted values with those of the digitised video data. 

 

 
Figure 4-24: Horizontal velocity predictions for impulses taken from time zero and time 1st movement 

 

Digitised horizontal  velocities (DHV’s) and force-predicted horizontal velocities 

(FPHV’s) from the block derived by using the start time (tzero) and the time to first 

movement (t1st movement) as the lower limits of the integration. The upper limit of 

integration in both cases is taken as the point of the block unloading (see 655HFigure 4-24). 

As expected, using t1st movement shifts the predicted velocities towards the 1:1 ratio line. 

Consequently the average difference is reduced from 28% to 23% with a standard 

deviation of 4% to be compared with 4.8% calculated for using the impulse from time 

zero. 
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Figure 4-25: Vertical velocity predictions for impulses taken from time zero and time 1st movement 

 

Vertical velocities were also predicted using the impulse determined from t1st movement, 

see 656HFigure 4-25. As with the horizontal velocity predictions this shifted the results 

towards the 1:1 line. The average difference between digitised and force-predicted 

vertical velocity was reduced from 42% to 21%, however, there was still a very high 

standard deviation associated to these differences, (i.e. 36% c.f. 33%).  
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Figure 4-26: Flight time predictions for impulses taken from time zero and time 1st movement 

 

Predicted flight time using the t1st movement impulse produces similar results to using 

impulse from tzero ( 657HFigure 4-26). The error seen however, was increased slightly from 

26% to 28%, with very similar standard deviations, i.e. 6% and 5.5% respectively.   

 

 

 
Figure 4-27: Flight distance predictions for impulses taken from time zero and time 1st movement 
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Force-predicted flight distance using t1st movement resulted in similar variability to 

predictions from tzero, mainly due to the dependence of this parameter on the FPHV, 

658HFigure 4-27. On average the difference was 31%, (previously 35%), with similar 

standard deviations in both cases, i.e. 8.6% and 9.1%.  It is noted that neither of the 

force predicted measures are able to provide a method of predicting the horizontal 

velocity off the blocks and flight time that enable an accurate determination of the flight 

distance of the centre of mass. However key points to note are that: (i)  predictions 

focussed on the centre of mass may not be as easily understood, interpreted and 

accepted by swimming coaches and sports scientists since current “standards” deal 

with absolute measures of distance i.e. distance from the wall to fingertip or head entry 

and (ii) accurate / absolute determination of parameters is not required if the aim is to 

provide information on changes in performance both within and between athletes’ 

performance profiles. Scaling can always be applied if comparisons with digitised video 

determined parameters are required. 

 

 
Figure 4-28: Comparison of proximity to hand measurement for methods using impulse from time zero 

and time 1st movement 
 

A summary of the average differences between the two force-predicted and the digitised 

parameters are compared in 659HFigure 4-28 (i.e. for horizontal velocity, vertical velocity, 

flight time and flight distance). It is concluded that predictions using t1st movement results 
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in force-predicted parameters closer to the digitised values than those using tzero for all 

parameters with the exception of flight time. Although these data suggest t1st movement is 

the more accurate method, the relatively small number of samples mean that future 

work should be focussed on gathering a larger quantity of data to confirm these trends. 

Similarly it may be advantageous to use more complex digitising techniques to predict 

the centre of gravity of the swimmer [Dempster, 1955], rather than tracking a single 

point approximated to the centre of mass of the swimmer. Note: the centre of gravity, 

which, may be outside the body at points due to the relative position of the legs, torso 

and arms at certain points within the dive. 

 

4.5 27BResults from force plate starts analysis  

 

 
Figure 4-29: Standing height of swimmer vs. distance of entry 

 

Synchronised force and video data have been analysed for 18 swimmers each 

performing at least two starts. Video data was used to obtain the distance of fingertip 

entry from the wall. The standing height of the swimmer was also recorded. The 

distance of entry is compared with the standing height of the swimmer in 660HFigure 4-29 

to   illustrate the relationship between height and distance of entry (i.e. taller 

swimmers would naturally enter the water further from the starting blocks). Swimmers 
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tested included one elite swimmer and University squad swimmers with a range of  

experience at block starting. 

 

The general trend within the data illustrates the obvious fact that taller swimmers dive 

further. However it is also apparent that more experienced swimmers produced dive 

distances above than the best-fit line (see 661HFigure 4-29) (i.e. dived greater distances for 

their heights). Inexperienced swimmers, including backstrokers, underperform when 

diving from block starts. A more appropriate performance indicator than the current 

distance of entry could be the ratio between distance of entry and height (i.e. a 

normalised distance of entry), rather than the absolute distance. 

 

 
Figure 4-30: Peak horizontal force vs. normalised distance of entry 

 

Peak horizontal forces are plotted against distance of entry to height ratio for 18 track 

starts performed by 8 different swimmers in 662HFigure 4-30. The results highlight two key 

factors. Firstly experienced swimmers produce a higher distance of entry to height 

ratio than less experienced swimmers. Secondly it is noted that the more experienced 

swimmers generate further normalised distances at lower peak horizontal forces than 

less experienced swimmers indicating increased efficiency in generating distance of the 

blocks.  
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Figure 4-31: Horizontal impulse from time zero vs. normalised distance of entry 

 

Horizontal impulse provides a measure of the time integrated variation in horizontal 

force. The horizontal impulse (integrated from time zero until the block was unloaded) 

is plotted against the distance of entry to height ratio for the previous dives in 663HFigure 

4-31. From the data presented it is possible to conclude whether a higher impulse is 

preferable for dive performance. Seven out of the eight dives identified as elite or 

experienced produced relatively low to mid range impulses. The elite GB swimmer 

exhibited the furthest normalised distance performance (~1.60m) for low horizontal 

impulse indicating an efficiency in generating forward motion off the starting blocks. 

The data indicate that it is not necessary a requirement to have a high impulse for a 

good dive but instead that better swimmers are able to travel further than 

inexperienced swimmers using less or equal impulses on the blocks. 
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Figure 4-32: Horizontal impulse from time 1st movement vs. normalised distance of entry 

 

The same comparison between horizontal impulse and distance of entry to height ratio 

was made using the impulse calculated from first movement, rather than from time 

zero, see 664HFigure 4-32. As expected the results produced higher impulses for each of the 

athletes by on average 16N. 

 

 
Figure 4-33: Horizontal velocity at take off, predicted from time zero vs. normalised distance of entry 
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Horizontal velocity predicted from force data is compared to the normalised distance of 

entry in 665HFigure 4-33.  The elite or experienced swimmers generated higher velocities 

off the block than those identified as inexperienced swimmers. This supports the 

hypothesis that high instantaneous horizontal velocities at take off result in a greater 

distance of entry [Breed and Young 2003, Welcher et al 2008, Mason et al 2007]. 

However since one of the inexperienced block starters had a predicted horizontal 

velocity comparable with those of the experienced swimmers, even though horizontal 

velocity may be a good indicator of performance, when used in isolation it may not 

always accurately identify good from bad technique. 

 

 
Figure 4-34: Horizontal velocity at take off, predicted from time 1st movement vs. normalised distance of 

entry 
 

Predicting horizontal velocity from t1st movement increased the predicted velocity, on 

average by 0.22m/s. This did not affect greatly the gross trends in the data seen in 

666HFigure 4-34, i.e. the differences between the experienced and non-experienced 

swimmers remained relatively unchanged (i.e. 7.4% for two dives performed by the 

elite GB swimmer and 9.95% for two dives performed by an inexperienced squad 

swimmer) 

 

Two derived parameters appear to support the discrimination of performance of a 

swimmers dive. Firstly the distance of entry has to be normalised by the swimmers 



 164 

standing height. In all cases the experienced swimmers were able to travel further per 

metre of height than less experienced swimmers. In addition horizontal velocity was 

found to be a better indicator of dive performance than either horizontal impulse or 

peak horizontal force. It is important to note that additional data, beyond the raw force 

data were required to carry out the analysis, i.e. standing height of the swimmer, height 

of the swimmers centre of gravity on the block and the distance of entry. The height of 

the swimmers centre of gravity on the block and distance of entry could be obtained via 

automated vision techniques where a marker could be placed on the central part of the 

body.  
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4.6 28BStarting parameters derivable from acceleration data 

 
Figure 4-35: Synchronised start data from vision, force plate and accelerometer component technologies 

 

Pilot testing was undertaken in which complete integrated data sets were collected, 

comprising synchronised vision, force and acceleration data. Example data sets are 

presented in 667HFigure 4-35. The addition of the acceleration component facilitates the 

automatic measurement of additional parameters including time to first stroke from the 

start, stroke count and time to turn. The synchronised video was used to support the 

identification of features evident in the acceleration data. Acceleration signatures 
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within the block, flight and glide phases were not established within these initial pilot 

tests, however, future work should look to ascertain these profiles. For example during 

the glide phase, the acceleration signature evident in 668HFigure 4-35 may represent 

movements associated with dolphin kicks occurring prior to first arm pull. 

The combination of all measurement components enables more complete analysis of 

swimming performance to be undertaken. Force data is particularly effective at 

providing insight into the block phase and initial flight parameters of the swimmer. 

However, in isolation, parameters derived from force data would only supply limited 

information regarding the overall starting performance. Acceleration data is useful in 

establishing parameters such as stroke initiation, stroke count and lap timing. 

However, further high speed integrated video analysis is required to enable the 

acceleration profiles during the block and flight phases to be completely understood. 

The potential to use automated vision analysis techniques have been evaluated. Initial, 

small scale trials, using the developed LED marker system was capable of providing 

information for the over water phase of the dive. Additional trials must be undertaken 

to prove the robustness of this system. Raw video footage is integral to in supporting 

the validation for other technologies, enabling data to be understood and interpreted 

properly. 
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4.7 29BSummary 

 

Three component technologies have been developed and their ability to add value to 

starts analysis  evaluated in this Chapter. The capability of each component has been 

tested and proven for a number of applications.  

Table 4-2: Start measurement parameter requirements 
 Simple Compound 

Starts  • Time from gun to 
first movement 

• Block time 
• Angle of entry 
• Time to entry 
• Distance of entry 
• Maximum depth 
• Break out distance 
• Break out time 
• First stroke timing  

• Velocity off blocks 
• Velocity of glide 
• Velocity at break out  

 

Parameters that have been quantified and proven as indicators of diving performance 

within this chapter are highlighted in bold in 669HTable 4-2. Automated vision techniques 

and / or integrated pressure transducers could enable the maximum depth and  

velocity of glide to be measured. It is also possible future work could focus on the 

integration of the accelerometer data within appropriate limits to derive the 

outstanding velocity information during the glide phase. 

4.7.1 72BRQ1 Automated Vision 

 

Vision based methods have been explored in this Chapter and their ability to provide 

performance analysis information about the swimming start assessed. Automated 

vision analysis techniques have been applied for the analysis of start performance. The 

use of a controlled garment has been proven capable of robust analysis however, 

stakeholders were not comfortable with wearing additional garments for testing. The 

development of wearable LED markers provide an alternate solution that in initial 

trials show promising results, suggesting they may also be capable of providing a 

robust image processing solution, this however, must be proven using a greater 

number of trials. Spatial thresholding techniques were found to be more capable of 

robust segmentation, over temporal techniques. In addition the use of markers allows 

more specific landmarks (e.g. wrist, elbow, shoulder, torso, hip, knee, ankle) to be 
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tracked for biomechanical analysis. To maximise the signal to noise ratio, red LED 

markers are employed which create a unique, consistent distinguishable feature that 

does not suffer from vision analysis issues associated with varying lighting conditions. 

The use of wearable LED markers was preferred to track specific landmarks and 

facilitate the analysis of specified performance parameters, as stated within the 

stakeholder requirements. These included: angle of entry, distance of entry and time of 

entry. The ability to track landmarks, although not presented within these examples, 

would also enable automated measurement of velocity off the blocks. 

 

There were a number of advantages identified as a result of introducing automation 

into vision analysis techniques. These included a significant reduction in the time 

associated with analysis enabling timely feedback, i.e. within the session, rather than 

post session. Vision analysis code, even in the development environment, i.e. Matlab, 

took less than a second to process. Typically, manual analysis will take a time 

equivalent to at least twice that of the event to perform analysis, e.g. if a swimmer takes 

8 seconds from the gun to 15m, it will take at least 16 seconds to measure parameters 

such as angle of entry, usually longer. In addition the use of algorithms meant that 

performance could be quantified in a repeatable manner, i.e. removal of the variability 

associated with human judgement. In turn this removed the reliance on operator 

expertise, which would previously have impacted on the “quality” of measurements. 

4.7.2 73BRQ2 Force Plate 

 

Force plate analysis of the start has been undertaken using an instrumented starting 

block with synchronised vision. It has been found that consistency in force profiles 

could indicate athlete performance without the need to supplement data with vision. 

The instrumented diving platform is able to provide automatically information 

regarding time to first movement from the gun and block time parameters as specified 

within stakeholder requirements.  

Force data collected was also used to predict the flight parameters of the start. These 

include horizontal and vertical components of velocity, flight time and flight distance. 

Initial results suggest that force is capable of predicting the velocity of the centre of the 

mass. Flight time can be predicted using the height of the swimmers centre of mass on 

the start block combined with vertical velocity components. Refinement was achieved 

by adjusting the time window during which the impulse integrated. This adjustment 
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translates the force predicted results towards expected velocities determined from 

digitised video data. 

Finally derived measured parameters were plotted against distance of entry to 

highlight differences between experienced and inexperienced starters. Discrimination 

of swimmer ability and performance there is evident by plotting parameters against a 

normalised distance of entry parameter i.e. (distance of entry / standing height). More 

competent swimmers are able to travel further per metre of height than less 

accomplished swimmers using smaller horizontal forces an impulses. In addition, 

horizontal velocity was found to be a better indicator of dive performance than either 

horizontal impulse or peak horizontal force, given this trial. Further work should be 

undertaken with larger numbers of athletes to investigate these relationships and 

conclude whether they hold in most cases. 

4.7.3 74BRQ3 Wireless Node              

A wireless node was used to provide acceleration data regarding starting performance. 

Features found in data provide information regarding timing of the first stroke from the 

start trigger. It is believed that acceleration features in the block, flight and glide phases 

can enable automatic measurements of parameters such as underwater kicking, block 

and flight times. Although it has been proven that block and flight times can be derived 

from force data, the ability to distinguish these characteristics from acceleration data 

would mean that information could be gathered in the absence of an appropriate 

instrumented block. 
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Chapter 5 

 

 

 

 

5. 4BCASE STUDY – FREE SWIMMING 

 

5.1 30BChapter Overview 

 

The measurement requirements for free swimming are listed in Table 5-1670. Distance per 

stroke and stroke rate (highlighted in bold) are the parameters that are currently 

monitored and these only determined for race analysis. because the parameters have to 

be obtained manually they are not monitored routinely during training. The research 

detailed in this chapter is focussed on providing measurement of the parameters listed 

in 671HTable 5-1 in a reliable, timely an efficient manner using wireless acceleration data 

integrated with vision and hand timing components. 

 
Table 5-1: Free swimming measurement parameter requirements 

 

 Simple Compound 

Free 
swimming  

• Stroke count 
• Distance per stroke 
• Stroke duration 
• Rotation during the 

stroke: longitudinal and 
vertical  

• Variations in stroke 
cycles 

• Split times 

• Stroke rate 
• Swimming velocity  
• Variations in velocity 

throughout a stroke cycle  
• Indicators of skill 
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Figure 5-1: Component set up for free swim testing 

5.1.1 75BResearch Questions (RQs) 

 

RQ1 Automated Vision 

a. Are there any vision based methods that can provide a robust and 

acceptable solution for free swimming performance analysis? 

b. What techniques are available to maximise the signal to noise ratio for 

both over and underwater environments to allow robust automated 

vision analysis? 

RQ2 Wireless Node 

a. What free swim specific parameters are evident in accelerometer data? 

b. What are the most appropriate methods for the development of 

automated signal analysis?   
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5.1.2 76BChapter Structure 

 

Vision methods for automated vision analysis of free swimming, specifically spatial 

thresholding of skin, coloured hats and markers were tested for both over and under 

water applications. Noise associated with underwater scene characteristics are 

discussed and methods for maximising the signal to noise are detailed. An example of 

tracking using active led markers is presented and information on parameters that can 

be derived from the markers reported. 

 

Free swim parameters that can be derived from acceleration data are detailed in this 

chapter. In addition, time and frequency domain methods are evaluated and 

recommendations for most successful techniques for signal processing of acceleration 

data are made.  
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5.2 31BVision methods for automated vision analysis of free swimming 

 

The value of automated vision techniques has been demonstrated for swimming starts 

analysis  in Chapter 4: Case Study - Starts. The research detailed in this section is 

focussed on determining how vision techniques can be utilised to characterise free 

swimming performance. of the parameters listed in Table 5-1, it was anticipated that  

stroke count, distance per stroke, stroke duration, variations in stroke cycles, stroke 

rate, swimming velocity, variations in velocity throughout a stroke cycle and time to 

15m could be determined using automated vision analysis. However for complete 

coverage of the pool either a camera located on a track or a system integrating multiple 

cameras would be required. The practicalities of implementing complete coverage have 

hence limited the analysis to the determination of a vision based timing gate to 

determine the time a swimmer passes pre-defined distances i.e. time to 15m (see 673HTable 

1-1).  

 

5.2.1 77BOverwater tracking using spatial thresholding: timing gate application 

 
 

Figure 5-2: Example of skin and colour thresholding for a plan view camera of free swimming  
 

The implementation of a timing gate using automated vision analysis is illustrated in 

674HFigure 5-1 (system schematic) and 675HFigure 5-2 (example images and segmentation 

results). The swimmer’s head was chosen as the fixed reference point for the timing 

recording. A standard web camera (Microsoft Lifecam VX-6000) was mounted above a 

lane and used to record the swimmer as they passed through the field of view (typically 
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+/- 2 m around the timing gate. determined by the height of the camera (2m) and its 

focal length). The main concerns were to differentiate the swimmer’s head from the 

extremely noisy pool environment and ensure that the timing recoding was not pre-

triggered by either noise or the swimmers arms. To improve the signal to noise ratio: 

(i) swimmers were asked to wear different coloured caps (i.e. red, white, yellow) and 

(ii) a number automated image processing thresholding algorithms were tested.  The 

algorithms used either skin thresholding (see Chapter 4: Case Study – Starts, Section 

4.2) as well as blue, red, white and yellow colour thresholding, see 676HFigure 5-2. Each 

technique segmented the image within pre-defined threshold limits and tracked the 

resulting AOI within the field of view . when the AOI reached the centre of the frame, i.e. 

15m in the pool, the time is recorded. Manual digitisation of the video was used to 

determine a benchmark or expected time, which the automated measure could be 

compared with.  

 

Skin thresholding was tested on a total of 74 trials and was able to segment the 

swimmer from the background when the swimmer was on or near the surface of the 

water (i.e. 100% of images). When the swimmer was deeper the success of the 

segmentation was reduced . The limitation of the skin thresholding algorithm was the 

uncertainty with regards to what part of the swimmers anatomy or feature within the 

images triggered the timing recording. The swimmer’s head was found to trigger the 

timing in only 12% of the videos. The swimmer’s arms or shoulders were most likely to 

cause a trigger, 64% and 24% respectively. The other problem was that the small wake 

preceding the swimmer tended to trigger the system and not the swimmers anatomy. 

This introduces variability into the timing and although small (typical pre-triggering of 

the order of 0.12s), limits the accuracy of the algorithm. When the system was pre-

triggered by the arm of the swimmer the difference between when the head would 

have triggered could be as much as six frames which for the 25fps camera used in the 

testing equated to an uncertainty of 0.24s. 

 

Due to the uncertainties introduced using skin thresholding, testing was carried out in 

which the swimmer was asked to wear a swim hat of a given colour to enhance the 

swimmer’s head in the images. In total 94 videos were analysed for red, white, blue and 

yellow hats. The different colour choices demonstrated a variability in their robustness, 

i.e. whether the hat could be effectively segmented in the video. The success of the 

thresholding algorithm depended significantly on the colour of hat: 
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• 38 red hat videos segment (100%) 

• 24 white hat videos segment (86%) 

• 20 blue hat videos segment (100%) 

• 2 yellow hat videos segment (25%) 

It is not surprising that the red hat was the most successful since there are no other red 

features evident within the image (see 677HFigure 5-2). The success with the blue hat was 

more surprising although it is important to note that despite 100% of the blue hat 

images being segmenting successfully the AOI tracking algorithm was limited by 

presence of additional blue noise in the image (i.e. primarily caused by the line 

markings on the bottom of the pool and swimwear (see 678HFigure 5-2). Timing based upon 

triggers from the red hat was by far the most accurate and repeatable since the head 

could be segmented 100% of the time and the uncertainty in the times when compared 

with manual digitisation were within one frame (0.04s). Note: Failure to segment the 

yellow and white hats as mainly the result of overlapping colour values (i.e. RGB 

values) with the light reflecting from the water’s surface and the wake generated by the 

swimmer.  

5.2.2 78BUnderwater tracking using spatial thresholding 

 

To observe the positions and velocities of the arms, legs and torso within free 

swimming it is necessary to view the swimmer from under the water. Currently this is 

achieved by using a waterproof closed circuit television (CCTV) camera which is 

lowered into the pool. The International pool at Loughborough University also has a 

facility to record the swimmer through a purpose built viewing window in the wall of 

the pool. This is less frequently used by the Performance Scientists as the location of 

the window is inconvenient for most training sessions which are carried out in the 

opposite end of the pool. The CCTV camera provides a more portable and configurable 

solution for underwater viewing. Analysis performed on the recorded videos is 

currently limited to subjective methods (supplemented with hand timing in the case of 

turns). 

 

The ability to isolate the swimmer from the background given the underwater 

environment is vital for this automated vision analysis, see 679HFigure 5-3. As with the out 

of water vision analysis a number of methods were tested to determine their viability 

for differentiating the swimmer from the background. These include: skin thresholding 
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(2), colour thresholding (3.i) of the swimmer and colour thresholding (3.ii) of the 

swimsuit, see 680HFigure 5-3. It was found that thresholding techniques using RGB colour 

channels produced a large amount of noise around the swimmer’s form within the 

segmented image. Maximising the signal to noise ratio was essential for a robust 

system. 

 
Figure 5-3: Examples of spatial thresholding under water  
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Overlapping body parts  makes it difficult to determine the exact motion of the 

swimmer, which is essential when: (i) monitoring the velocity of a swimmer as a fixed 

position must be tracked through time or (ii) looking at technical skills like the turn 

(see Chapter 6: Case Study - Turns). Any lack of confidence in the exact location of the 

point being tracked will result in erroneous measurements of swimmer position and 

subsequently velocity, rotation or other parameters being derived from this position. 

For this reason the use of LED markers placed on key landmarks was tested in 

underwater applications, (3.c) see 681HFigure 5-3.  

 

 
Figure 5-4: Process of using histograms to threshold LED markers 

 

Testing of the LED markers, (developed and evaluated in starting analysis (see Chapter 

4: Case Study - Starts), was carried out by attaching the marker to the hip of the athlete 

during filming using a waterproof CCTV camera. Histograms were generated in the RGB 

colour channel for the AOI, 682HFigure 5-4. and threshold parameters determined such that 

the marker could be discriminated from the background.  
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Figure 5-5: Techniques for noise removal in underwater thresholding 

 

The LED could be readily differentiated from the background even though the red lane 

rope in the foreground created some noise, see 683HFigure 5-5. Subtraction of sequential 

images did not completely remove the lane rope noise from the image, see image 3 in 
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684HFigure 5-5. and hence the image was cropped to remove the noise and optimise 

segmentation. additionally reducing the size of the image and the noise also minimises 

the processing time of the software. 

5.2.2.1 100BUnderstanding noise from lane ropes 

 
Figure 5-6: Looking at lane rope histograms to identify noise sources 

 

Only the lane rope in the foreground of the image contributes to the noise in the image. 

The RGB colour histograms for both the marker and front lane rope are given in  685HFigure 

5-6. Lane ropes deeper within the field of view present do not contribute to this noise 

as their RGB colour properties are attenuated in the water outside the values of the 

marker.  
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Figure 5-7: Attenuation of colour, from analysis in 686HFigure 5-6 

 

The intensity of each of the RGB channels for the three lane ropes (at distances of 2.5m, 

5m and 7.5m from the camera) in the field of view see 687HFigure 5-6 are illustrated in 

688HFigure 5-7. The red channel intensity decreases as a function of distance, the blue 

channel increases and the green channel remains roughly at a constant level. This is 

expected since shows red light is attenuated to a greater degree than blue or green light 

in water [Denny, 1993]. 



 181 

5.2.3 79BExample of underwater tracking using markers 

 
Figure 5-8: Tracking LED marker in free swimming 

 

Free swimming performance was evaluated by tracking a marker placed on the hip of 

the swimmer (see 689HFigure 5-8). This analysis was generated by tracking the marker at 

25Hz, i.e. the frame rate of the camera and enabled the position of the hips of an 

amateur swimmer performing breaststroke swimming to be accurately determined  

(< 10cm). The  average forward velocity was  0.66m/s. Unfortunately the field of view 

(~2m) limits the application of this technology to the analysis of  a single stroke.  
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5.3 32BFree swim parameters derived from acceleration data 

 

 
Figure 5-9: Example of timing using analysis of free swim acceleration data 

 

Accelerometer data using the wireless node (see Chapter 3: Development of 

Component Technologies) was used to provide timing and stroke information in the 

free swimming event (e.g. parameters) (690HFigure 5-9).   In these tests the node was 

located on the small of the swimmers back. Typical traces for the x, y and z components 

of acceleration throughout a freestyle trial are presented in 691HFigure 5-9. Significant 

features represent the individual strokes and the turns at the end of each length. At the 

end of each length the downward peak in the z axis (blue line on the graph in 692HFigure 

5-9) represents the movement/rotation of the node axis as the swimmer turns onto 

their back and then returns to the prone position (further discussion of which can be 

found in Chapter 6: Case Study - Turns). This feature was used to establish split times 

for a number of 100m trials.  

 

In addition to the times derived from the wireless node, manual timing (i.e. current 

practice) was recorded to allow comparison between the two methods. It was found 

that on average the timing derived via the wireless node was less than the equivalent 
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manual timed measure. This may be due to either: (i) delays in judging the time at 

which the swimmer has reached the end of the lane in manual timing or  (ii) by 

uncertainty in which part of the accelerometer trace identifies the end of one length 

and the start of the next.  

 

Comparisons between the wireless node and manual split times are provide in 693HFigure 

5-10. The maximum range of differences varies from 0.72 seconds in trial one to 4.19 

seconds in trial two. The differences appear to be systematic offsets and can occur 

throughout the 100m trial (i.e. sometimes occurring prior to the first split (694HFigure 5-10 

(c)) others only evident after the first split (695HFigure 5-10 (b) and (d)). The differences do 

not increase linearly throughout each trial as would be expected if the wireless node 

clock was drifting. 

 



 184 

 
Figure 5-10: Timing comparison between hand and accelerometer methods of analysis 
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5.3.1 80BPulse analysis 

 
Figure 5-11: A summary of pulse analysis measurement parameters 

 

The shape of the accelerometer traces during the free swimming phase provides an 

indication of the individual stroke characteristics of the swimmer. Detailed analysis of 

these signatures can be used to provide a record of variations in these characteristics 

which can in turn be related to changes in performance. Analysis of free swimming 

accelerometer signatures has included the  measurement of parameters such as pulse 

height, pulse width, rise time and fall time for individual swimming strokes (see 696HFigure 

5-11). Pulse height was established as the maximum height of a given peak whereas 

pulse width was calculated as the time between the signal reaching 50% of the pulse 

height. rise time and fall time were calculated as the time the signal took to reach 75% 

pulse height from 25% pulse height and vice versa. 
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Figure 5-12: Example of pulse analysis for a 100m freestyle swim 

 

The variation in, pulse width, rise-time and fall-time for a 100m freestyle trial are 

illustrated in 697HFigure 5-12. The pulse width had an average value of 1.1 seconds with a 

variability of 0.16 seconds. For this athlete their last stroke into the turn and first 

stroke out of the turn tended to vary most significantly from this average. This trend 

can be seen where points drop below 0.6 seconds, all of which occur at the end of one 
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length or the start of the next within this 100m swim. Rise and fall times have been 

plotted in 698HFigure 5-12, these were averagely, 0.2 seconds, 0.21 seconds, respectively +/-

0.05 seconds or 25%. The athlete tested was of recreational standard and therefore it 

was expected that equivalent data collected for an elite athlete would demonstrate 

more consistent stroking parameters, i.e. with better control into and out of the turns. 

Similarly it was expected that for a different stroke, e.g. breaststroke, that the 

proportion of rise to fall time would not be so equally distributed or that there may not 

be a single rise and fall associated with each arm pull but multiple. These differences 

may provide a method from which stroke type could be distinguished automatically 

from raw data.  

5.3.2 81BTime domain analysis 

 
Figure 5-13: Analysis of free swimming using a zero crossings algorithm 

 

The extraction of the number of strokes and stroke duration parameters (see Table 5-1 

) from freestyle swimming accelerometer data in the time domain is illustrated in 

700HFigure 5-13. The times at which the y-axis trace crosses the zero line (i.e. using a  zero 

crossings algorithm) are used to establish the point at which one stroke starts and the 
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other ends. In the zero crossings algorithm the data are initially normalised (i.e. biases 

are removed) so that values are centre on zero by subtracting the mean  from every 

member of the data set. A zero crossing is identified by multiplying consecutive data 

points. If the result is negative then a zero crossing has occurred. A counter is 

incremented and the time of this crossing recorded. Differences between crossings 

provides information on stroke counts, stroke durations and variations. 

 

Summary statistics taken during six consecutive lengths are illustrated in 701HFigure 5-13. 

These statistics include the total number of strokes, maximum and minimum stroke 

durations, average stroke duration and their standard deviation. For example, over the 

six lengths 86 strokes were recorded. The average stroke length during the first length 

was 1.68s and varied between ranges of 1.73-1.61s.  A histogram of the individual 

stroke lengths is given in 702HFigure 5-13. In this way variations throughout trials can be 

monitored and indications of the onset of fatigue recognised. Average stroke distances 

and velocities are readily calculated from the summary statistics on number of strokes, 

times and distances covered (determined from the number of lengths swum). 

 

The above features were all determined for the wireless node located in the small of the 

swimmers back. Coaches and athletes have indicated that it may be more practical to 

mount the node on the wrist, like a watch. Acceleration signatures will be significantly 

different for wrist mounted nodes.  To understand these differences a node was 

mounted to the wrist of the swimmer and data was collected for a number of lengths of 

freestyle swimming.  

 

Wrist mounted acceleration raw data exhibit more complex features (i.e. multiple cyclic 

peaks) than those observed when mounted on the small of the back (e.g. compare 

703HFigure 5-14(a) with 704HFigure 5-14).  However by using a low pass filter with a very low 

cut off frequency, i.e. 1hz, the signal can be  filtered to a form similar to that seen in the 

small of the back, see 705HFigure 5-14. It could then be analysed using the same techniques 

as described above, using zero crossings to identify strokes and their durations. It is 

noted that this low pass filter removes the features from the wrist data that represent 

the individual signature of the athlete’s performance/skill. Further analysis of the data 

with less extreme cut off frequencies are required to derive measures (e.g. pulse height, 

pulse width, rise-time, fall-time, number of secondary peaks)  relevant to skill (see 

706HFigure 5-11 above). 



 189 

 
Figure 5-14: Example of filtering wrist data using varying cut off frequencies 
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Figure 5-15: Applying zero crossings algorithm to wrist acceleration filtered at 1Hz cut off frequency 

 

A summary of the analysis of the wrist mounted accelerometer data is presented in 

707HFigure 5-15. Although the raw data represent a much more complex signal than those 

recorded from the small of the back, filtering the data (i.e. using a Butterworth filter 

with a cut off frequency of 1hz) enables the same algorithms to be used to determine 

gross stroking parameters, see 708HFigure 5-15.  In the example given, 15 strokes were 

recorded with an average stroke duration of 1.7 seconds varying between ranges of 

1.82-1.41s.  
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5.3.3 82BFrequency domain analysis 

 

 
Figure 5-16: Comparing time and frequency domain methods for analysis of stroke rate 

 

The use of time domain analysis has been proven as effective in the analysis of free 

swimming data. Frequency domain analysis has been explored to establish its potential 
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use in deriving performance parameters from free swim data. The same set of data 

(cropped to cover a single length) was analysed using both time and frequency domain 

feature extraction, see 709HFigure 5-16. It was anticipated that due to the cyclic nature of 

the free swimming accelerometer signal, the stroke rate may be readily derived using a 

Fast Fourier Transform (FFT) to determine the fundamental frequencies present in the 

signal. The Fourier Transform of the freestyle data returned one predominant peak (at 

f=14) and one secondary peak. The primary peak equates to the number of strokes in 

the data set (i.e. stroke count = (f –dc value) = (14-1) = 13). The secondary peak indicates 

higher frequency present in each of the individual swimming strokes that could be used 

to indicate a measure of the individual athlete freestyle signature. It can be concluded 

that free swimming data stroke rate could be derived using either time or frequency 

domain characteristics. Note:  the overhead in processing an fft and the relative 

simplicity and accuracy of the zero crossing algorithm supports the adoption of time 

domain analysis over frequency domain.  
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Figure 5-17: Using frequency domain methods to analyse stroke rate for data of a single length and for two 

lengths of swimming data 
 

The use of an fft to determine stroke rate for multiple lengths rather than a cropped 

single length is illustrated in 710HFigure 5-17.  When tested on two consecutive lengths of 

data the fft was found to output the wrong stroke rate (i.e. returning values two stokes 

higher than actual), see 711HFigure 5-17. This is attributed to the noise created by the 

turning phase, see 712HFigure 5-17, where two peaks are evident in the data. This 

discrepancy arises because the FFT only analyses frequency components of a signal and 

cannot differentiate characteristics such as multiple amplitudes. In the time domain 

other features such as pulse height and pulse width can be used to determine whether 

the signature represents if a stroke or a turn has occurred. It is also important to note 

that the Fourier Transform is limited to outputting stroke duration and not more 
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complex measures about the stroke, as is possible with pulse analysis in the time 

domain.  

 
Figure 5-18: Summary of free swimming analysis from free swimming acceleration data 

 

Time and frequency domain methods have been tested for the analysis of freestyle 

swimming acceleration data. It was found that data could be analysed to establish 

stroke count and timing information (e.g. stroke durations, rise times and fall times). 

This analysis can be collated to give an indication of the swimmers performance (see 
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713HFigure 5-18 for summary statistics). Automatic generation of split time was found to be 

on average within 1 second of manual timing. Given the average 1 minute 40 second 

split times of these trails, this equates to a difference of 1%. Note: manual timing is 

subject to human judgement and hence increased variability when compared with 

automated timing. Average stroke durations provide summaries of a swimmers typical 

stroke performance and therefore if their stroke duration increases from their average 

during a length, 100m trial or between each 100m then this may indicate fatigue or a 

pacing issue. The stroke duration standard deviation for each 100m trial is plotted in 

714HFigure 5-18. It is interesting to note that in the first trial the standard deviation (i.e. sd = 

0.46s) is significantly higher than the other trials (sd = 0.17s, 0.23s, 0.31s ). This could 

be attributed to the start up behaviour of the swimmer being more erratic than when 

they settle into the trial. 
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5.4 33BSummary 

 

Two component technologies have been developed and their ability to add value to free 

swimming analysis evaluated in this chapter.  

Table 5-2: Free swimming measurement parameter requirements 
 

 Simple Compound 

Free swimming  • Stroke count 
• Distance per stroke 
• Stroke duration 
• Rotation during the 

stroke: longitudinal 
and vertical  

• Variations in stroke 
cycles 

• Split times 

• Stroke rate 
• Swimming velocity  
• Variations in velocity 

throughout a stroke cycle  
• Indicators of skill 

 

 

Measurement parameters that have been the focus within this chapter are highlighted 

in bold in 715HTable 5-2 . It is noted that average values for the distance per stroke and 

swimming velocity can be derived from the timing and distance parameters outlined in 

the chapter. Measures of rotation are evident in the accelerometer traces (see 716HFigure 

5-9) where variations around the mean values of the stroke signatures can be used to 

provide an indication of how symmetrical the rotation of the swimmer’s technique is.  

The variations in velocity during the stroke is perhaps the only parameter outstanding 

within the end user requirements. Since removal of drift and offset inherent in the 

integration of the accelerometer data (to obtain measures of velocity and distance) 

requires integrated accelerometer, gyroscope and magnetometer input, evaluation of 

this parameter is outside the scope of this thesis.  

Stroke features within freestyle swimming have been illustrated via the  y component of 

acceleration (see 717HFigure 5-9), i.e. the medio-lateral axis of the swimmer. This axis 

exhibits a strong signature within the signal that is mainly an artefact of the swimmers 

rotation enhance by the contribution of gravity. 
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5.4.1 83BRQ1 Automated Vision 

 

Vision based methods have been explored and their ability to provide performance 

analysis information about free swimming assessed. Two methods were explored, one 

to enable timing of a swimmer to a set point (i.e. 15m) and the other to track the 

swimmer.  

 

An overhead camera was used to provide timing-gate information, whereby time was 

taken when a swimmer crossed a given point in the middle of the field of view (centred 

15m from the end of the pool). Typically the head is used as the landmark for timing 

information. Using a skin thresholding algorithm other parts of the body (e.g. arms, 

hands, shoulders) and features within the image (i.e. wakes) triggered the system the 

majority of the time (i.e. 88% of the trials). By specifying swimmers wear swim hats of 

a predetermined colour a much more robust algorithm was developed. Wearing a red 

hat enabled successful segmentation of the head and robust timing information for 

every one of the trials investigated.  

 

An attempt was made to track the swimmer in free swimming when viewed from under 

the water. This would enable investigation of elements of the performance (i.e. 

positions/velocities of the limbs) not possible from overhead camera positions.  

Attempts made to segment the swimmer using spatial thresholding using only the raw 

image data were unsuccessful. LED markers used to track landmarks throughout a field 

of view over time was applied successfully.  However, given the small field of view, 

~2m, only limited analysis could be undertaken. To overcome this limitation a number 

of integrated  cameras or moving camera could be used but would be an impractical 

solution for monitoring free swimming. 

 

5.4.2 84BRQ2 Wireless Node 

                    

A wireless node was used to provide acceleration data on free swimming performance. 

Features found in the data were analysed to provide information regarding lap counts, 

lap timing, stroke counts, stroke durations and variations in stroke cycle, i.e. 

stakeholder requirements.  
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Frequency and time domain algorithms have been investigated to determine the most 

robust analysis technique for accelerometer data. It is possible to determine lap and 

stroke counts for single laps using frequency analysis. However, for multiple lengths 

the signature of tumble turn cannot be distinguished from the strokes.   

Time domain algorithms have been successfully applied to data collected for freestyle 

swimming to enable lap timing, stroke counts and stroke analysis. A zero crossings 

algorithm applied to filtered data enables individual strokes durations and counts to be 

derived. Individual pulses can be readily extracted from the data using this algorithm to 

enable a more complete evaluation of the stroke cycle (e.g. rise-time, fall-time, pulse 

width, peak height) that can be used to highlight  changes in stroking technique due to 

for example fatigue, imbalance between arms or differences between athletes. 

It is important to note that the analysis outlined in this chapter has been focussed on 

freestyle swimming as this is the most common stroke used in training for all athletes. 

Future work should look towards how these methods may be applied or adjusted to 

support analysis of other strokes.  
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Chapter 6 

 

 

 

 

6. 5BCASE STUDY – TURNS 

 

6.1 34BChapter Overview 

 

Current turning performance parameters, highlighted in bold in 718HTable 6-1, require 

manual vision analysis techniques to collect measurements. These incur high costs in 

terms of time, operator expertise and suffer from inherent variability due to their 

reliance on human judgement. The research outlined in this Chapter is focussed on the 

development of a solution/solutions capable of providing a more complete insight into 

turning performance, covering the range of specified measurement parameters listed in 

719HTable 6-1. 

 
Table 6-1: Turn measurement parameter requirements (current measured parameters are listed in bold) 

 

 Simple Compound 

Turns  • Last stroke to wall 
timing 

• Rotation information 
• Time of wall contact 
• Wall contact duration 
• Depth profile 
• Break out distance 
• First stroke timing 

• Velocity into/out of the 
turn, also glide, start of 
initial swimming 
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Figure 6-1: Component set up for swim turn testing 

 

The research detailed in this chapter is concerned with the development of components 

for the analysis of swimming turns. Wireless acceleration data has been combined with 

image processing to form the integrated solution see 720HFigure 6-1. Vision provides a 

reference medium that enables an understanding of the features observed in 

acceleration space. The aim was to generate a robust solution that would enrich the 

amount of information available regarding turning performance using time efficient 

methods. 

6.1.1 85BResearch Questions (RQs) 

 

RQ1 Automated Vision 

a. Are there any vision-based methods that can provide a robust and 

acceptable solution targeted analysis of swimming turn performance, 

pertaining to the requirements of the stakeholders? 

b. What techniques are available to maximise the signal to noise ratio 

within an underwater environment to allow robust automated vision 

analysis? 
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RQ2 Wireless Node 

              a. What turn specific parameters are evident in accelerometer data? 

       b.    How are these parameters best presented to monitor turning ability? 

6.1.2 86BChapter Structure 

 

A vision-based method for automated analysis of turns is presented where LED 

markers are used to track body landmarks (see also Chapter 5: Case Study – Free 

Swimming, Section 5.2). Identifying and understanding turning phases in acceleration 

data is detailed. Phases of the turn are identified and classified to enable more complete 

understanding of the turn. Analysis results are presented using statistical process 

charts, which allow easy identification of outliers in performance. 
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6.2 35BAutomated vision analysis of turns 

 

The use of automated vision systems for performance analysis of start and free swim 

phases has been discussed in previous chapters (see Chapters 4: Case Study - Starts, 

Section 4.2, Chapter 5: Case Study – Free Swimming, Section 5.2). Visual information 

about the turn has to be collected using both over and underwater systems. Visual 

monitoring of tumble turn is complicated by the presence of bubbles that mask the 

swimmer. For this reason, a system of LED markers that create a readily 

distinguishable point on the swimmer and can be robustly segmented from the 

background image were adopted. 

 

 
Figure 6-2: Analysis of turning using tracking of an LED marker using developed automated vision 

techniques 
 

Turn analysis was undertaken for a number of turns performed by the same swimmer 

who was inexperienced in tumble turning. The swimmer was asked to wear an LED 

marker on each hip while they performed their turns, during which time underwater 

video was captured. Using automated vision analysis methods discussed previously 

(see Chapter 5: Case Study – Free Swimming, Section 5.2.2) the marker was tracked 

during each of the turns and each path was plotted on a single graph see Figure 6-2 72. In 

addition the depth of foot contact was also plotted on the graph. It was observed that 

the swimmer was inconsistent in the position of foot contact (average depth – 1.46m, 

standard deviation 0.2m range from 1.25-1.72 m), which demonstrates their lack of 

experience in performing tumble turns. 
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The paths of the hips illustrated in Figure 6-22 enables the turn to be analysed with 

regards to identifying an optimal technique. From observations it was found that the 

ideal contact point of the feet on the wall has been reported as between 0.3m-0.4m 

deep [Maglischo, 1993, see Figure 6-2]. Data from the current turns analysis indicates 

that the swimmer is typically contacting the wall deeper than is considered ideal. 

Research has also been reported on the ideal depth of the glide after the turn (i.e. 0.4m-

0.5m depth see Figure 6-2) [Lyttle, 1998] At this depth the level of drag from the water 

surface is minimised. For the data presented in Figure 6-2 it appears that the swimmer 

was a little too deep (typically 0.51 +/- 0.07m) during the initial turn and glide phases. 

There is also an indication that at the return to the surface is at an angle too steep to 

optimise the glide phase. Note: Increasing the field of view from 4m (via additional 

cameras or a track mounted camera) is required to provide information on the 

complete glide phase.  

 

 
Figure 6-3: Maximum depth of the hip during turning plotted against total turn time 

 

The maximum depth of the hip (in terms of position from the floor) during the turn is 

plotted against the total turn time (TTT) to 4m in Figure 6-3. A negative correlation is 

evident suggesting that a shallower turn results in a quicker 4m TTT for this athlete. 

These comparisons allow for more informed feedback to be given to an athlete during 

training. For this swimmer alone, the analysis outlined above would imply that they 

should aim to turn shallower and use a flatter profile swimming into and pushing out 

from the turn.  
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Figure 6-4: Performance parameters derived from tracking position of the hip during a tumble turn 
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Tracking the position of a marker on the hip during a tumble turn enables performance 

parameters such as: Rotation information, Time of wall contact, Wall contact duration, 

Depth profile, Velocity into/out of the turn (see 723HTable 6-1) and accelerations of the 

swimmer in a given plane of motion. Typical velocities and accelerations for the 

swimmer’s first turn (Figure 6-4(a)) are illustrated in Figures 6-4 (b) and (c). The 

average velocity into the turn was 0.84+/-0.1m/s. The maximum exit velocity was 

observed following the push off from the wall (1.35m/s) with an average decrease of 

~0.6 m/s/m during the portion of the glide phase observed. The acceleration profile 

during the turn phase is to be noted for comparison with those observed in the 

accelerometer data (see below, Figure 6-5). In the approach phase the acceleration is 

zero representative of the constant velocity of approach. During the rotational phase 

the acceleration decreases rapidly (i.e. for dive one this was ~-1m/s/s) to its maximum 

negative value (~-1.5m/s/s) and then increases (i.e. for turn one this was ~2.4m/s/s, 

from the maximum negative acceleration to the resumption of positive acceleration 

away from the wall) during the push off phase (i.e. to +0.4 m/s/s). The decrease in 

velocity during the glide phase is evident in the decrease in the acceleration (i.e. for 

dive one this was a 60% degradation) between 2.4 and 3.7 m from the wall. The 

increase in acceleration was due to the initiation of a strokes and kicks by the swimmer 

after 3.7m.  

 

 
 

Figure 6-5: Push off angle plotted against velocity 
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The push off angle (representative of Rotation information) is plotted against the 

velocity out of the turn in 724HFigure 6-5. The push off angle is defined as the angle the 

horizontal and a line between the foot contact point on the wall and the first LED 

marker position (on the hip) out of the turn. For this swimmer a negative correlation of 

push off angle with velocity immediately out of the turn is evident. Very shallow angles 

e.g. 5 degrees result in the largest exit velocities (i.e. ~1.2 m/s). The largest push off 

angles (i.e. 18 degrees) result in the slowest exit velocities (i.e. ~1.0 m/s). These 

differences are significant enough to focus the athlete on maintaining shallow push off 

angles. In addition this information provides valuable input into biomechanical and 

experiential knowledge of turning capability.  

 

It has been proven in the analysis above that the use of markers to track a given 

landmark on the swimmer has the potential to provide useful information for providing 

feedback regarding turning performance. The LED system provides distinguishable 

markers that can be thresholded from the background in an underwater environment 

and therefore significantly enhance automated vision system analysis. Due to the 

nature of the turn, some parts of the swimmer inevitably are occluded at certain 

phases. These occlusions limit the use of vision techniques as markers will be lost 

and/or confused with other markers on the body.  
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6.3 36BTurning parameters derivable from acceleration data 

 

 
Figure 6-6: Filtering raw acceleration to identify turns in data 

 

Tumble turning presents a unique signature in acceleration space that is distinctly 

different to that of free swimming (see 725HFigure 6-7 and 726HFigure 6-8). For the wireless 

node located on the small of the swimmers back, the z axis (vertical) of the turn 

experiences large positive and negative peaks that can be clearly differentiated from 

the free swimming signal (see 727HFigure 6-6). A number of methods may be applied to the 

data to isolate these peaks. An example using low pass filtering at an appropriately low 

cut off frequency (corresponding to the frequency at which lengths occur in the data, 

i.e. 0.2 Hz) is given in 728HFigure 6-6. The filtered data (the purple traces in 729HFigure 6-6) 

represent a simple repeatable waveform, where the global minima correspond to the 

mid-point of the turn phase. Using the zero crossings or thresholding algorithms (see 

Chapter 5: Case Study – Free Swimming, Section 5.3.2) the number of lengths 

completed can be readily determined and appropriate timing points at which to crop 

the data in order to study each turn in more detail defined. 

 

Between length 14 and 15 in 730HFigure 6-6 an upward peak signature was evident rather 

than the downward peak seen in all other turns. This unique feature was the result of 

the swimmer gliding into the wall thinking they had finished their 400m swim. Two 

more lengths had to be completed before the end of the set. The uniqueness of the 
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turning feature in this data set and also the potential discrimination of alternative 

actions are demonstrated in this example. 

 
Figure 6-7: Identifying the turn from last stroke into the turn to first stroke after the turn 

 

Turn features can be isolated by cropping the data from the last arm pull into the turn 

to the first arm pull following the turn as illustrated in 731HFigure 6-7. Indeed timings 

associated with these limits are required parameters (e.g. last stroke to wall timing, first 

stroke timing see 732HTable 6-1). For freestyle free swimming, acceleration in the y-axis 

(lateral) results in clear cycles corresponding to each arm pull. In 733HFigure 6-7 it is clear 

how the last arm pull prior to the turn and the first arm pull after the turn can be 

determined in the data (i.e. the positions of the last minimum prior to the turn and the 

first maximum after. These points can then be used to crop the data to turns to be 

analysed in more detail using any of the three axes of acceleration. 
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Figure 6-8: Analysis of turns performed in a 400m swim 

 

Free swimming and turns data were collected for a 400m freestyle swim, i.e. 16 lengths 

of 25m swimming. The y-axis data were used to crop the turn profiles from the 

complete data stream and then the z-axis data used to analyse each of the turns in more 
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detail, see 734HFigure 6-8. Total turn times (TTT’s) were defined as the time between the 

last arm pull before the turn and the first arm pull after the turn. The signature of the 

turn is discussed in more detail in the sections below but comparison with: (i) 

accelerations determined from digitised video of LED markers located on the athlete’s 

hips (see 735HFigure 6-4) and (ii) digitised video focussed on the position of the 

accelerometer on the small of the swimmer’s back (see Figure 6-9) illustrate obvious 

similarities in profile.  

 

The variation of each TTT throughout the trial is illustrated in the histogram in Figure 

6-8(c). The average TTT is 3.21 +/- 0.22s with a range between 5.82s and 6.92s. 

Inspection of the data indicate a trend towards increased TTT as the trial progresses, a 

straight line fit produces an R2 value of 0.3.Although not statistically significant, this 

trend could indicate the onset of fatigue and its effect on turning capability.  

6.3.1 87BUnderstanding phases of the turn in acceleration space 

 

 
 

Figure 6-9: Digitisation of the hip during a tumble turn to derive acceleration 
 

To gain an understanding of the physical meaning of the acceleration data recorded by 

the node, underwater video of a swimmer undertaking a tumble turn was digitised. 

Every three frames (i.e. n s) the x-y co-ordinate points approximating to the small of the 

back, i.e. where the node was mounted, were recorded. From this positional data the 
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velocity and subsequently acceleration of this reference point were derived relating to 

the horizontal direction. Acceleration data are plotted in 736HFigure 6-4. As the swimmer 

approaches the turn the acceleration was relatively constant (see also 737HFigure 6-9), as 

would be expected for a free swimming approach at constant velocity with some 

undulations due the phases of the stroke ( 738HFigure 6-9 (1)). The swimmers acceleration 

then reduces significantly and becomes negative as the swimmer slows to rotate and 

change direction ( 739HFigure 6-9(2-3)). As the swimmer pushes of the wall they produce a 

higher acceleration than during the free swim phase ( 740HFigure 6-9 (4)). After the push off 

the swimmer glides and then returns to free swimming where their acceleration 

returns to fluctuating about zero (i.e. approximately constant velocity). 

 

It is important to note that when digitising the image the coordinate origin was 

unchanged, i.e. + x was always left to right on the image as shown (741HFigure 6-10(1)). 

However the coordinate system on the node would rotate with the swimmer.  

 

 
 

Figure 6-10:  z axis (vertical) acceleration aligned with video data recorded during a tumble turn 
 

Video and z-axis (vertical) acceleration data obtained during a tumble turn have been 

aligned in 742HFigure 6-10. Coordinate axes are highlighted on the small of the back of the 

swimmer to illustrate how the contribution from gravity affects different node axes 

during the turn. Note: the contribution to acceleration due to gravity is larger than 

those generated during swimming. On the approach to the turn the z-axis experiences 
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+1g ( 743HFigure 6-10 (1)). At this point the orientation of the accelerometer is responsible 

for the overriding signal produced.  

 

As the swimmer initiates the turn they rotate to where the node’s axes have turned 

through 90 degrees clockwise ( 744HFigure 6-10 (2)). This means that the component of +1g 

is seen on the x-axis and the acceleration on the z-axis reduces to a figure close to zero. 

As the swimmer turns onto their back during the turn rotation ( 745HFigure 6-10 (3)), the 

contribution of gravity on the z-axis becomes -1g. Once the swimmer starts to rotate 

back to a prone position the acceleration returns toward +1g ( 746HFigure 6-10 (4)). The 

start of the positive gradient in the z-axis trace (i.e. from the minimum of -1g back to 

+1g) could be used to determine the point where the swimmer started to rotate off 

their back. 

 

The x and z axes experience the most pronounced acceleration signatures during the 

turn, due to their orientation with relation to gravity. More detailed analysis of the 

signatures associated with these axes is illustrated in 747HFigure 6-11.  

 

In 748HFigure 6-11, phases one to four illustrate the swimmer approaching the turn up to 

where they have rotated through 90 degrees such that their back is parallel to the wall. 

At the start of this phase the acceleration would approximate to +1g in the z axis and 0g 

in the x axis (749HFigure 6-11 (1)). After the approach to the wall and initial rotation the 

accelerations would approximate 0 g in the z axis and +1g in the x-axis. This can be 

seen in the acceleration traces in 750HFigure 6-11(3) where the z and x axes cross. As the 

swimmer continues to rotate, i.e. phases five to seven (751HFigure 6-11 (5-7)), the 

accelerations would approximate -1 g in the z axis and 0 g in the x-axis (the swimmer is 

now on his back). As the swimmer pushes off from the wall they returned to a prone 

free swimming position where the accelerations would approximate +1g in the z axis 

and 0g in the x-axis. These phases are referred to as the approach, phases 1-4, rotation, 

phases 5-7 and the glide, phases 8-9. 
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Figure 6-11: Acceleration data in x (horizontal) and z (vertical) axes during a tumble turn aligned with 

vision stills 
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6.3.2 88BAnalysis of phases of the turns from acceleration data 

 
Figure 6-12: Analysis of turns using approach (blue), rotation (green) and glide (pink) phases identified in 

acceleration data 
 

Detailed analysis of the different phases of the turn i.e. the approach, rotation and glide 

for a number of trials are presented in 752HFigure 6-12 and 753HFigure 6-13-15. Turns were 

cropped from last arm pull before the initiation of rotation to the first arm pull on 

completion of the turn. For the swimmer tested, on average, 46% of the turn was spent 

in the approach phase, 32% in the rotation and 22% in the glide.  

 



 215 

 
Figure 6-13: Approach time for turns plotted using an SPC 

 

Statistical process control (SPC) charts have been used to illustrate the time sequence 

of each of the phases during the turn. The approach time sequence is illustrated in 

754HFigure 6-13. There are a number of interesting features within the data. Firstly there is 

a general trend towards increased approach times throughout the trial i.e. from 2.4 +/- 

0.33 s at turn 1 to 3.4 +/- 0.33s at turn 11) possibly the result of fatigue. Secondly for 

the first 10 turns there is a significant variation in which the approach times of every 

even numbered turn (i.e. turns 2, 4, 6, 8 and 10) is on average 0.6+/- m s longer than the 

preceding odd numbered turn (i.e. turns 1, 3, 5 ,7 and 9). This behaviour is perhaps best 

explained by a preference of the swimmer when turning at one end of the pool than the 

other. 
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Figure 6-14: Rotation time for turns plotted using an SPC 

 

An SPC chart for rotation times is presented in 755HFigure 6-14. As with approach times 

there is a general trend towards increased rotation times throughout the trial (for a 

best fit line, R2 = 0.26) although this conclusion is significantly influenced by the quick 

rotation of the first turn (i.e. 1.84+/- 0.12s) and the slow rotation of the last turn (i.e. 

2.28 +/- 0.12s). Ignoring these outliers at that of turn 4 (i.e. 2.2 +/- 0.12s) the turning 

performance of the swimmer is remarkably consistent (i.e. average rotation time 

2.05+/- 0.12s).  Note: The fast rotation time for the first turn is correlated with a fast 

approach time for the first turn and could be attributed to the swimmer going off too 

fast for the first length. A longer final rotation time suggests either fatigue or the 

swimmer winding down on the last length. 
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Figure 6-15: Glide time for turns plotted using SPC 

 

The SPC chart for glide times is displayed in 756HFigure 6-15: Glide time for turns plotted 

using SPC. With the exception of turn nine (and the first turn), all of the remaining glide 

times were closely distributed about the mean (i.e. 1.39 +/- 0.25s). It is difficult to 

determine what event caused the glide time of turn nine to fall outside of two standard 

deviations from the mean. This event illustrates the need for both integrated sensors 

and real-time feedback to support cause effect analyses of swimming training.  

 

The use of SPC charts for swimming performance parameters is useful in highlighting 

both within and between athlete variations and forcing action to be taken to explain 

these events and subsequently implement changes. This kind of analysis may be 

particularly appropriate for long term monitoring of athlete performance and / or 

monitoring the performance of long distance swimmers to observe the effect of fatigue 

on turn capability and determining whether effects are prevalent in any particular 

phase (i.e. approach, turn or glide). 
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6.4 37BSummary 

 

In this Chapter two monitoring component technologies (i.e. image processing using 

LED markers and a wireless 3-axis accelerometer node) have been developed for turns 

analysis and their ability to provide robust information on the phases of turns 

determined.  

Table 6-2: Turn measurement parameter requirements 
 

 Simple Compound 

Turns  • Last stroke to wall 
timing 

• Rotation information 
• Time of wall contact 
• Wall contact duration 
• Depth profile 
• Break out distance 
• First stroke timing 

• Velocity into/out of the 
turn, also glide, start of 
initial swimming 

 

The parameters (i.e. last stroke to wall timing, rotation information, depth profile, first 

stroke timing and velocity (into, out, glide)) that have been the focus this Chapter are 

highlighted in bold in 757HTable 6-2. Time to wall contact and wall contact duration although 

not explicitly derived from the video or accelerometer data are inherent sub-

components of the data that has been quantified. It is anticipated that integration of 

underwater high-speed video (using for example an LED marker on the swimmers 

ankle) and an underwater force plate would support the determination of wall contact 

signatures within the accelerometer data.  

6.4.1 89BRQ1 Automated Vision 

 

Vision based methods have been explored and their ability to provide performance 

analysis information about the swimming turn assessed. The development of wearable 

LED markers enabled landmarks (i.e. on the hip) to be tracked throughout the turn 

such that measurements including depths and velocities could be derived. Unlike free 

swimming the field of view was appropriate for complete analysis of the turn. 

Occlusions due to overlapping body parts were thought to limit a complete 

biomechanical analysis even with multiple cameras.  

 



 219 

 

 

6.4.2 90BRQ2 Wireless Node 

                    

A wireless node was used to provide 3-axes of acceleration data regarding turning 

performance. Using integrated vision data it was possible to determine information on 

turning phases based on acceleration characteristics. This enabled more complete 

analysis of turning performance as the approach, rotation and glide could be 

individually identified. SPC charts were used to display results and were found to be 

useful in highlighting significant events such as glide phases that are substantially 

longer than in any other turn. This data representation is an easily understandable 

visualisation that enables users to be proactive to events, rather than the coach or 

biomechanist having to analyse every output in order to judge whether changes in 

performance are significant or not. The SPC charts also highlight the need for 

integrated monitoring in training to ensure that the causes of significant events can be 

traced in real-time. 
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Chapter 7 

 

 

 

 

7. 6BCONCLUSIONS AND FUTURE WORK 

7.1 38BResearch Summary 

 

The objective of the research detailed within this thesis was to improve performance-

related feedback in swimming. An evaluation of current methods of analysis identified a 

capability gap in real-time, quantitative feedback. A number of component technologies 

were developed to produce an integrated system for in-depth swim performance 

analysis in all phases of the swim, i.e. starts, free swimming and turns. These 

components were developed to satisfy two types of stakeholder requirements [detailed 

in Chapter 1: Quantification of Stakeholder Requirements]. Firstly, the measurement 

requirements, i.e. what did the end user want to measure. Secondly, the process 

requirements, i.e. how these measurements would be achieved. The components 

developed contributed towards new technologies and methods to facilitate a wide 

range of measurement parameters using automated methods and the application of 

technologies to facilitate automation of currently applied techniques. 

 

It was concluded that a single component was not capable of providing information 

about all measurement parameters specified in the stakeholder requirements and, 

therefore, an integrated system would be required. It was important that all 

components could be centrally controlled to allow synchronised data capture. The 

developed prototype system included a wireless, swimmer-worn, accelerometer node, 

a starting block integrated with force transducers and an automated vision analysis 

system for both over and under water applications.  

 

The automated vision system was developed to reduce the reliance on manual 

techniques to derive quantitative measurements from video data. The eventual solution 
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used wearable LED markers to provide a distinguishable landmark for tracking in both 

under and over water video footage. The end user preferred the use of a marker as it 

was considered the least encumbering solution that had minimal impact on training 

sessions. The use of a marker also enabled more specific analysis to be undertaken, 

since explicit landmarks could be tracked in time and space.  

 

An instrumented starting platform produced more in-depth data during the block 

phase of a swimming start and allowed automated analysis of timing, such as time to 1st 

movement or block time, which would have previously been established using manual 

techniques. In addition to this, the ability to predict flight parameters from force data 

was explored. Preliminary testing suggested that prediction techniques could be 

effective, however, these must be further refined before they can be confidently 

applied.  

 

Finally, the feasibility of a wearable, wireless accelerometer node was explored. 

Examples of analysis using data collected from the node have been presented to 

demonstrate its capability to feedback useful information during starts, free swimming 

and turns.  

 

The overall component-based system was able to provide enriched feedback to 

swimmers and coaches pertaining to specific aspects of swimming performance. A 

greater number of the specified stakeholder measurement requirements could be 

measured using this system, which complied with the original stakeholder process 

requirements. This resulted in a system capable of providing targeted feedback in a 

timely manner, whilst minimising input demands in terms of time and expertise. The 

automation of techniques also enabled the provision of more reliable/consistent results 

that would be comparable between system users, i.e. it would not be affected by the 

analysis being performed by different persons at different times. 

7.2 39BContributions to new knowledge 

 

The development of an integrated, component-based system for in-training analysis of 

swimmers has not previously been presented in the literature. Rather, research 

reported in the literature presents specific interventions accompanied by appropriate 

testing protocols that are applied to analyse individual aspects of a swimmer’s 

performance. This thesis has generated new knowledge via two research paths, i.e. the 
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development of component technologies and the application of component technologies 

for analysis of swimming performance. 

 

Manual vision analysis techniques were found to be the most prevalent methods 

applied in current swimming research. These demand significant resource in terms of 

operator time and expertise and suffered inherent variability as a result of a reliance on 

human judgement. One paper by Naemi et al 2008, looked at the development of an 

automated vision analysis system for analysis of the glide performance. Markers that 

were automatically tracked allowed real-time feedback on start performance. This 

example had been applied for the analysis of the underwater phase of the start and 

push off from turns. However, it was not proven for all aspects of swimming 

performance. This was the only paper reviewed that discussed an automated solution 

for digitisation of video data in this research domain.  

 

This thesis presents an automated vision analysis component that has been applied in 

both under and over water applications for all aspects of swimming, i.e. starts, free 

swimming and turns. Red LED markers were used to improve the signal-to-noise ratio 

of the marker within the image, thus allowing robust image segmentation and tracking 

of the marker. It was noted that automated vision analysis in the start and turns were 

more effective than in free swimming, where a single camera limited the field of view 

and was not capable of analysis for both under and over water phases of a stroke cycle. 

The ability to synchronise data from the video with other components facilitated a 

more complete understanding of data captured from the force plate and 

accelerometers, allowing characteristics in the data sets to be aligned and better 

understood. 

 

Within the literature reviewed it was concluded that the major drawback of using force 

plate data for the analysis of the start was the lack of knowledge and understanding of 

how best to use the resulting data. The addition of a force plate component allowed 

comparable data pertaining to forces associated with the block start to that presented 

in other research to be collected, thereby allowing further research to be added to this 

area. Additionally, the ability to predict subsequent flight parameters was explored. It 

was considered that with further refinement it might be possible to give an indication 

of flight characteristics from force data, a concept that has not been explored 

previously in this domain. 
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The use of accelerometer data for the analysis of swimming has been proven for free 

swim applications in work by Ohji et al 2003, 2005, James et al 2004 and Davey et al 

2008. However, sensors in these applications operate in a data logging capacity, 

whereby data must be downloaded post-swim for subsequent analysis. This thesis 

describes the development of a wireless communications node solution that enables 

real-time capture and transmission of data for rapid poolside analysis of swimming 

performance. The challenges of wireless communications through an air-water 

interface were overcome with careful selection of radio transmission frequency and 

appropriate use of a buffer capability and robust communications protocol on the node. 

The system also enabled a wider network of nodes to transmit data simultaneously, 

providing the opportunity for analysis of a squad of swimmers, rather than an 

individual athlete, that is currently the situation with data logging solutions. 

 

Data collection and analysis was not isolated to free swimming but also included start 

and turns. In free swimming, the analysis was capable of providing lap counts, split 

times, stroke counts, stroke durations and variability within strokes, by means of 

processing accelerometer data. Turns could be distinguished within the data by specific 

features in each of the three axes of acceleration. It was found that phases of the turn 

could be identified and subsequently analysed to provide more in depth understanding 

of turning performance.  The start phase has not yet been completely characterised in 

acceleration space, however, acceleration  data has been used to determine the time of 

the first stroke after entry and also free swim performance during the first length. 

 

7.3 Recommendations for future work 

 
The work presented in this thesis describes the development of a prototype system for 

the analysis of swimming performance. Future work should look towards the 

conversion of this system into a robust solution that can be used for daily monitoring of 

swimmers in training. The feasibility of the system has been presented for all aspects of 

swimming, but has focussed on block starts, freestyle swimming and tumble turns. It is 

essential that the functionality of the system is extended to address backstroke starts, 

all four competition strokes, i.e. freestyle, breaststroke, backstroke and butterfly, and 

all types of turning, i.e. tumble turning, backstroke tumble turning and the open turn 

used in butterfly and breaststroke. The development of data processing should work 

towards generating robust algorithms that can provide feedback using a set of 
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performance indicators, i.e. presenting results to coaches as appropriate scales rather 

than in the format of raw or semi-processed data. 

 

The synchronisation of data from each of the components has been implemented and is 

essential to provide effective feedback. Future work should look to extend this data 

collection into data storage. To ensure uptake of these technologies by end users, it is 

fundamental that data is stored and presented in a way in which they are able to 

readily understand, such that constructive, targeted feedback can be provided. The 

current system takes data from each of the components in a raw format that is then 

manipulated to derive results, however, this is not a desired format for the end user, as 

evident in the stakeholder requirements. It is important that a front-end interface is 

developed to allow the user to view simpler results that can be manipulated and stored 

as required. This defines the need for the development of a flexible, scalable human 

machine interface (HMI) that is designed specifically around the needs of the end user.  

Further development of component technologies should be undertaken to optimise the 

solutions for use in day-to-day training. Within the automated vision analysis it is 

important that the second-generation LED markers are better packaged to ensure 

complete waterproofing, ruggedness to endure wear and tear from multiple uses and a 

mechanism to allow the battery to be charged or replaced as required. Algorithms 

should be tested to track multiple markers, especially for the turns, where markers will 

overlap or become occluded at times.  

 

Current changes in competition standards mean that the form of the swimming start 

block has been altered; first use of these blocks in competition was in Summer 2009 at 

the World Championships in Rome. The major differentiating element of the new 

design is a wedge feature, similar to those used in athletics sprint starting blocks, 

mounted to the top plate that can be set in five different positions from the front of the 

block. A second generation start block should integrate the changes in design and also 

instrument both the top plate and the wedge feature of the block. Due to the infancy of 

the design implementation, little is understood about the best way to utilise the wedge 

to gain benefit. The limited understanding regarding force generated during the start 

and its subsequent impact on performance, using current instrumented starting blocks, 

mean that there little knowledge can be translated into understanding force profiles 

measured by the new block. It is important that testing using the new block is designed 

to address specific hypothesises to better understand the impact of force generation on 

dive performance. 
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Iterative steps should be taken to advance and optimise the wireless node design. 

Firstly, the current node should be redesigned to minimise its overall size. This node 

must then be packaged appropriately such that the swimmer can comfortably wear it, 

reconfigured if necessary and ensure it is sufficiently powered, either using 

rechargeable or replaceable batteries. A design should be pursued that includes a tri 

axis accelerometer, tri axis gyroscope and potentially additional sensors, such as a 

magnetometer and inclinometers. With such sensors, work could be undertaken 

towards implementing a Kalman filter to derive position from accelerometer data. This 

would facilitate the measurement of velocity, i.e. one of the measurement requirements 

that currently cannot be readily or accurately achieved.  

 

The capability of embedding signal processing functionality onto the node hardware, 

i.e. onto the microcontroller, could also be explored, with a view to send only summary 

data across the limited bandwidth communications network, rather than raw data. 

There may be several levels of processing that could be embedded, such as filtering, 

cropping of data or derivation of performance parameters, such as stroke count per 

length. Embedding such analysis algorithms would reduce the bandwidth required per 

node to transmit data and therefore increase the capacity of the overall system in terms 

of networking more nodes or improving redundancy and robustness of the network. 

Independent of where the processing takes place, i.e. on the node or at the PC in 

software, it is important to work towards processing that outputs simple measures of 

performance that can be interpreted easily by coaches and athletes, rather than the less 

understandable, raw data. 

 

Future iterations of work arising from this thesis should continue to address 

technologies and processing requirements with a scalable and expandable approach. It 

is essential that as understanding is furthered, the system is able to adapt appropriately 

such that data is captured, processed and presented in the way that adds most value to 

the end-user. The ongoing development of the system should look towards satisfying 

the remaining stakeholder measurement requirements while continuing to comply 

with stakeholder process requirements. 
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