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Summary 
 

 

A trajectory of an object contains more information than a single object. Due to 

this reason, trajectory analysis has been used in computer vision for some time. 

In particular, trajectory analysis is useful for ball detection and tracking in sports 

video as there are some non-ball objects that look like the ball. However, a non-

ball object does not form significant trajectories or forms different trajectories 

from ball trajectories in various aspects. Using these properties, we discriminate 

the ball trajectory from the ball-like object trajectory. Furthermore, the ball might 

be occluded, deformed, or out of the camera temporarily. Using trajectory 

enables suppression of these problems for reliable location of the ball. The ball 

locations have a close correlation with the ball-related events in the ball game 

video. Hence, the ball locations significantly facilitate the event detection. The 

ball is viewers’ attention in watching ball games. Therefore, one of the main 

objectives in generating and enhancing the ball game video is to reconstruct the 

ball and to illustrate the ball motion. In other words, the ball locations play an 

important role in the enhancement and enrichment of ball game video.  

    This thesis addresses three closely-related problems. It first addresses the ball 

detection and tracking problem in broadcast sports video. It proposes an effective 

trajectory-based algorithm for detecting and tracking the ball in a broadcast 

sports video, which can obtain the accurate results for locating the ball in 

 vi



broadcast soccer/tennis video. The key idea of this approach is as follows: a non-

ball trajectory might contain some objects that look like the ball but such objects 

have a small ratio in the trajectory. On the other hand, a ball trajectory may also 

contain some objects that do not look like the ball, but most of its objects would be 

ball-like. Unlike the object-based approach, we do not evaluate whether a sole 

object is a ball. Instead, we evaluate whether a trajectory is a ball trajectory. As a 

result, the ball trajectory can be produced reliably. Then, this thesis applies ball 

detection and tracking to two problems: ball-related event detection and 

enhancement and enrichment of broadcast soccer video (BSV). For the first 

application problem, it proposes a trajectory-based event detection approach, 

which improves the event detection performance because the events closely 

correlate with the ball location than with the low-level features. More importantly, 

this approach can detect some events that cannot be detected if one just uses 

low-level features. For the second application problem, it proposes an 

enhancement and enrichment system for BSV. This system is better than the 

existing systems as it automatically approximates the 3D position of the ball, 

extends the reconstruction range, and enriches the video by illustrating the 

contents of video. In addition, this thesis proposes a robust ellipse Hough 

transform and applies it to detect the ellipse in BSV. The detected ellipse is used 

to estimate the ball size in locating the ball in BSV and provide the feature points 

for reconstructing the midfield scene of BSV. 
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Chapter 1 

Introduction 

1.1  Motivation 

Sports video is one of the most popular forms of entertainment in the world, 

touching many people from various cultures in the world. With consumers’ 

demand and the great technological advances in recent year in video 

production technology, sports videos are produced in large quantity annually. 

However, it is well known that large portions of a sport video are routine and 

fairly boring to watch and few viewers are interested in watching the entire 

video. Most viewers want to watch only the interesting events in the video. In 

fact, currently consumers can afford the money to pay for accessing huge 

volumes of video (partly because the cost of producing video is now very low), 

but they cannot afford the time to find and view the portions of the video that 

they want.  What is needed is a system that allows users to retrieve only the 

segments that they are interested in viewing, thus saving time and money. 

In recent years, there has been a great deal of work on the 

development of efficient indexing and retrieval systems for sports video.  

These systems aim to allow users to efficiently and accurately search a large 

database of sports video for the specific segments that they are interested in 

viewing. By efficient, we mean a system that is fast in answering query, and 
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by accurate, we mean that the system will return video segments that satisfy 

the specification given by a particular user.   

Generally speaking, the consumers (or viewers) of sports video are 

interested in the video segments that contain specific “interesting events” in a 

game and not in viewing the entire video. For example, in a soccer game, 

viewers may be interested in segments where specific soccer events occur 

such as when (a) goals are scored, (b) a corner kick is given and taken, (c) 

their favorite player is shown, or (d) ball possession is changed from one team 

to another. Hence, one key task in building indexing and retrieval system for 

sports video is that of identifying the sport-specific events within the video. 

These events are specific to and defined by the sports and are usually well-

known to both players and viewers of the sport. For example, in soccer these 

events can be goals, corner kicks, free kicks, penalty shots, etc. In tennis, the 

examples of these events are scoring, serving, and play/break.   

Manual identification and indexing of these sports-specific events in the 

broadcast sports video are being done for some specific purposes. For 

example, currently media companies employ a group of experts to identify 

several most interesting events from a just-happened sports game to form a 

sports news video. However, this manual process is tedious because of the 

sheer volume of sports video produced nowadays. 

Given this scenario, it is not surprising that the problem of automatic 

detection and indexing of events from sports video became a hotly 

researched topic in recent years. Although many research and development 

efforts have been undertaken, the problem of automatic event detection and 

indexing in sports video is still not solved, at least, not well-solved. Current 
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research efforts on event detection for sports video falls in three main 

directions as described in the following:  

• The first direction is to build the generic framework for semantic shot 

classification of the sports videos including soccer, basketball, tennis, 

etc [DXTX2003, DXTX2004]. The framework performs a top-down shot 

classification, including human identification of shot categories for a 

specific sports game, visual and auditory feature representation, and 

supervised learning. The classified shots are further used to facilitate 

event detection and other semantic analysis.  

• The second direction is to detect events based on low-level features 

[XXCD2001, XCDS2002, XDXT2003, Eki2003]. The above two 

directions analyze the video in different ways, but they both work on 

the low-level features1, which are mainly video features (such as color, 

texture, and motion) and audio features (such as pitch, whistling, and 

crowd cheering/excitement).  

• The third direction is to detect events based on object-related features 

associated with the sports. This research direction is motivated by the 

relatively low accuracy obtained by algorithms that detect events using 

only the low-level features. As a result, researchers have moved to 

incorporate the detection of object-related features in order to improve 

the performance of event detection in their algorithms [GLCZ1995, 

HMSP2002, CHHG2002, CHHG2003]. In many ball games, most of 

the interesting events closely correlate with the ball location and 
                                            
1 In these, “low-level features” mean the features derived from the audio, motion, color, and 
texture. Such low-level features were also called cinematic features in some recent papers 
[EkTe2003d, YaLC2004]. In contrast to “low-level features”, “object-related features” are the 
features derived from the detected objects. For example, in the soccer video the features 
derived from goalmouth, ellipse, and the ball are object-related features. 
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motion. In soccer, for example, kicking, passing, team possession and 

goal (scoring) are all events that are closely related to the motion of the 

ball. Hence, an increasing interest has been paid to the ball detection 

and tracking problem for the videos of ball game [DACN2002, 

DGLD2004, SCKH1997]. 

In summary, the general problem of designing good indexing and 

retrieval systems for broadcast sports video remains a challenging research 

problem. Presently, no system can do a very good job of accurate retrieval 

from the huge volume of sports video in a short time. The problem is set to 

grow more complex because of the increasingly fast pace in which these 

sports video are produced in recent years and in the future. 

 

1.2   Overview of Research 

The overall goal of this research is to design better automatic indexing and 

retrieval systems for broadcast sports video. We aim to do this by improving 

event detection algorithms to automatically detect events which are then used 

for indexing the video. As discussed in the preceding section, there are 

several research directions in doing automatic event detection. In this thesis, 

we focus on the third direction, namely, the event detection approach that 

uses a combination of low-level features and object-related features (such as 

ball position and motion).  

We choose to study this approach because it can be used to handle 

complex sports video such as broadcast soccer video (denoted by BSV in this 

thesis). BSV is generally considered to be complex because of the general 

lack of “structure of play” during the game unlike games such as tennis. In 
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addition, the quality of the video is generally low in BSV. As a result, 

automatic event detection for BSV is generally considered to be harder.   

We first apply this event detection approach to BSV.  On the one hand, 

BSV is a complex case and so we believe that solving this case will make it 

more likely that our methods can be applied to other sports video. On the 

other hand, soccer is a very popular sport that appeals to audiences around 

the world, and so, is in great demand. Therefore, it is quite natural to use BSV 

as a first candidate. 

A key observation by many researchers is that in BSV (and other 

sports video), the information derived from the accurate location of the ball 

can play a crucial role in automatic event detection. It is well-known that this 

information greatly improves event detection in general [QiTo2001, 

ABCB2003a]. Many events such as goal, break, and possession closely 

correlate with the location and motion of the ball and its position relative to 

nearby objects. For example, in soccer (and many other games, including 

tennis), to determine if the ball is in play or out, the location of the ball relative 

to the out-of-bound lines is the most crucial determining factor. In a more 

complex example, to determine ball possession in soccer, the location of the 

ball relative to the players in the frame is very important even if it is not to sole 

deciding factor. Therefore, we can expect to improve the accuracy of event 

detection by first achieving a higher accuracy in the detection and tracking of 

the ball in broadcast soccer videos. This motivates our first research problem.   
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1.2.1   Ball Detection and Tracking for Broadcast Soccer Video 

In this thesis, we first study the problem of ball detection and tracking in 

broadcast soccer video (BSV), which plays a very important role in improving 

event detection and in soccer video analysis in general. More specifically, we 

want an algorithm to efficiently and accurately detect and track the ball in a 

BSV, namely, determine the location of the ball (if it is visible) in each frame of 

the given BSV. By efficient, we mean procedures that are fast (polynomial in 

complexity) and by accurate we mean the usual metrics of low false negatives 

(not identifying a ball when it is visible) and low false positives (wrongly 

identifying a ball when none is visible or wrongly identifying the location of the 

ball). 

The ball detection problem is a deceptively challenging problem to 

solve accurately. Despite much research work done on ball recognition from 

video images, it is still very challenging to do ball recognition from broadcast 

soccer video with high accuracy (say, in the range of 10% for false positives 

and 5% for false negatives). Informally, we can see the reason as follows: the 

image frames in BSV can be classified into “close-up”, “middle-view” and “far-

view”. Ball detection for close-up frames can be done with high accuracy with 

many existing methods. However, they form only the minority of the frames in 

a BSV. In the majority of the frames, (namely the middle-views and far-views), 

the ball is small relative to other objects in the frame and ball detection 

remains a big challenge.  

Existing methods that directly recognizes the ball from video images 

are good, but they are limited by several inherent difficulties associated with 

direct recognition methods. Some of these difficulties include (a) the presence 
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of many ball-like objects in the image, (b) the small size of the ball relative to 

the image size, (c) occlusion of the ball (say, by players) in many images, and 

so on. Because of these inherent difficulties associated with broadcast sports 

video, direct recognition methods are limited in its accuracy. Figure 1.1 shows 

the ball and the ball-like objects from a frame, testifying to the above-listed 

difficulties. To overcome these challenges and barriers with high accuracy in 

ball detection and tracking, we adopt a strategy, which we call a trajectory-

based strategy, to develop offline detection and tracking algorithms. Originally, 

the trajectory-based strategy was popularly used in online tracking algorithms 

[Cox1993, SmBu1975, ZhFa1992]. In this strategy, there are two steps: in the 

first step, we reduce the rate of false negatives (at the price of a temporarily 

higher rate of false positives) by extending the search to ball-like objects, thus 

getting a number of candidate ball-like objects. Then, in the second step, we 

use information of the path trajectories of these candidate objects over a short 

sequence of frames to obtain the ball (and prune off the non-ball candidates). 

Thus, in this step, we recover from the higher rate of false positives by 

throwing the non-ball trajectories. 

(c) (a) (b)
Figure 1.1   A soccer frame and its ball and ball-like objects. The frame is shown in (a); 
the ball in the frame is shown in (b); the ball-like objects in the frame are shown in (c).   

 

Informally, then, the main idea behind this is that while it is very difficult to 

achieve high accuracy when locating just the ball, it is relatively easy to 
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achieve very high accuracy in locating ball-like objects (the first step). This 

significantly reduces the rate of false negatives. To eliminate the false 

positives, it is much better to study the trajectory information of the ball since 

the ball is the “most active” object in soccer video, as well as in most other 

sports video. For example, a ball-like object (say image of a ball on a T-shirt) 

is not likely to move significantly during the game. We believe that the 

strength of our new strategy comes mainly from the careful control of false 

positives in the first step and the trajectory-based processing in the second. 

Indeed, our research results show that the trajectory-based strategy can 

greatly enhance the accuracy of ball detection and tracking in BSV. The 

details of the methods and the results obtained are described further in this 

thesis. 

 

Ball Detection and Tracking in Tennis:  With the encouragement of the 

success for the case of soccer, we then apply the trajectory-based strategy to 

the case of tennis. Namely, we consider the ball detection and tracking in 

broadcast tennis video (BTV). The problem is very similar, but there are some 

unique challenges in the case of tennis:  the tennis ball is smaller (harder to 

identify, especially when it is close to the “far” player) and much faster. In this 

application, we augment our two-step trajectory-based strategy with other 

game-related features such as player locations, hitting points (and turning 

points) to improve accuracy of ball candidate locations and in getting greater 

accuracy based on ball trajectories. Our results show that our trajectory-based 

strategy can improve the accuracy of ball detection and tracking for broadcast 

tennis video.  
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1.2.2   Applications of Ball Detection and Tracking 

After achieving a higher accuracy in the detection and tracking of the ball in 

broadcast soccer videos, we turn to the solution of a number of ball-related 

problems associated with broadcast sports video analysis. They are event 

detection and enrichment of broadcast soccer video.  

Detection of Ball-Related Events in BSV:  Recall that many events in 

soccer (and other games) are highly dependent on the location of the ball and 

its position relative to nearby objects (players) and the field of play. Many 

existing event detection algorithms are based on the low-level features.   

We shall focus on ball-related events which are events that involve the 

interaction between player(s) and the ball that usually result in the change of 

the location of the ball in the soccer field. For example, a kick happens when 

a player kicks the ball and the trajectory of the ball is changed. A goal 

happens when the ball goes past the goalmouth. Other examples are passing, 

shooting, play/break, and team possession. Ball-related events cover the 

majority of interesting events in most games and are usually the focus of 

viewer’s attention.  

While these events are closely related to the location of the ball, the 

ball location alone is not sufficient to characterize many of these ball-related 

events. We need to augment the trajectory-based approach with other game 

specific actions and characteristics. Thus, our strategy for ball-related event 

detection is to first express a ball-related event as a set (or sequence) of 

simpler (game specific) basic actions (or sub-events). We first define a series 

of (game specific) basic actions that are based on the location and trajectory 

of the ball. For example, touching of the ball (a player coming into contact with 
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the ball physically), kicking of the ball, and passing of the ball. These basic 

actions can be accurately determined using our trajectory-based approach 

since they usually define “pivot points” that correspond to changes in the 

trajectory of the ball. Then, the results of these basic actions can be used in 

combination with other standard approaches to detect more complex ball-

related events.  

Enhancement and Enrichment of Broadcast Soccer Video:  We then 

studied the problems of the enhancement and enrichment of broadcast soccer 

videos. By enhancement, we mean to generate the soccer video based on the 

camera calibration results. In generating frames, we first render the 3D model 

of soccer field and the ball. Then we superimpose the images of segmented 

players. By enrichment, we mean to augment the generated video with the 

icons that illustrates video contents. The problem is difficult due to the 

absence of feature points in the frames. Several existing systems focus on 

rendering only the goalmouth scene (to determine if a goal has been scored).  

This sub-problem is made easier by the presence of salient feature points 

near the goalmouth to aid in the camera calibration process.  

In this research, we are interested in extending this to generating video 

of the midfield scene. Our approach is to extract the feature points from the 

central circle in the midfield to do camera calibration. To do so, we need a 

highly accurate ellipse detection algorithm and we use the one described in 

the next subsection for this purpose.  

Once we have performed camera calibration, we can approximate the 

world location of the ball.  Furthermore, from the work on ball detection and 

tracking and event detection, we already know or can easily compute the 
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apparent velocity or speed, and direction of the ball, the team possession 

information, the direction of the camera, the event that is happening at the 

moment, etc. We can then perform “enrichment” by augmenting the frames in 

the video with these (or other) information as icons or illustration windows, as 

well as the matched music. The enriched soccer video will enhance the 

viewing experience. 

 

1.2.3   Ellipse Detection in Broadcast Soccer Video 

In the course of this research on soccer video analysis, we discover that it is 

very important to have an accurate and robust ellipse detection algorithm. 

Ellipses are very common in broadcast sports video since all round objects 

are transformed into ellipses in the video. The ellipses we want to detect in 

this thesis are the projections of the central circle of the soccer field. Most of 

these ellipses are only partial (due to the camera angle) and also slightly-

oblique (due to depth), as shown in Figure 1.2. Hence, detecting them is 

harder than detecting normal ellipses.  

Figure 1.2   Three typical partial ellipses in broadcast soccer video.  The partiality of the 
ellipses in (a)-(b) and (c) are caused by occlusion and camera view respectively. 

 

In this thesis, we use ellipse detection in solving two problems: first, in 

the problem of ball detection and tracking where we use the detected ellipse 
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to estimate ball size, and second, in the problem of generating the midfield 

scene where we need a highly accurate ellipse detection algorithm. 

Our algorithm for ellipse detection is based on the ellipse Hough 

transform. However, to make it more robust, we generalize the definition of 

measure function to handle partial ellipses. The partial ellipses appear in 

images when the original ellipses are partial, part of the ellipses are occluded, 

and/or the camera only covers part of the original ellipses. We also design a 

new algorithm to compute generalized Hough transform for robust ellipse 

detection. The algorithm is accumulator-free (uses less memory space) and 

our experimental results confirm that it is more robust in handling small and/or 

partial ellipses. Our new robust ellipse detection algorithm is general and can 

be used for any general ellipse detection applications. It can also integrate 

with the existing “fast Hough techniques” to form even better algorithms. 

 

1.3   Contributions 

The contributions of this thesis are threefold. Its principal contribution applies a 

trajectory-based approach to locate the ball in broadcast sports video, which is 

presented in Chapter 3. Unlike the object-based approach, it does not evaluate 

whether a sole object is a ball. Instead, it evaluates whether a candidate 

trajectory is a ball trajectory. In this approach, there are two steps: in the first 

step, we reduce the rate of false negatives by extending the search to ball-like 

objects, thus getting a number of ball candidates. Then, in the second step, 

we use information of the path trajectories of these candidate objects over a 

short sequence of frames to obtain the ball. Thus, in this step, we recover 
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from the higher rate of false positives. Empirical studies show that the 

trajectory-based approach can significantly improve the accuracy in locating 

the ball in broadcast soccer video and broadcast tennis video.  

The second contribution is two successful applications of ball detection 

and tracking in BSV.  The first application is a new approach of event detection 

in BSV, which is based on the ball trajectory computed. This approach can 

detect events more accurately than the algorithms using only the low-level 

features. This approach not only improves play/break analysis and high-level 

semantic event detection, but also detects the basic actions and analyzes team 

ball possession, which may not be analyzed based only on the low-level feature. 

The second application is a video-generating and enrichment system. This 

system is better than the existing systems in several aspects. This system 

applies the results of ball detection and tracking to compute apparent ball 

velocity2, ball direction, team ball possession, etc and these results, together 

with other results of video analysis, are converted into icons to enrich the 

video. In addition, it can render not only the goalmouth scene but also the 

midfield scene, which cannot be rendered by the existing systems.    

In the course of this research on soccer video analysis, we discover 

that it is very important to have an accurate and robust ellipse detection 

algorithm.  The ellipses we want to detect are the projections of the central 

circle of the soccer field. Most of these ellipses are only partial (due to the 

camera angle) and also slightly-oblique (due to depth). Hence, detecting them 

is harder than detecting the normal ellipses. Our algorithm for ellipse detection 

is based on the standard ellipse Hough transform. However, to make it more 
                                            
2 The apparent ball velocity means the ball velocity relative to the center of the frames, not the 
ball velocity in the real-world. However, the apparent ball velocity is close to the ball velocity 
in the real-world when the camera is still.  
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robust, we propose the unbiased measure function to fairly measure small 

and/or partial ellipses. Measure function is the concept that we propose to 

understand and classify the existing ellipse Hough transforms. In addition, 

measure function also unifies the mathematical expressions of the existing 

ellipse Hough transforms. We also design a new algorithm to compute 

generalized Hough transform for robust ellipse detection. The algorithm is 

accumulator-free (uses less memory space) and our experimental results 

confirm that it is more robust in handling small and/or partial ellipses. 

 

1.4   Thesis Structure 

The remaining chapters of this thesis are organized as follows. Chapter 2 first 

states the problem of ball detection and tracking, the first problem that this 

thesis addresses. Then it briefly surveys the related work in general object 

detection and tracking, and ball (soccer ball and tennis ball) detection and 

tracking. Chapter 3 presents the trajectory-based ball detection and tracking 

algorithms for locating the ball in broadcast soccer/tennis video. Chapter 4 

presents two applications of ball detection and tracking: (1) applying the ball 

locations in detecting the ball-related events in broadcast soccer video, and (2) 

applying the information derived from ball locations and the results of 

detecting ball-related events to enrich the reconstructed soccer video. 

Chapter 5 first surveys the related work in ellipse detection and understands 

the existing ellipse Hough transforms in the view of measure function. Then it 

presents an accumulator-free and robust ellipse algorithm and applies it to 

detect the ellipses in broadcast soccer video. Chapter 6 summarizes the 

thesis and indicates some future work.  
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Chapter   2 

Ball Detection and Tracking in Sports 

Video  

This chapter describes the problem of ball detection and tracking in broadcast 

sports video, its importance as a key component of a good event detection 

algorithm, and the key challenges. Then, it presents a survey of techniques 

for object detection and tracking, focusing in-depth on techniques in ball 

detection and tracking.  

   

2.1 Problem of Ball Detection and Tracking  

The problem of detecting and tracking the ball in broadcast sports video (BV) 

is, simply stated, the problem of locating the ball in each frame of the given 

broadcast sport video in which the ball is visible. In most broadcast sports 

video, the image frames can be classified into “close-up”, “middle-view” and 

“far-view”. Ball detection for close-up frames can be done with high accuracy 

with many existing methods. Thus, the main focus of many research works is 

on the challenging problem of detecting and tracking the balls in the middle-

views and far-views frames. 

This ball detection and tracking problem have been studied by many 

researchers and many algorithms have been developed, for many different 
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types of videos and different kinds of sports. Generally speaking, the problem 

of ball detection and tracking is easiest for “fixed-camera” video where the 

video recorded using a fixed camera while it is most difficult in the case of 

broadcast video.  

 

2.2 Motivation of Detecting and Tracking the Ball in BSV 

The motivation for seeking accurate ball detection and tracking in broadcast 

soccer videos (BSV) has been mentioned in Section 1.2. To re-iterate, in 

soccer games, the ball is the focus of the players and is the object that 

players want to control. Hence, it is very natural that many events relate with 

the ball location and motion. Thus, the fact that information derived from the 

ball location in frames can greatly facilitate the event detection, which has 

been widely reported in the literature [Miy2003, ToQi2001, YLLT2003, 

YXLT2003].  For example, the ball locations over frames will greatly facilitate 

the analysis of broadcast soccer video. They could play a crucial role for 

analyzing the team ball possession, dividing video into play and break 

segments, evaluating the team tactics, and detecting semantic events. 

 

2.3 Challenges of Locating the Ball in BSV 

As it has been mentioned above, detecting and tracking the ball in the 

broadcast sports video (BV) is a difficult problem. For example, detecting and 

tracking the ball in BSV is difficult due to the following challenges [SCKH1997, 

YXLT2003, ABCB2003(a-c)]: 
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• The appearance of the ball varies irregularly over frames. Its size, 

shape, color, and speed all change irregularly over frames. 

• Many objects are similar in appearance to the ball. For example, many 

regions of player and the penalty marks look like the ball. 

• The ball is very small. 

• The ball is often occluded by players. 

• The ball is often merged with lines and players. 

Here we show more ball and non-ball objects, which extends the 

illustration in Figure 1.1 that shows the ball and non-ball objects from the 

same frame. Typical balls in BSV (which are obtained by removing the other 

objects in the selected frames) are shown in Figure 2.1; typical non-ball 

objects but look like the ball are shown in Figure 2.2. These typical balls and 

non-ball objects justify the above-listed challenges. These challenges lead to 

a fundamental difficulty, which is there is no ball representation available to 

distinguish the ball from other objects within a frame as some non-ball objects 

look like the ball more than the ball itself. 

(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 2.1   Typical balls in broadcast soccer video. The ball in (a) is large from a middle 
view frame; the ball in (b) is small from a far-view frame; the balls in (c) to (g) are flying-
balls; the ball in (h) is a ball separated from a line.  

(d) (e) (f) (g) (h) (b) (c) (a) 

Figure 2.2   Typical ball-like objects in broadcast soccer video. The objects in (a) and (b) 
are penalty marks; the objects in (c) and (d) are soccer boots; the objects in (e) and (f) 
are white particles in the field; the objects in (g) and (h) are legs with white socks. 
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2.4 Related Work in Ball Detection and Tracking 

The ball detection and tracking problem is a special case of the general object 

detection and tracking problem so we first give the survey in general object 

detection and tracking. Then we give the survey in ball detection and tracking. 

 

2.4.1 Previous Work on General Object Detection and Tracking 

There have been many object detection and tracking algorithms proposed 

during the past three decades because they have a wide spectrum of 

applications in many areas such as image/video processing and computer 

vision. These algorithms can be classified into four categories: (a) feature-

based, (b) model-based, (c) motion-based, and (d) data association. 

(a) Feature-Based: In feature-based algorithms, some features of object are 

used to discriminate targets from other objects within a frame. A category of 

approaches takes into account a reference image of the background. All 

objects in the difference frame between the current frame and the background 

frame are targets [KaBG1990, NCRT1998]. To discriminate the target from 

other objects, features are used to characterize targets in the property state 

space. For example, parameterized shapes [DACN2002, DGLD2004], color 

distributions and texture [EkTe2003a, GeSm1999], shape and color together 

[RaHa1998], are often employed in target representations. Features and 

labeled targets also can be used to train a neural classifier, and then the 

trained neural classifier is used to differentiate the targets from other objects 

[DGLD2004].   
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(b) Model-Based: Model-based algorithms, including anti-model algorithms, 

use not only features but also high-level semantic representation and domain 

knowledge to discriminate targets from other objects [KeOG2001, KoDN1993, 

NgWB2001, OhMS1999, ZhNe2001].  

Algorithms in both the above two categories (feature-based and model-

based) locate the targets frame by frame as locating the targets is performed 

within a frame using measures provided by properties of the targets. These 

methods could be called object-based because their crucial step is to decide 

whether a detected object is a target. In these methods there are three main 

elements: target representation, property extraction, and object discrimination. 

Generally speaking, a more parameter target representation would incur 

better chance of successful target detection and tracking. However, the high 

dimensionality of target’s state space also makes estimating values in the 

representation to be a formidable problem. Hence, the principle of building a 

target representation is to make it feasible to discriminate the target from 

other objects and to make it easy to extract the properties used in the 

representation. Thus, target representation can include appearance features 

and models to solve the different problems. The representation has to be built 

up in initialization, and then to be updated over frames. These object-based 

methods implicitly assume that targets are somehow different from other 

objects within a frame. The intention of these methods is to decide whether a 

detected object is one of the targets in each frame. A detection and/or 

tracking problem is called an object distinguishable problem if the targets 

have some invariant differences from the other objects within a frame. For the 

tracking procedure of object-based methods, in [WuHu2001] Wu and Huang 
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commented: “Visual tracking target could be treated as a parameter 

estimation problem of target representation based on the observations in 

image sequences.” 

(c) Motion-Based: Motion-based algorithms rely on the methods for 

extracting and interpreting the motion consistencies over frames (or time) to 

segment the moving object [BoFr1993, Low1992]. They claim a target is 

identified when a candidate has accumulated enough confidence to be a 

target. They are online algorithms so they cannot wait to evaluate trajectories 

until all the trajectories of a segment of video are formed.  

(d) Data Association: Data association algorithms are designed to solve the 

data association problem, which is a problem of finding the correct 

correspondence between the measurements for the objects and the known 

tracks [BoMe2003, CoHi1996, Cox1993, DaHD2003, LeSF2003, RaHa2001].  

There are four basic techniques for data association problem: Nearest 

Neighbor, Track Operation, Joint Probabilistic Data Association, and Multiple 

Hypotheses Tracking, which are explained further as follows: 

• Nearest Neighbor: It assigns the measurement to the nearest track, where 

the distance between measurement and track normally is measured in the 

Mahalanobis distance [Cox1993]. It is computationally efficient but 

unreliable for tracking targets in a highly cluttered environment. 

• Track Operation: The existing track operations include track splitting, track 

merging, and track pruning [Cox1993, SmBu1975, ZhFa1992]. Track-

splitting, which was originally proposed by Smith and Buechler 

[SmBu1975], forks the track into two or more when two candidates 

(measurements) are found inside the validation area, rather than arbitrarily 
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assigning the closest candidate to the track. Assignment decisions are   

postponed until additional candidates have been gathered to support or 

refute earlier assignments.  The tracks are restricted to a tractable number 

by merging similar tracks and pruning unlike tracks.   

• Joint Probabilistic Data Association: It enforces a kind of exclusion 

principle that prevents two or more trackers from latching into the same 

target by calculating target-measurement association probabilities jointly 

[BaFo1988, Cox1992, RaHa2001].   

• Multiple Hypotheses Tracking: The multiple-hypothesis filter was originally 

developed by Reid [Rei1979]. Cox and Leonard [CoLe1991] have 

demonstrated its utility in the context of building and maintaining a map of 

a mobile robot’s environment. However, because it is a multiple scan 

method both its memory and computation requirement increase 

exponentially with problem size [Cox1993, ACSS2003]. Some efficient 

algorithms of multiple-hypothesis were developed to reduce the memory 

and computation requirement [CoHi1996, CoHi1994].  

The algorithms in data association focus on the trajectory generation 

and management. Most of the techniques of trajectory management, for 

example trajectory forking, merging, and comparison, will be used in our ball 

detection and tracking algorithms that will be presented in Chapter 3.  

 

2.4.2 Previous Work on Ball Detection and Tracking 

In contrast to general object detection and tracking, there have been many 

algorithms specially designed for locating the soccer ball and the tennis ball, 
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which were developed for four kinds of sports videos: (a) fixed-camera video 

(FCV), which is recorded by fixed camera, (b) real soccer video (RSV), which 

is recorded by researcher’s own camera, (c) broadcast soccer video (BSV), 

and (d) broadcast tennis video (BTV). Tracking the ball in FCV is relatively 

easier and successful tracking algorithms were reported. Since RSV is 

recorded by researcher’s own camera, compared with the cameramen 

recording BSV, cameramen recording the RSV have more freedom of 

controlling the camera.  Hence, they can choose a beneficial place and angle 

to produce the video in the good quality. Thus, locating the ball in RSV is 

relatively easier than in BSV. The algorithms for locating the tennis ball in BTV 

face different challenges from the ones for locating the soccer ball in BSV. 

The algorithms for locating the ball in four kinds of videos are reviewed 

separately as follows. 

 

(a) Fixed-Camera Video  

Pingali et al [PiJC1998] developed a real-time algorithm to track the ball and 

players in tennis video recorded by fixed camera. They used four fixed 

cameras placed in a stadium during an international tennis tournament---each 

camera covering one half of the court. Their ball tracking algorithm was tested 

on test sequences in which the players hit tennis balls with tennis racquets. 

Ball tracking results on these sequences are very encouraging.  

Ohno et al [OhMS1999, OhMS2000] developed an algorithm to track 

the ball and players and to estimate the 3D position of the ball in soccer video 

recorded by fixed camera. They used 8 fixed cameras to cover the whole 
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soccer field. Their algorithm can reliably track the ball and players even if the 

ball and players are occluded temporarily.  

Haas et al [HMSP2002] developed an algorithm to decide whether 

there is a goal in the real-life game for soccer game, which is a kind of 

computer referee system. They used two fixed cameras to monitor either 

goalmouth. A search engine performs the ball detection and tracking in each 

image taken by the camera. Then another procedure computes the world 

coordinate of the ball from the two images taken at the same time for the 

same goalmouth. Once the world coordinate of the ball is known, the 

algorithm can decide whether there is a goal.  

Comparing with the video taken by non-fixed camera, FCV has multiple 

benefits. First, the background image can be accurately obtained. Second, the 

ball size can be exactly known. Third, the motion in the video taken by fixed 

camera exactly refers to the physical motion, no still objects will be considered 

as moving objects. Last, the fixed camera is used only for the game analysis 

so it can use high definition camera without considering long distance data 

delivery. The images taken by high definition camera will be much better than 

the one taken by normal camera and there is no need to use the interpolated 

images because the high definition camera can take high resolution images in 

60 frames per second, which is four times the frame rate of the current 

broadcast sports video. 

 

(b) Real Soccer Video 

D’Orazio et al [DACN2002] proposed a ball recognition algorithm that works 

on the real soccer image sequences, which were recorded by their own 
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cameras, with variable light conditions and non-controlled backgrounds 

(meaning that the camera is not fixed). Their algorithm modified the circle 

Hough transform (CHT) by considering the self shadow. Thus, their algorithm 

can detect the ball even with the self shadow caused by the various lighting 

conditions.  However, their algorithm did not consider the case that the ball is 

deformed into a non-semi circle object.    

Leo et al [LeDD2003] studied the automatic ball recognition from the 

real soccer images. They found that the ball recognition performances 

applying Wavelet and the independent component analysis (ICA) 

preprocessing techniques are quite the same and that combing the ICA and 

Wavelet the percentage of pattern recognition can be increased.  

D’Orazio et al [DGLD2004] improved the algorithm proposed in 

[DACN2002] by adding a neural classifier. The improved algorithm consists of 

two techniques (used together) in order to take advantages of the peculiarity 

of each of them: a fast circle detection (and/or circle portion) algorithm is 

applied on the whole image to find the area that is the best candidate to 

contain the ball considering only edge information; a neural classifier is used 

on the selected area to validate the ball hypothesis evaluating all the 

information contained inside the area. The improved algorithm achieved a 

high percentage of correctness. However, the improved algorithm still does 

not consider the case where the ball merges with the other objects. The 

algorithm will fail to identify the ball when the ball merges with an object that 

has the same color with the ball because their algorithm does not have a 

procedure to separate the ball from the merged objects. In BSV, there are 

many instances where balls are merged with other objects. More importantly, 
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this algorithm will produce a false positive when a non-ball object looks like a 

circle shape more than the actual ball does. Unfortunately, this often happens 

in BSV.  

 

(c) Broadcast Soccer Video  

Gong et al [GSCZ1995] proposed the first algorithm for identifying the ball 

from broadcast soccer video (BSV). This algorithm is easy to implement 

because it used color and shape features without complex representation and 

reasoning. The algorithm was successful in identifying the ball for the frames 

that it cares. However, it may have difficulty in identifying the ball in complex 

frames.    

Yow et al [YYYL1995] proposed an algorithm to detect and track the 

ball in BSV. The detection was an intra-frame approach and is done in the 

reference frames selected at regular intervals. In a frame, it used a template-

based approach to identify the ball. To further reduce the search space, the 

algorithm produced the difference frame between two frames after the camera 

motion was compensated. Template matching was performed on these pixels 

which indicate possible object motions. Between the reference frames, 

tracking of soccer ball was carried out. The position of the ball in the current 

frame was used as the starting point for local search of the ball in the next 

frame. To compensate for zooming action of the camera, the ball in the 

current frame was first scaled accordingly and then used as a template in the 

next frame. This is the first paper that tried to regain the benefits possessed 

by FCV through motion compensation for BSV.  
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Seo et al [SCKH1997] proposed a ball tracking algorithm to track the 

ball in BSV by using backprojection to reason the occlusion and a Kalman 

filter-based template matching procedure to track the ball. This is the first 

paper that considers the ball occlusion issue in BSV. However, the starting 

positions of the ball were manually initialized as the ball detection procedure 

was not available in their paper. 

Yamada et al [YaSM2002] proposed an algorithm to detect and track 

the ball in BSV. The detection was a simple procedure because it did not 

really identify the ball. It extracted the white regions excluding the player 

regions and the line regions. Then each white region was considered as a ball 

candidate. The tracking procedure tracks each ball candidate by searching a 

neighboring area of the predicted locus of the candidate. If multiple 

candidates were found, only the one that is the nearest to the predicted 

position is retained. If no candidate was found, tracking of the candidate was 

terminated. These steps were repeated until all except one candidate are 

deleted; the remaining region was determined as the ball region. This 

procedure effectively uses the length of the trajectories to select the ball 

trajectory. 

Choi et al [ChSL2004] proposed a particle-filter-based algorithm to 

track the ball in BSV. In their algorithm, the ball is considered as an ellipse 

with four parameters, the center position and the lengths of the major and 

minor axes, i.e. the paper assumed that the ellipse is horizontal. The particle 

filter uses the contour and the histogram of the objects to differentiate the ball 

from the other objects. This work has a solid base because it used well-

 26



 

studied techniques. However, the tracking will fail when several consecutive 

balls are deformed seriously.  

The above-mentioned five algorithms have their own advantages 

respectively. After learning from these algorithms, we proposed a trajectory-

based algorithm to detect and track the ball in BSV in the succeeding chapter. 

Some primary results related to this algorithm are published in our papers 

[YuTW2003, YXTL2003, YXLT2003, YXTY2003, YSWC2004].     

 

(d) Broadcast Tennis Video 

It is based on two reasons that this chapter also discusses the ball detection 

and tracking algorithms for broadcast tennis video (BTV). First, although the 

problem of locating the ball in BTV shares some similarities with the one of 

locating the ball in BSV, they also face different challenges. Second, this 

thesis will present a trajectory-based tennis-ball detection and tracking 

algorithm in Section 2.7. This algorithm shows that trajectory-based approach 

can be applied in different sports games to locate the ball.  

Miyamori et al [MiIi2000] and Miyamori et al [Miy2002] proposed a ball 

detection and tracking algorithm based on template matching in BTV. The ball 

locations produced by their algorithm greatly helped their main objective---the 

behavior analysis of a player. However, template matching has problems in 

identifying the ball when occluded or merged with other objects. In addition, 

their algorithm only focuses on identifying the ball locations around a player 

but not all ball locations.  

Miyamori [Miy2003] improved the algorithm in [MiIi2000, Miy2002] by 

adding a competition method to identify the ball trajectory. This technique 
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works as follows. Detect all candidate locations of the ball that are outside the 

player’s rectangle but within a certain distance from the player’s rectangle and 

that are smaller than a certain area. Repeat this for several successive frames 

and keep track of the candidates that move spreading out from the player’s 

center position. Repeat this step until it becomes the final single candidate for 

the ball trajectory. This technique definitely can improve the accuracy of 

identifying the ball. This algorithm is similar to the algorithm presented in 

[YaSM2002] for identifying the ball in BSV. However, this improved algorithm 

still focuses on identifying the ball locations around a player. In addition, it 

does not deal with occlusion and merging issues. 

 

2.4.3 Other Work Related to the Ball Location  

Here we discuss one paper that has relation to the ball location, which is on 

3D position of the ball. Shum and Komura [ShKo2004] has done similar works 

for baseball video.  

Kim et al [KiSH1998] proposed an algorithm to compute the 3D 

position of the ball from monocular image sequence of soccer game. In the 

algorithm, they adopted ground-model-to-image transform together with 

physics-based approach that a ball follows the parabolic trajectory in the air. 

The ball heights are calculated based on the given start and end positions of 

the ball on the ground using simple triangular geometric relations.  

 

2.5 Summary 

This chapter first states the problem of ball detection and tracking. Then it 
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gives surveys in general object detection and tracking and ball detection and 

tracking. The algorithms for general object detection and tracking have 

developed many effective techniques such as the trajectory-based technique. 

The success of locating the soccer ball in fixed-camera video was reported, 

but the algorithms may not be directly applied to locate the ball in BSV. The 

existing algorithms that locate the ball in RSV and BSV have succeeded in 

solving the problems in the concerning cases, however we can still use 

trajectory-based techniques to develop a more effective algorithm. 
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Chapter   3 

A Trajectory-Based Ball Detection and 

Tracking Algorithm 

 

This chapter presents a trajectory-based algorithm for detecting and tracking 

the ball in broadcast soccer videos, which is capable of obtaining very 

accurate results in locating the ball. Encouraged by the success of this 

algorithm, this chapter also applies trajectory-based approach to locate the 

ball in broadcast tennis videos. 

This thesis first focuses on the ball detection and tracking problem in 

broadcast soccer video (BSV). Then it applies the formed principles and 

methods to develop an algorithm for detecting and tracking the ball in 

broadcast tennis video (BTV).  

 

3.1   Overview of the Algorithm  

The proposed algorithm aims to detect and track the ball in BSV, whose block 

diagram is shown in Figure 3.1. This algorithm tackles the challenges (they 

are described in Chapter 2) of locating the ball in BSV with four steps, which 

belong to two large components: Ball candidate production (including step 1 

and 2) and candidate trajectory processing component (including step 3 and 

4). In the first component, we use the anti-model approach, which was first 
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proposed to identify the faces [KeOG2001], to produce the ball candidates for 

each frame. We built a set of sieves (anti-models) to identify and remove non-

ball objects and consider the remaining objects to be the ball candidates, 

which look like the ball in appearance. In the first component, we target to 

reduce the rate of false negatives (at the price of a temporarily higher rate of 

false positives) by extending the search to ball-like objects, thus getting 

several candidates (normally about 5) for each frame.  

 

Detection and tracking 
of salient objects 

Ball size 
estimation

1. ESTIMATION OF BALL SIZE 

3. CANDIDATE TRAJECTORY GENERATION 

Candidate feature 
image creation 

Candidate trajectory 
generation 

Small gap 
interpolation 

Ball-trajectory 
production  

Trajectory 
extension 

4. TRAJECTORY PROCESSING

Ball position list over frames 

Object 
filtering 

Candidate 
classification 

Object 
segmentation 

 2. CANDIDATE DETECTION 

A sequence of frames 

Figure 3.1   Block diagram of the trajectory-based algorithm for detecting and 
tracking the ball location in broadcast soccer video. 
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In the second component, we use a trajectory-based approach to 

identify the ball trajectory. Our algorithm integrates trajectory operation 

techniques such as trajectory-splitting, trajectory-merging, joint probabilistic 

measure for objects and trajectories, which originally were proposed in the 

context of multiple-target tracking. To make trajectory processing fast, we 

introduce candidate feature image (CFI) and process CFIs to reduce the 

number of candidates for a sequence of frames. Hence, trajectory processing 

is speeded up. To enhance the reliability of ball selection, we introduce a 

competitive procedure to select the ball trajectories after we have evaluated 

all candidate trajectories for a whole sequence of frames. After we obtain ball 

trajectory, we recover from the higher rate of false positives by throwing the 

non-ball trajectories.  

In other words, our algorithm uses two key ideas. (1) Since identifying 

the ball within a frame is difficult, we relax the condition and focus on the task 

of producing a set of ball candidates. (2) Since identifying the ball trajectory is 

much more reliable than identifying the ball in a frame, we use a trajectory-

based procedure to produce the ball trajectory.  

In the preprocessing step of the algorithm, a statistical procedure is 

used to find the field color range for the whole video. A frame is considered to 

contain a portion of the soccer field if and only if its dominant color falls in the 

field color range of the video. Thus, the video sequences of the frames 

showing the soccer field are produced. In this chapter, we will focus on how to 

find the ball location in each frame of a given sequence of the contiguous 

frames depicting the soccer field. 
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The rest of this chapter is organized as follows. Section 3.2 presents 

the methods of estimating the ball size. Section 3.3 explains the method to 

generate the ball candidates for each frame. Section 3.4 presents the method 

to generate the candidate trajectories. Section 3.5 explains the measures and 

procedures to process the candidate trajectories to produce the ball 

trajectories.  Various experiments and their results are given in Section 3.6. 

Section 3.7 presents the trajectory-based ball detection and tracking algorithm 

for broadcast tennis video. We summarize this chapter in Section 3.8. 

 

3.2   Ball Size Estimation 

Removing non-ball objects by size necessitates ball size estimation. In 

broadcast soccer video (BSV), the ball size changes due to camera 

calibration and ball deformation, apart from the distance change from ball to 

camera. However, we can estimate the ball size through the sizes of salient 

non-ball objects in the same frame. In a soccer field, the ellipse, goalmouth, 

and players (the referee, two goalkeepers and players) are salient so that they 

can be detected more reliably than the ball. Thus, these objects are first 

identified in each frame and their heights and locations are used to estimate 

the size of the ball. Since the ball size varies with locations within a frame, we 

compute the ball size for each location to build a complete size sieve. 

 

3.2.1   Principle of Ball Size Estimation 

We begin with the principle used in ball size estimation. For BSV, the camera 

can be approximately modeled by a pinhole camera, whose principle of image 
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generation is illustrated in Figure 3.2. Therefore, we have the following 

approximated formula. 

1−××= DdHh  (3.1) 

where H and h are the heights of the object and its image respectively, D and 

d are the distances from the object and its image to the pinhole respectively.  

h 

d 

H object 

image 

 pinhole

D 

Figure 3.2   Illustration of a pinhole camera.

 

Let H0 be the diameter of the physical ball,  be the center of the 

frame and  the height of the ball at the location in the frame (i and j 

are the row and column of the ball respectively). Let  be the ball size if 

the ball were at . Then according to the equation 3.1, we have 
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where and  are the distances from the physical ball and the image 

of the ball to the pinhole respectively, provided that the ball image is at row i 

),( jiD ),( jid
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and column j in the frame  and  are the values of  

and  respectively if the ball were at , the center of the frame. 

Thus, we have the following ball height variation array. 

),( cc jiD ),( cc jid j)(i,D

),( jid )( cc , ji

)()(
)()()( ,

ji,Dj,id
j,iDji,daaA

cc

cc
ijwhij ×

×
== ×  (3.3) 

where w and h are the width and height of the frame. 

The above formulae (3.2) and (3.3) are approximate because they 

consider only the main camera parameters affecting the size of the ball image. 

Nevertheless, they are accurate enough for estimating the ball size. To be 

precise, each frame has its own variation array. But in soccer video, we could 

approximately consider that each frame (far-view or middle-view) has a height 

variation array. Thus, we find salient objects, decide the frame type, and 

further estimate the ball size. We use )]1)((),1)(([ )( 21 ∆ji,b∆ji,bi, js +−= , the 

ball size range, to replace , the ball size, in our algorithm, where  and 

 are the selected extension to tolerate the estimation and segmentation 

errors. Thus,  forms a complete ball size sieve. 

)( ji,b 1∆

2∆

whji,sS ×= ))((

According to the above discussion, the main task of ball size estimation 

is to detect the ellipse, the goalmouth, and the players, which are described 

below one after another. 

 

3.2.2   Salient Object Detection  

To estimate the ball size, we need to detect the ellipse, the goalmouth, and 

the players. For the challenging problem of detecting the ellipse in BSV, this 

thesis develops a robust ellipse Hough transform that can be applied to detect 
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the ellipses in BSV well. The robust ellipse Hough transform is presented in 

Chapter 5 separately because it needs a longer presentation. Here, we only 

describe how to detect the goalmouth and the players in the soccer field. 

Goalmouth Detection: We will try to find the goalmouth if we cannot find the 

ellipse in the given frame. For the goalmouth, we have observed: (a) the two 

posts are almost vertical; (b) the goal posts and goal bar are bold line 

segments; and (c) compared with the middle line and side lines, the goal 

posts are short line segments. Based on these observations, we first find the 

two parallel vertical short line segments. For the given frame, we segment 

pixels with line color and all other pixels are painted in the field color. For each 

pixel , we define  as follows.  )( ji, )Ψ( ji,

⎩
⎨
⎧

=
              otherwise.         0,

color, line the of  is )(pixel1,
)Ψ(

ji,
ji,  (3.4) 

In the segmented image, many pixels do not belong to the vertical lines. 

According to our statistics, the two posts are almost vertical (the angle 

between the central line and the vertical line is less than ). With this 

knowledge, we propose a filter 

o3

)(•ℜ  to identify the pixels in the long vertical 

line and to remove the pixels not belonging to the long almost vertical line. 

 paints the pixel in the field color if )(•ℜ )( ji, 0)( =Φ ji, . 

( )
( )
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otherwise. 0,
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)( L

0k

L

0k

kji,
kji,

i,j  (3.5) 

)(•ℜ  can remove most of the pixels that are not on the two vertical 

posts in the segmented image, as illustrated in Figure 3.3(c).  
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(c) (d) 

(a) (b) 

Figure 3.3  Goalmouth detection. (a) the input image, (b) the segmented image by color, 
(c) the found two goalposts, (d) the found goalmouth. 

 

Once we identified the two vertical posts, we will check whether there 

is a goal-bar connecting the two upper ends of the two vertical line segments. 

Then, we further find the slope of the bar and adjust the two ends of the two 

poles. So far, we have estimated all the parameters of the goalmouth. Let L1, 

L2, and L3 be the estimated three line segments that comprise the goalmouth. 

Let L4 be the estimated goal line. Let G={L1, L2, L3, L4}. We define  to 

evaluate the presence of the goalmouth.  

(G)MG

( )∑=
4

1
iL4

1
G )(LM(G)M  (3.6) 
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Sometimes, we can only detect one of the two parallel posts since the 

other is blocked by players. In this case, we will estimate the location of the 

bar according to the location of the bar in the previous frame. Then, we 

confirm the presence of the goalmouth by verifying the presence of the bar.  

Figure 3.3 illustrates the procedure to detect the goalmouth for a frame. 

Players Detection: We use a seed-growing procedure to find the objects (the 

connected components) that are in the field portion of the frame shown in 

Figure 3.4. Then, we use feature  to evaluate whether an object is a 

player. Assume that  be the set of all detected objects in the field portion 

of frame F. Let 

kfff ,,, 21 L

)(FΚ

)(FΚ∈ο  be an object and ),,2,1()|( kifP i L=ο be the 

probability that indicates how likely ο  is a person with respect to the feature . 

The choice of features allows us to assume that they are independent with 

relatively small error. With this assumption the probability that 

if

ο  is a person 

has a simple formula. 

∏= k

1
)|()( ifPP οο  (3.7) 

The object ο  is removed if )(οP  is small; otherwise ο  is kept for 

estimating the ball size. The features used to evaluate whether an object is a 

person are mainly the color, the size, and the surrounding. The surrounding 

means whether the object is surrounded by the pixels in the field color. The 

probability for color is the ratio of the number of pixels in player color to the 

area, in the upper half of the object. For shape, we use a predefined table of 

probability with respect to the ratio of height to width of object.    
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(c) (a) (b) 

Figure 3.4   People detection. (a) the input image, (b) the segmented image, (c) the found 
people with their bounding boxes. 

 

According to the sizes of the detected players, we can classify the type 

of the frame. For example, we know that the frame is a far-view frame when 

the sizes of persons are very small.  For each detected person, we normalize 

its size as if it is at the center of the frame by the size variation array. Then, 

we find the average of the normalized sizes and compute the ball size 

according to the ratio of the players’ heights to the diameter of the ball.  

 

3.2.3   Ball Size Computation and Adjustment 

After knowing the size and location of a found salient object, we can compute 

its normalized size, which is the size of its image projection provided that it is 

at the center of the frame according to equation 3.3. Then we can estimate 

ball sizes at the center of the frame according to equation 3.2. The estimated 

ball sizes form a function over frames. Among these ball sizes, those 

estimated by ellipse and goalmouth are very reliable so we do not change 

them. We adjust the ball size by smoothing the curve of the function of the ball 

size without changing the reliable sizes to improve the accuracy of the 

estimated ball sizes.  
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3.3   Ball Candidate Generation 

This section presents a procedure to produce high qualitative ball candidates. 

The ball candidates comprise both the ball objects and the ball-like objects, 

which look like the ball but are not the ball objects, because we cannot identify 

the ball object among the candidates solely by appearance. This ball-

candidate production procedure uses the anti-model approach, which 

removes identified non-ball objects in a frame using the built sieves (or anti-

models) while the remaining objects are considered as the ball candidates of 

the frame. First, the frame can be separated into two objects: field and non-

field. The non-field object is eliminated as a non-ball object as the ball is 

seldom out of the playing field. The field is obtained through a seed-growing 

procedure by continuously absorbing the neighbor pixels with the field color or 

with small color difference from the seed pixel. 

 

3.3.1   Object Production 

Here we describe the segmentation procedure to produce the objects in the 

soccer field portion of a given frame. The challenge of the procedure is to 

separate the ball from the object when they are merged. The importance in 

separating the merged ball is that the ball will be removed if it cannot be 

properly separated. The object production procedure has three steps. We first 

identify shapes such as ellipse, lines, etc. For the identified shapes, we find 

the function that represents the shapes. Then we segment the shapes 

according to the representative function. In this segmentation process, 

another important task is to prevent the ball that merged with the identified 
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shapes from being removed. The segmented shapes are recorded as the 

found objects. Then all connected components in the processed frame that 

the identified shapes are removed are considered to be objects. Next, from 

the processed frame we produced a segmented frame with the ball color. All 

connected components in segmented frame are considered to be objects too.  

From this segmented frame, we can properly produce the ball object even 

when the ball merges with other objects which are not in the ball color. 

Besides finding the ball in the field, we also want to find the ball in the area 

around the goalmouth as locating the ball in this area is very important for 

detecting goal and other events (this area is termed as the goalmouth area for 

short). We use a specialized procedure to find the ball objects in the 

goalmouth area when the goalmouth is detected. Let frame  be the current 

frame and be its previous frame. Assume that we have detected the 

goalmouth in F  and F . Then we transform pF Ft  make the goalmouth in 

 Ft atch with the goalmouth in F exactly. This transform includes shifting, 

rotation, and linear resizing. Next we obtain  that is the difference frame that 

frame F  is subtracted by frame . During the subtraction, for each pixel , 

the pixel of frame F  is kept if F  is in the ball color and  is in the field color at 

; otherwise, it is painted in the field color. The salient clusters of the 

points in non-field color are considered as the objects. Figure 3.5 illustrates 

the procedure to produce objects in the goalmouth area. 

F

pF

p into  to

m  

Fframeinobjectanisο: . 

dF

tF )( ji,

tF

)( ji,

Let F be the considered frame, the set of all the objects in F  is denoted 

as {(F) οΟ =

 

}
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(c) (a) (b) 

(d) (e) (f) 

Figure 3.5   Object production in goalmouth area. (a) is the original previous frame, (b) is 
the original current frame, (d) and (e) is the goalmouth area of segmented frame of (a) 
and (b) respectively, (c) is the difference that (e) is subtracted by (d), and (f) is the found 
salient cluster. 

 

3.3.2   Sieves and Candidate Generation  

We employ the following six sieves to remove more non-ball objects. 

Ball Size Sieve 1Θ : The ball size sieve is whji,sS ×= ))((  as described in the 

preceding Section 3.2. 

Line Sieve : We remove all long lines, including straight lines and curves, 

as the ball cannot deform into a long line.   

2Θ

Ball Color Sieve : The ball must have some pixels whose colors fall into 

the ball color range. Hence, we can filter objects with too few ball color pixels.   

3Θ

Shape Sieve : The ball object can have a shape far from the circle, but in 

most frames the ratios of both width-to-height and height-to-width are less 

than 3 according to our statistical results.  

4Θ
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Ball Center Sieve : A ball object may have some pixels whose colors do 

not fall into the ball color range, but the color of its center should fall into ball 

color range.  Hence, we remove objects whose center colors are not in the 

ball color range.  

5Θ

Penalty Mark Sieve : When a frame shows the goalmouth or penalty box, 

it probably shows one of the two penalty marks in broadcast soccer video. 

Hence, for the frames that we had goalmouth or penalty box detected, we 

compute the world position of each candidate. As a result, we can find out 

whether a candidate is a penalty mark according to its world position. We 

remove the identified penalty mark from the obtained candidates. 

6Θ

(c) (d) 

(a) (b) 

Figure 3.6   Candidate generation. (a) original frame, (b) the frame after removing non-field 
and lines, (c) the frame after removing the objects by size, (d) the frame after removing 
objects by all the sieves. 
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           Each sieve  is a Boolean function on the domain iΘ

}:{)( FframeinobjectanisF οο=Ο .  
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After sieving, the remaining objects of )(FΟ  form the ball candidate set 

 of frame F. )(FC

)}(,1)(:{)( 6

1i
FFC i Ο∈=Θ= ∏=

οοο  (3.9) 

The sieved results of a sample frame are shown in Figure 3.6. 

 

3.3.3   Candidate Classification 

Let  be all features that we use to evaluate the candidates. Let kfff ,,, 21 L

),,2,1()|( kifP i L=ο be the probability that ο  is the ball according to the 

feature . The choice of features allows us to assume that they are 

independent with relatively small error. Thus, this assumption is attractive 

because the probability that 

if

ο   is the ball has a simple formula.  

∏=
=

k

1i
)()( οο iPP  (3.10) 

According to the probability )(οP , the candidates in  can be 

divided into three categories. Categories 1 to 3 contain the objects with high, 

medium and low probabilities respectively. Two types of features are used to 

compute the probability. One type is the appearance features such as the 

circularity, the average color distance to the ball color, and the difference to 

the estimated size. The other type is the isolation of the candidate, i.e. how far 

the candidate is from other objects. This feature is important because the 

)(FC
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candidate close to a player might be his region due to over-segmentation. For 

candidate classification, we have a special rule that all candidates in the 

goalmouth area are assigned as Category 2.  

The various conditional probabilities are defined as follows. The 

probability of the object with respect to the circularity is defined to be the ratio 

of the number of the pixels in the object to the area , where r is the 

radius of the object; the probability with respect to the color is defined as the 

ratio of the number of pixels in ball color range to the number of all the pixels 

in the object; the probability with respect to the radius is defined as 

, where R  and r  are the estimated ball size and the radius of 

the object respectively. The probability with respect to isolation is a predefined 

table. Classification result of the candidates will be used to evaluate the 

candidate trajectory in the following trajectory mining procedure. 

2r×π

RrRR :)||( −−

 

3.4   Candidate Trajectory Generation 

Within a frame, it is hard to identify the ball among the candidates of a frame 

as the features of the ball are not different from the features of the other 

candidates. In the worst case, some non-ball candidates look like the ball 

more than the ball itself. For example, the shape of the ball is far from its ideal 

rounded shape, when it is half occluded or when it is flying very fast. Hence, 

we do not decide whether a sole object is a ball. Instead, we decide whether a 

candidate trajectory is a ball trajectory. Trajectories are generated by a 

Kalman filter-based procedure, which works properly and fast.   
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For each frame, we throw away the data that is irrelevant to ball 

position and retain only several candidates. These candidates have two 

merits. The first merit is that the candidates contain enough information for 

finding the ball. The second merit is that the data volume of candidates is very 

small so that we can process all candidates of a long sequence in one time. 

When candidates are processed together, rich spatial and temporal 

information can be obtained and used.  

For a sequence of frames, each combination of candidate numeral 

features can form a candidate feature image (CFI). The samples of numeral 

features are the size, the locations, and the velocities of the candidates. The 

various CFIs express the candidates of a long sequence in different aspects. 

In a CFI, the temporal filters and the trajectory analysis are easily applied. 

This section uses the Kalman filter to generate the candidate trajectories in 

CFI. Each element of each candidate trajectory is a ball candidate. This is 

why it is called a candidate trajectory. 

 

3.4.1   Candidate Feature Image 

A candidate feature image is an image that draws a combination of candidate 

numeral features over the frames in the given sequence. X-image (Y-image, 

DISTANCE-image) is created in such a way that the width of the created 

image is the number of the frames in the sequence and the height of the 

created image is the width (height, the length of diagonal) of the frame in the 

soccer video. Each candidate draws a pixel in X-image (Y-image, DISTANCE-

image) with the column being the frame serial number in the sequence and 

the row being the column (row, the distance between its center and the top 
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remaining corner) in the original frame. XY-image, a 3D image, is created in 

such a way that the length of the image is the number of the frames in the 

sequence, and the width and the height of the image are the width and the 

height of frames in soccer video. Each candidate draws a pixel (t, x, y) in XY-

image with t being the frame serial number in the sequence and x (y) is the 

number of the column (row) of the candidate center in the original frame. 

Figure 3.7 shows a sample DISTANCE-image. 

d

n

 0 150100 200  50 

35

25

15

Figure 3.7   Partial DISTANCE-image of the obtained candidates for the sequence of the 
frames from 48957 to 49167 of FIFA 2002 final. Black dots, green rectangles and red crosses 
stand for candidates in category 1 to 3. In the figure, n is the serial number of the frame in the 
sequence and d is the distance between the candidate and the top left corner of the original 
frame. For the legibility, only the frames with even serial number are drawn.  
 

3.4.2   Candidate Trajectory Generation 

We use a candidate verification procedure based on the Kalman filter to find 

candidate trajectories from a candidate feature image. Figure 3.8 gives the 

flowchart of the procedure. 

A trajectory seed is first obtained, which then initializes the Kalman 

filter. Then we grow the trajectory. The ball position in the next frame is 

estimated by the Kalman filter; the candidate that is close to the estimate is 

found; the ball position is the center of the found candidate if it is close 
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enough to the estimate. Notice that the trajectory will be forked into more 

trajectories when more candidates are close to the estimate. Theoretically, the 

number of forked trajectories can be the exponent of the number of 

candidates in the CFI. Fortunately, in our procedure the forking occurs 

sparsely. Finally, the filter is updated. A frame is called a candidate missing 

frame and the estimate will be considered the ball position if the frame has no 

candidate close to the estimate. The growing procedure terminates when the 

number of consecutive candidate missing frames reaches a given threshold. 

In our implementation, this threshold is 7. This procedure produces a 

candidate trajectory set for a candidate feature image. 

no 

yes 

Estimate 
Ball position

Initialize 
Kalman filter

  no Have another 
trajectory seed ?

no 

yesIs the estimate 
verified ? 

yes # of missing 
frames > limit ?

Update 
Kalman 

Forked 
trajectories 

Output 
trajectories 

Trajectory 
set 

Grow one 
trajectory 

A candidate feature image 

 Figure 3.8   Flowchart of candidate trajectory generation.  
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In this chapter, Kalman filter is used in several places, but we only 

describe how to use the Kalman filter to generate candidate trajectory in 

Appendix A to avoid repetition. We use the Kalman filter implemented in 

OpenCV b2.1 from IntelTM. 

 

3.4.3   Trajectory Joint 

Let  and  be two trajectories. Assume that the start of  is just after the 

end of  in time. Let  be the last object of  and  be the first object of 

. We join  and  into T if  and  are close in location and size. We 

extend the definition of a trajectory to include the join of two trajectories, in 

which case we still call T a trajectory.  

1T 2T 2T

1T 1O 1T 2O

2T 1T 2T 1O 2O

 

3.5   Trajectory Processing 

We define a confidence index to indicate the likelihood that a candidate 

trajectory is a ball trajectory. Then, we first remove the candidate trajectories 

with which the confidence index is too low. For the remaining candidate 

trajectories, we produce the ball trajectories using two procedures: ball 

trajectory production and trajectory extension. After trajectory extension, we 

use an interpolation procedure to patch the small gap between each pair of 

the obtained ball trajectories.  
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3.5.1   Confidence Index 

Let  be the trajectory set of a given 

sequence in its XY-image. Let 

}:{ trajectorycandidateaisΤΤ=Γ

mλλλ ,,, 21 L be all properties of a trajectory Τ . 

A function )( ii λΩ  computes the confidence index that Τ  is a ball trajectory 

with respect to iλ .  The confidence index that Τ  is a ball trajectory is 

defined below: 

(T)Ω

∑=
Ω=Ω

m

1i
)((T) ii λ  (3.11) 

The confidence index )(λ iiΩ  is computed by using three types of 

features. 

Type I: The first type of features is the numbers of the candidates in Category 

1 to 3 in the trajectory. 

Type II: The second type of features is the ratio of the sum of the numbers of 

candidates in Category 1 to 2 to the number of candidates in Category 3. 

Type III: The third type of features is the straightness of the trajectory and the 

straightness of the trajectory with respect to x or y. 

Normally )( ii λΩ  is a positive number that shows how likely T is a ball 

trajectory with respect to iλ . But )( ii λΩ  can be negative when iλ  indicates 

that T is not a ball trajectory. For example, let iλ  be the straightness of the 

projection of T in Y-image (Candidate feature Y-image). We set an infinite 

negative number to )( ii λΩ  if there is a significant length of the projection of T 

resembling a straight line in Y-image. The above rule is based on the fact that 

the straight line portion of T indicates that the candidate is a stationary object.  

Such a trajectory can be discarded even if it is a ball trajectory as the ball 

trajectory containing the stationary ball indicates that the game is stopped. 
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3.5.2   Overlapping Index 

Roughly speaking, after we identified a ball trajectory we can remove all 

trajectories that overlap with the identified ball trajectory as there is only one 

ball in each frame. However, we cannot directly apply this rule as a ball 

trajectory might contain some non-ball objects. Hence, we define an 

overlapping index to indicate how much a trajectory overlaps with an identified 

ball trajectory. Then, we decide what to do according to the overlapping index. 

Let bΤ  be a ball trajectory and Τ  be a candidate trajectory. The overlapping 

index Τ  to bΤ  is denoted by Τ)(Τ  b,Ξ , which is computed as follows.  

(T)|T|
)T L(T,Τ)(Τ b=Ξ  (3.12)  b, Ω×

 is the number of the frames that bothwhere )T L(T, b Τ  and bΤ  cover.  

 

 

After we identify a ball trajectory

3.5.3   Ball Trajectory Production   

Let be the set of all candidate trajectories in XY-image.  Γ  
SET the ball trajectory set Β   to be empty. 

  WHILE (  is not empty) DO Γ

     Move the trajectory T with the highest index into Β . 

     Discard the trajectories at seriously oveth rlap with T in Γ . 

ortions of the trajectories that slightly     Remove the overlapped p  

overlap with T in Γ. 

Figure 3.9   Ball trajectory selection procedure.

bΤ , we process the candidate trajectories 

at overlap with it as follows. Assume that a candidate trajectory  overlaps th Τ
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with bΤ . We discard Τ as non-ball trajectory when Τ)(Τ  b,Ξ  is large; we 

discard the overlapped portion of Τ  when Τ)(Τ  b,Ξ  is small. With this 

preparation, we propose the procedure described in Figu o produce the 

ball trajectories. 

The whole procedure to produce the ball trajectories from the all 

candidate traject

 

ories a sequenc  frames is termed as the trajectory 

min

 

or each obtained ball trajectory, we based procedure to 

 the ball trajectory.  

re 3.9 t

of e of

ing procedure. This procedure consists of trajectory evaluation and ball 

trajectory selection. Figure 3.10 shows the result of the trajectory mining 

procedure on the sequence of frames from 48957 to 49167 of FIFA 2002 final. 

n

350 
d 

250 

150 
50 

Figure 3.10   Ball trajectories after trajectory mining for the sequence of frames from 48957 to 
49167 of FIFA 2002 final. In the figure, n is the serial number of the frame in the sequence and 
d is the distance between the candidate and the top left corner of the original frame. For the 

bility, only the frames with even serial number are drawn.  

200100 1500 

legi

3.5.4   Ball Tracking  

F use a Kalman filter 

track the ball to extend

Features for Ball Tracking: Three features are used for ball tracking since 

our tracking is a local tracking. 
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• The color range: The color of the ball might change irregularly, but it 

resides in a range.   

• The ball radius upper bound: The radius of the ball might vary irregularly, 

but it has an upper bound.   

Fe tion: Let

• The ball location: It is predicted by the Kalman filter. 

ature Prediction and Extrac Τ  be the trajectory to be extended 

and ),,( lrcΒ be the ball model. ),,( lrcΒ  is initialized according to the objects 

in Τ . Once the ball in frame k is obtained, ),,( lrcΒ  for frame k+1 can be built. 

First, mator predicts the  of the ball. Another estimator )( an esti location •Η  

predicts the color range of the ball. In a enclosing the predicted 

location, we segment the objects with color range )1H(

the are

+k . Then, we remove 

the objects whose radii are larger than the predicted radius upper 

bound )1Q( +k , which )Q(•  is another estimator. Here, the estimators are 

Kalman filter-based (see Section 3.4.2 for the use of Kalman filter). 

etected t O , its probability of being the ball is denoted by 

)(OΜ , which is the ratio of the number of pixels in )1H(

For the d objec

+k  to 2rπ , where  is 

the es al

consid

and be two obtained ball trajectories. Let be the frame number of 

the last frame in  and be the frame number of the first frame in . We 

by

 r

timated ball radius. Fin ly, the object with the highest probability is 

ered as the ball if the probability is larger than the given threshold. 

 

3.5.5   Gap Interpolation 

Let 1T  2T  1e  

1T 2s  2T

compute the ball positions between e and s  linear interpolation if 

13<− es  (13 means half a second). This interpolation procedure will give 

1 2

12
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the ball positions when the ball is occl ed temporarily or it is out of the 

 temporarily.  

The ball tracking and the gap interpolation together form a procedure 

termed as trajectory ref

ud

camera view

inement. The trajectory processing comprises 

traject

 

This section describes various experiments to explore the different aspects of 

 is 

ory mining and trajectory refinement. Figure 3.11 shows the result of 

trajectory refinement for the sequence of frames from 48957 to 49167 of FIFA 

2002 final. 

n

3
d 

50 

250 

150 
50 

Figure 3.11   Ball trajectories after the trajectory refinement for the sequence of frames from 
48957 to 49167 of FIFA 2002 final. In the figure, n is the serial number of the frame in the 
sequence and d is the distance between the candidate and the top left corner of the origin

e. For the legibility, only the frames with even serial number are drawn. 

200100 1500 

fram
al 

3.6   Experiments on the Ball Detection and Tracking in BSV 

the algorithm for locating the ball in broadcast soccer video (BSV), which

presented in the preceding sections. We first do experiments to evaluate the 

performance of the algorithm. Then we do experiments to evaluate some key 

techniques used in the algorithms. We also compare our algorithm with the 

algorithm proposed by D’Orazio et al [DACN2002]. The test has been 

conducted on two MPEG-1 videos of FIFA 2002, which were recorded by a 

 54



 

WinTVTM card connected to a TV antenna. One of the video is the final match 

(Brazil vs Germany) and the other is a quarter-final (Senegal vs Turkey). 

 

3.6.1   Performance of the Soccer Ball Detection and Tracking 

 ball in the 

frame 

The term ball location refers to the coordinates of the center of the ball object 

in frame. The objective of an algorithm for detecting and tracking the ball is to 

locate the ball in the ball frames that are visible. In addition, the algorithm 

aims to infer the ball location when the ball is temporally occluded. 

A frame is said to be with the ball if viewers know there is a

according to the previous and posterior frames, even though the ball is 

occluded or is flying very high but the ball must be still in play. However, the 

closed-up frames, which can be identified by the players’ size, are considered 

as the non-ball frames. This is because the balls in closed-up frames can be 

detected by template-matching, which is not in the interest of our algorithm. 

Another case of non-ball frames occurs when a player holds the ball for a long 

time (longer than 1 second) before starting the ball or just after a break starts. 

A frame is said to be detected correctly if the algorithm identifies the presence 

of the ball and its position correctly. As shown in Figure 3.7, our ball candidate 

generation procedure does obtain a lot of non-ball candidates as these 

candidates resemble the ball. Fortunately, the ball trajectory mining procedure, 

including candidate trajectory generation and ball-trajectory production, can 

identify the ball trajectories correctly as shown in Figure 3.10. In a ball 

trajectory there are some non-ball objects---false alarms (or false positive 

detections), as these non-ball objects are very close to the real balls. These 

false alarms appear only when a player wearing a pair of white soccer boots 
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or socks is dribbling the ball. However, these non-ball objects do not misguide 

the tracking procedure even though they are very close to the real balls. 

Therefore, the ball trajectory mining does not obtain any non-ball trajectory. 

This is because to decide whether a candidate trajectory is a ball trajectory is 

much more reliable than to decide whether a sole object is a ball. Figure 3.11 

shows the ball trajectories after trajectory refinement, which includes ball 

tracking and interpolation for small gaps between two produced ball 

trajectories. Figures 3.7, 3.10 and 3.11 show the candidate distance images 

for the same sequence in the different process stages. However, some ball 

trajectories cannot be found as they are too short (less than 6 frames). 

It is a hard and tedious job to obtain the groundtruth of the ball location 

for a s

Table 3.1   Detection and tracking results for the nine sequences  
(FIFA 2002 Final, Germany vs Brazil) 

Sequences  result 

occer video because a video of half a soccer game is about 47 minutes 

long and has about 70,000 frames. To reduce the difficulty of this job, we first 

compute the ball locations using our algorithm. Then we obtain the 

groundtruth through adjusting the obtained ball locations in a visual tool that 

we built for this task. Thus, we can produce the groundtruth very fast because 

our algorithm achieves very good accuracy in locating the ball. 

 

 Ground truth Detected result Det’ed & tracked
 # 

fram ll det
# F accuracy e ball ba

# # no # # F accuracy # det. 
ect traked

00 102 % 2900-003001 102 0 98 0 96.1 102 0 100% 
003143-003308 266 108 158 266 0 100% 266 0 100% 
005368-005503 136 130 6 113 0 83.1% 136 0 100% 
005623-005834 212 212 0 196 0 92.5% 212 0 100% 
008026-008424 399 323 76 281 3 70.0% 385 3 96.1% 
008805-008834 30 0 30 30 0 100% 30 0 100% 
008950-009069 110 0 110 110 0 100% 110 0 100% 
048957-049167 211 211 0 192 3 91.0% 209 3 99.1% 
049256-049974 719 6  08 111 678 2 94.3% 702 4 97.6% 
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The detection and tracking results for nine representative sequences 

from th

002 

Final, 

ance of the Algorithm on successive 10045 frames of the test video. 
(FIFA2002 Quarter-Final Senegal vs Turkey) 

Seq

e video of the final match, in which the game starts at the first frame, 

are shown in the Table 3.1. In Table 3.1, # means “the number of” and # F 

means “the number of the false alarms”. These nine sequences are good 

representative because they include long, short, and ball-less sequences. 

After we have tested the algorithm on nine sequences from FIFA 2

we turn to test our algorithm on a whole video of the first half of the 

game between Senegal and Turkey (FIFA2002), called the test video for short, 

whose distribution of the various types of sequences is given in Table B.1 and 

B.2 in Appendix B. 

Table 3.2  Perform

. # frm # ball #~ball # B # ~B # P # pos. accu. % pos. 
L02 3046 248 74.4% 2.46% 6 560 1723 543 58 17 
X 0 1 0% 10 42 0 42 0 42 0 00% 
R 150 0 403 262 190 72 40 72 2.8% 0% 
M13 441 218 223 184 223 16 0 92 3.63% .3% 
X 111 71 0 71 0 71 0 0 00% 0% 
M14 487 244 243 195 243 4 0 89.9% 0.82% 
X12 95 0 95 0 95 0 0 1 0% 00% 
X13 24 0 24 0 24 0 0 100% 0% 
M15 690 310 380 179 380 0 81.0% 0% 0 
X14 154 0 154 0 154 0 0 100% 0% 
M16 420 177 243 108 243 0 83 0.48% 2 .6% 
M17 796 660 136 532 135 33 1 83  4.27% .8%
X15 48 0 48 0 48 0 0 100% 0% 
X16 73 0 73 0 73 0 0 1  0% 00%
X17 59 0 59 0 59 0 0 100% 0% 
L03 1472 1282 190 933 190 27 0 76 1.83% .3% 
X18 26 0 26 0 26 0 0 100% 0% 
X19 27 0 27 0 27 0 0 10 0% 0% 
X20 27 0 27 0 27 0 0 100% 0% 
M18 566 268 298 147 297 14 1 78.5% 2.65% 

~F(19) 1218 0 1184 0 1184 0 0 100% 0% 
Total 1004 5835 4210 4041 4191 304 19 82.0% 0.19% 5 

 

ab 2 sh s th ults  the cess  100  fra  of t st 

video. In Table 3.2, “# frm” means “the number of frames”; “# ball” means “the 

T le 3. ow e res  on  suc ive 45 mes he te
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nu  of es ng he number of frames not 

ha the ll”; “ B” m ns “  nu r of ames hat the algorithm 

correctly spots the ball”; “# ~B” means “the number of frames that the 

algorithm correctly tells that there are no ball”; “# P” means “the number of 

frames that we wrongly tell the locations of the ball”; “ # pos.” means “the 

number of frames that we wrongly say that the ball appears”; “~F(19)” means 

“19 sequences in which no frame shows the field”.  

Table 3.2 also shows that the algorithm does not perform well on the 

replay sequences. There are at least two  

the frames in replay sequences are from the side cameras, not the main 

camera. Thus, the ball is more often occluded and its size relation to the 

sa bj s is n ed r thm con he ne c nge 

 fast in replay sequences. As a result, it is hard for the ball to form a 

traject

 detection results are very 

reliable

mber  fram havi the ball”; “# ~ball” means “t

ving  ba # ea the mbe  fr  t

factors to explain this. First, most of

lient o ect not co sider  in ou algori . Se d, t sce ha

is

ory. In the following experiments, we will discard the replay sequences 

because they are not the objective of our algorithm. Table 3.2 shows that our 

algorithm performs very well on the ball-less sequences. To be concise, we 

will not include the ball-less sequences as well. The number of the remaining 

sequences is 68. 

Table 3.3 shows the experimental results for the remaining 68 

sequences, which is much better than the results shown in Table 3.4 obtained 

with the algorithm in [DACN2002, DGLD2004]. In all sequences, the number 

of false alarms is very low, hence, reflecting that our

. There are two types of false alarms. One type is that the algorithm 

reports some balls for frames without the ball. Another type is that the 

algorithm reports the wrong locations of the ball for the frames with the ball. 
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For each ball trajectory, the false alarms are a small portion of all elements of 

the trajectory. In other words, there is no ball-trajectory containing only false 

alarms or a main portion of false alarms. 

Table 3.3   Detection and tracking results of the 68 sequences. 
Ground truth Detection Detection and tracking  

Segment #frame #ball #~ball #right #false Accuracy #right #false Accuracy 
S01-S14 2512 1567 945 1803 22 71.78% 2173 45 86.50% 
M01-M40 24465 16563 7902 17881 194 73.09% 19721 598 80.61% 
L01-L14 25460 20945 4515 19592 402 71.29% 20450 591 80.32% 

Total 52437 39075 13362 37834 618 72.15% 42344 1234 80.75% 
 

algorithm and the CHT algorithm. 
Table 3.4   Comparison on the detection results between the detection procedure of our 

Segment Ground truth CHT Our detection procedure 

 # 
frame #ball (n1+n2) # ~ball #right # false accuracy #right # false accuracy

S0-S14 2512 933+634 945 1321 309 52.59% 1803 22 71.78% 
M01-M40 24465 10924+5639 7902 12729 2862 52.03% 17881 194 73.09% 
L01-L14 25460 14796+6149 4515 10043 4390 39.45% 19592 402 71.29% 

Total 52437 26653+12422 13362 24093 7561 45.95% 37834 618 72.15% 
 

D’Orazio et al proposed a Circle Hough Transform (CHT) algorithm to 

detect the ball in soccer video in [DACN2002, DGLD2004]. Their algorithm 

identifies the ball using CHT and neural classifier, which works well for the 

videos recorded by their own camera [DACN2002, DGLD2004]. However, in 

BSV, a lot of the balls are not circle in shape due to ball deformation and the 

ball erging wit jects. As a eir algo d 

results for lo g t ll. de on mp b en  d  

procedure of our algorithm a  i ow . e  

“#ball” of Table 3.4, “n1” is the number of the balls that are neither occluded 

no d with other o er of the balls that are 

either occluded or merged with other objects. Actually, the CHT works quite 

w  h te 93 s a  

m h other ob result, th rithm produces ba

catin he ba The tecti  co arison etwe  the etection

nd the CHT s sh n in Table 3.4  In th  column

r merge bjects and “n2” is the numb

ell as it as de cted 240  ball from 52437 frames if we realize th t 24093
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e  % ,  e b e th re  

occluded nor merged with other objects.  

 

quals to 90.40  of 26653 which are th  num er of th  balls at a  neither

3.6.2   Experiments on Ball Size Estimation 

The ball sizes are estimated from the ellipse, the goalmouth, and the players. 

Here, some experiments are done to explore the performances through three 

types of salient objects. We chose a video sequence of frames from 68340 to 

69098 for our experiments. Firstly, the ball locations and sizes are obtained 

manually. Then we compute the ball sizes as though the balls are located at 

the center of the frame, which are computed from the real ball sizes by the 

following formula.    

0r24h
5h  SS ×⎟

⎠
⎞

⎜
⎝
⎛

+
=  (3.13) 

where h is the height of the frame, r is the row of the ball location, and 

0S  is the manually obtained ball size. 

The above formula is the simplified version of ball size variation array, 

in which the simplification is based on the observation that the changes in the 

can be ignored. The accuracy 

 

ball size along the row are very small and 

comparison of the ball size estimation through ellipses, goalmouth, and 

players are given in Table 3.5. Let F be the considered frame. Assume the 

true ball size of the frame is 0S , the estimated ball size is the S. The standard 

error in ratio for the frame is the absolute value of -1
0 )(S1 ×−S . 
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Table 3.5  Comparison on estimating the ball size in three types of salient objects  
for the sequence of the 68340 to 69098 frames of Senegal vs. Turkey.

Type of salient 
objects 

Number of 
applied frames 

Average 
standard error in 

pixel 

Average 
standard error in 

ratio 

Ellipse 423 0.831 0.159 

Goalmouth 31 0.967 0.179 

Player 305 1.232 0.214 

 

3.6.3  

tly larger than the ball size. 

Figure 3.12 shows that we can produce the best results by setting the ball 

size used in the filter to be 1.7 times of the real ball size.  

Figure 3.12   Relation between the number of the true-ball candidates and the used ball 
sizes in the ball size filter. 

 Experiments on Ball Size Filter 

Here we vary ball sizes to be used in the filter to find the relation with the 

number of the obtained ball candidates and the relation with the number of all 

the produced candidates, which are shown in Figures 3.12 and 3.13. Figure 

3.12 shows that the number of total candidates decreases when the used ball 

size increase. This indicates that the objects with a size slightly smaller than 

the ball are more than the objects with a size sligh
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3.6.4   Experiments on the Robustness of Ball Trajectory Mining 

Here we test the robustness of the ball trajectory mining by dropping the true 

ball candidates in various percentages. The experimental results are shown in 

Figures 3.14 and 3.15, they demonstrated that our procedure is very robust.  
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Figure 3.13   Relation between the number of all the candidates and the used ball sizes 
in the ball size filter. 

Figure 3.14   Relation between the percentages of the found ball and the dropped true-
ball candidates in the ball trajectory mining procedure. 
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Figure 3.14 shows that our trajectory mining procedure can achieve a high 

percentage of the ball correctly even though the ball candidates have dropped 

by 20%. Figure 3.15 shows that the false alarms are kept to less than 5% until 

the ball candidates are dropped by 12%. The percentage of false alarms 

keeps increasing when more ball candidates are dropped. 

 

3.6.5   Contribution of Penalty Mark Filter 

The penalty mark filter is a special filter, whose task is to identify the penalty 

marks and remove them. The penalty mark filter is a necessary filter because 

th
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 o

e algorithm will consider the trajectories of penalty marks to be ball 

trajectories if we do not have this filter.  

6970 of 

Figure 3.15   Relation between the percentages of the false balls and the dropped true-
ball candidates in the ball trajectory mining procedure. 

We chose a video sequence including frames from 36890 to 3

the final match of FIFA 2002 to illustrate the contribution of the penalty mark 

filter. For this video sequence, the candidates with and without penalty mark 

filter are shown in Figure 3.16. Then the mined ball trajectories from Figure 

 63



 

3.16 are shown in Figure 3.17. The results showed that the algorithm may 

identify the trajectory of penalty marks as a ball trajectory.  

 

3.7   Application of the Trajectory-Based Approach to BTV 

The preceding sections have successfully developed a trajectory-based 

algorithm for locating the ball in BSV. Under the encouragement of this 

success, this section applies the trajectory-based approach to develop an 

algorithm for locating the ball in broadcast tennis video (BTV).   

 

3.7.1   Challenges of Tennis Ball Detection and Tracking 

d 

ummarization [Miy2003, SuLJ1998, MiIi2000]. Since the “ball” is the most 

 

tennis video analysis. However, so far there is no algorithm able to obtain 

• The ball is very small, especially at the far side of the camera. For some 

frames, balls are so small that human eyes are unable to see them 

• The ball is often occluded by the players and the net. It may mix with the 

audience and complicated background 

• The appearance of the ball varies irregularly over frames. Its size, shape, 

and speed change irregularly over frames 

Since tennis is one of the most popular sports, tennis analysis receives much 

attention. This interest is further motivated by the possible applications over a 

wide range of topics, such as tactic analysis, indexing, retrieval, an

s

important object in tennis, detecting and tracking the ball became crucial in

satisfactory results in locating the ball in BTV due to the following challenges: 

• The ball has serious deformation due to the reflection 
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(a) The candidates with penalty mark filter. 
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(b) The candidates without penalty mark filter. 

0 80 604020 

F gure 3.16   Two DISTANCE-images of a sequence showing the effect of the penalty 
marker filter.  The sequence of frames is from 36890 to 36970 of FIFA 2002 final.  In the 

ure, n is the serial number of the frame in the s
e candidate and the top left corner of the orig

i

fig equence and d is the distance between 
th inal frame. The black dots, the green 
rectangles, and red crosses are the candidates in Category 1 to 3 respectively. 
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(b) T
rectang

he mined ball trajectories without penalty marker filter. These two trajectories of green 
les are the trajectories of the penalty marker. 
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(a) The mined ball trajectories with penalty marker filter. The produced is the true ball trajectory. 
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Figure 3.17  Mined trajectories with and without the penalty marker filter (on the sequence 
of frames from 36890 to 36970 of FIFA 2002 final).  In the figure, n is the serial number of 
the frame in the sequence and d is the distance between the candidate and the top left 

r of the original frame.   corne
 

This section proposes a trajectory-based algorithm for ball detection 

and tracking in BTV. The proposed algorithm can be viewed as anot

instance of the trajectory-based approaches [YXLT2003, YuTW2003,

YXTL2003, YSWC2004]. At the same time, the proposed algorithm has it

own 

her 

 

s 

ers at hitting points (a 

p  

u  

infers which player hits the ball from the data of player locations, hitting points, 

and ball candidate locations. 

oint when the racket hits the ball) to infer the locations of the ball. Second, it

ses these hitting points to infer the turning points of the ball route. Last, it

new elements. First, it uses locations of the play
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The proposed algorithm is for locating the ball in each frame of the 

sequence, which has five components as depicted in Figure 3.18: player 

detection and tracking, candidate detection, hitting point detection, candidate 

ctory generation, and trajectory processing. The components in the 

dotted rectangles are the ones that do not appear in the algorithm for locating 

all in BSV. 

traje

the b

Player Detection Player tracking

1. PLAYER DETECTION AND TRACKING 

A sequence of frames 

Object 
filtering

Candidate 
classification

Object 
segmentation 

2. CANDIDATE DETECTION 

Figure 3.18   Block diagram of the algorithm for locating the ball in 

3. HITTING POINT DETECTION 

Hitting 
detection 

Hitting 
classification

broadcast tennis video. 

Ball position list over frames 

5. TRAJECTORY PROCESSING 

Trajectory 
extension

Trajectory 
evaluation 

Trajectory 
discrimination

4. CANDIDATE TRAJECTORY GENERATION 

Candidate feature Candidate Trajectory 
image creation reduction generation 
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In the Player Detection and Tracking component, we find the locations 

of far-player and near-player in the game for each frame using mainly the 

color of players, the far-player (near-player) being the one who is far from 

(near) the camera. In the Candidate Detection component, we produce the 

ball candidates for each frame by removing the identified non-ball objects. 

Then we classify the candidates into two categories. In the Hitting Point 

Detection component, we use the algorithm presented in [XMXK2003] to 

the hitti r hittings. In the Candidate 

Trajectory Gene nent, eate the various candidate 

feature images (CFI). Then we use a Kalman filter-based procedure to 

produce the candidate trajectories from each CFI. In the Trajectory 

Processing component, we take three steps to obtain the ball trajectories.  

Firstly, we evaluate each candidate trajectory. Then we identify the ball 

trajectories through a selection procedure. Finally, we extend the ball 

trajectories according to the hitting points and player locations. 

The rest of the section is organized as follows: Section 3.7.2 presents 

the proposed algorithm. Section 3.7.3 gives the various experimental results.   

 

3.7.2   Algo n BTV 

Since the proposed algorithm depicted in Figure 3.18 has a similar structure 

to the algorithm for locating the ball in BSV presented in the preceding 

sections, we will not explain the algorithm in detail. We spend more efforts to 

describe  or the  the procedures that are designed only for this algorithm

rithm for Locating the Ball i

we first crration compo

detect the hitting points in each sequence from audio. Then we differentiate 

ngs into far-player hittings or near-playe
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procedures that have much difference from the similar procedures in the 

algorithm for locating the ball in BSV. 

Player detection and tracking:  For each frame, we first find the boundary of 

the court and remove all long lines and the net. We then use the pixel growing 

procedure to segment the objects of the frame. Knowing that every frame has 

two-side players (far-player and near-player), we conclude that two/four 

relatively large objects should be the players. In addition, the criteria below 

are also considered: (a) the near-player should be at the lower part of the 

frame and the far-player should be at the upper part of the frame; (b) there 

should be one or two players on one side of the net; (c) two sides of the net 

should have the same number of players. Without loss of generality, the 

following discussion will consider the singles match only, where there are two 

players in total.  

Ball candidate generation: To produce the ball candidates for each frame, 

the below sieves are built to remove the non-ball objects.   

Ball Size Sieve 1Θ : We filter out the objects out of the ball size range, which 

are es

s the ball cannot be deformed into a long line. 

ut ball color pixels.  

timated from the detected net.  

Line Sieve 2Θ : We filter out all long lines, including straight lines and curves 

a

Ball Color Sieve 3Θ :  We filter out objects witho

Shape Sieve 4Θ : The ball image can have a shape quite different from a 

circle, but in most frames its width-to-height and height-to-width ratios are less 

than 2.5 according to the results of our statistical analysis. 
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Ball Location Sieve 5Θ : At the instance of hitting, we remove the objects 

that are far from the hitting player. We will explain how to find the player 

hitting the ball in the latter part of this section.   

Each sieve iΘ  is a Boolean function on domain 

F}  o :o {  (F) ect in framis an obje=Ο . After sieving, the remaining objects of 

(F)Ο  form the ball candidate set (F)Ο  of frame F.  

5}to1for1)(ΘΟ(F),ο:{οC(F) ==∈= io  (3.14) i

Ball candidate classification: Like computing the probability of soccer ball 

candidate, we compute the probability )(οP  that the candidate is the tennis 

ball. According to the probability )(οP , the candidates in are divided into 

Category 2 contains the objects with low probability. 

In this chapter, we use the algorithm by Xu et al [XMXK2003] to obtain frames 

where hittings occur.  

Hitting classification: The detected hittings are divided into two categories: 

near-player hittings and far-player hittings, which are hits by the near-player 

and that by the far-player, respectively. This classification is achieved based 

on two cues: (a) in frames around instances of near-player hittings, we can 

obtain good and clear ball candidates; (b) the ball must be hit alternatively by 

 estimate the ball 

location according to the player location as the ball is in the vicinity of the 

player when he/she is hitting the ball. The detected hittings will also serve as 

(F)C  

two categories. Category 1 contains the objects with high probability and 

Hitting detection: The sound emitted by the racket hitting the ball is distinct. 

the two players in a tennis game.   

Ball location inference: The above hitting classification can tell us which 

player hits the ball at each hitting point. Thus, we can
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the start and end points of the ball trajectory. In addition, the hitting can help 

in removing non-ball objects as the ball must be near the hitting player.  

Trajectory processing: We use a procedure similar to the one to process the 

soccer  The diff

as the camera seldom moves. In F

 ball trajectory. erence is that we can compute the ball locations 

igures 3.19, 3.20, and 3.21, black vertical 

Figure 3.19
ectively. The blue and green rectangles are the hitting points by the 
spectively.  

  Obtained ball candidates. The black dots and red crosses stand for 
categories 1 and 2 resp
far- and near- players re

n
0 
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y 
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Figure 3.20   Mined ball trajectories. They are mined from all the candidates of the sequence.  The
blue and green squares are the hitting points by the far- and near- players respectively.  
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lines and grey vertical lines denote frames where the near-player hittings and 

the far-player hittings occur respectively. Figure 3.20 shows the identified ball 

end g the trajectory to the far-player’s hitting location. This location is 

inferred from the obtained player’s location and the obtained hittings as the 

ball is near the player who hits it. The ball location extended in the above-

described way is not exact, but it can greatly facilitate content analysis. For 

ample, this location is enough to identify the winning-pattern of the game. 

 

3.7.3   Experimental Results of Locating the Ball in BTV 

The proposed algorithm has been te  on 7 sequences (a total of 

sec al. The 

trajectories; and Figure 3.21 shows the final ball trajectories. 

Ball location computation:  When the ball is near the far-player, it may be 

occluded by the player, too small to be seen, or be mixed with the audience. 

Thus, it is useless to track the ball. So, we compute the ball location by 

ext in

ex

Figure 3.21   Obtained final ball trajectories.  The green rectangles are the ball locations 
computed by quadric curve fitting. The blue and green squares are the hitting points by the 
far- and near-players respectively.  

n

250 

150 

0 
 0 204 408 

y 

sted 120 

onds), which are from MPEG-1 video recorded from TV sign
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content of the video is the Men's Final of FRENCH OPEN 2003, which is the 

game between Juan Carlos Ferrero of Spain and Martin Verkerk of Holland, 

held on June 8, 2003. The frames were grabbed by DirectX 9.1. Note that, 

each frame must have two players. Hence, their ground truths are the number 

of frames in the considered sequence. The experimental results of player and 

hitting detection are shown in Table 3.6, in which column “player” records the 

number of frames each player is detected within a sequence; column “hitting” 

shows the ratio of hitting frames to the total number of successfully detected 

hitting frames associated with that player within the sequence. 

Table 3.6   Results of Player Detection and Tracking. 

# frame Near-player Far-player Sequences 
 Player Hitting Player Hitting 

05355-06132 778 767 11/11 732 10/10 
08905-09334 430 430 6/6 358 4/5 
14526-14866 341 341 3/3 341 2/2 
19025-19274 250 232 3/3 250 2/2 
24492-24981 490 449 6/6 476 6/7 
27520-27891 372 372 2/2 372 2/2 
36960-37310 351 349 4/4 351 3/3 
 

The experimental results of identifying the ball locations are shown in 

Table 3.7, in which column “balls/frames” gives the ratio of total frames to 

frames containing the ball; column “d+t” gives the numbers of detected balls 

and tracked balls separately; column “(d+t)%” gives the percentage of “d+t” to

the number of frames containing the b olumn “final” shows the numbe

the

hows the percentage of “final” to the number of frames containing the ball. 

are not very high. 

This is because the ball cannot be seen when it is close to the far-player. The 

promising indication is that the proposed algorithm computes the ball 

 

all; c r of 

 obtained balls by detection, tracking, and computation; column “final%” 

s

Notice that the percentage of the ball detection and tracking 
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locations from the obtained player’s hitting locations. Table 3.7 also shows the 

results of detecting the tennis by the algorithm presented in [Miy2003] for 

comparing our algorithm with it. 

Table 3.7   Results of Ball Detection and Tracking.  

Sequences  balls/ 
frames  

detected by 
Miy2003 detected+tracked Computed 

  d d% d + t (d+t)% final final% 
05355-06132 738/778 336 45.5% 336+121 62.0% 738 100% 
08905-09334 376/430 256 68.1% 265+17 75.0% 361 97.0% 
14526-14866 294/341 239 81.3% 250+11 88.8% 294 100% 
19025-19274 171/250 92 53.8% 100+38 80.7% 171 100% 
24492-24981 441/490 293 66.4% 300+20 72.6% 426 97.6% 
27520-27891 275/372 141 51.3% 146+174 80.0% 275 100% 
36960-37310 349/351 254 72.8% 269 +10 79.9% 349 100% 

 

3.8   Summary 

This chapter has presented a trajectory-based algorithm for locating the ball in 

broadcast soccer video (BSV), which used a ies of ted a roposed 

techniq me ultip alleng f the p em. This algorithm 

contain ution

• The

 

 ser adap nd p

ues to overco the m le ch es o robl

s four contrib s. 

 first contribution is a ball size estimation method that estimates the 

ball sizes from the sizes and locations of salient objects. This estimation is 

based on the image generation principle of pin-hole camera and it 

overcomes the challenge that the ball size changes over frames irregularly. 

• The second contribution is the ball candidate generation technique. This 

technique used anti-model approach to produce the ball candidates for 

each frame. This anti-model approach avoids the challenge to build the 

ball representation. At the same time, it achieved a high recall for obtaining 

the true ball candidates.  
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• The third contribution is the candidate feature images (CFIs) that present 

the spatial and temporal data within an image. These images enable the 

temporal filters and trajectory-based analyses to be applied to them. In 

another word, ation media, but 

bj roce

• c on je n he tory lua d 

es ce   the raje es h 

 te to a  the le ball trajectories, 

efi n end bal ect to 

obtain the extended ball trajectories.   

s made its own contributions.  

• 

Las

 these CFIs are not only the visual present

also the o ects to p ss on. 

The fourth ontributi  is tra ctory a alysis.  T  trajec  eva tion an

production procedur  suc ssfully produce  ball t ctori throug

processing candida trajec ries. B sed on  reliab

the ball trajectory r neme t procedure ext s the l traj ories 

 

Section 3.7 has presented another trajectory-based ball detection and 

tracking algorithm, which locates the ball in broadcast tennis video (BTV). 

Besides making use of the techniques used in the algorithm of locating the 

ball in BSV, this algorithm ha

• It used locations of the players at hitting points (a point when the racket 

hits the ball) to infer the locations of the ball.  

It used these hitting points to infer the turning points of the ball route.  

tly, it inferred which player hits the ball from the data of player locations, 

hitting points, and ball candidate locations.  
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Chapter   4 

Detection of Ball-Related Event  

in Broadcast Soccer Video 

 

 

This chapter presents two applications of ball detection and tracking. The first 

application is to use the ball locations to detect ball-related events in broadcast 

soccer video. The ball locations used are computed by the ball detection and 

tracking algorithm for BSV presented in the preceding chapter. The other 

application is to apply the information derived from ball location and the results 

of detecting ball-related events to enrich the enhanced soccer videos, 

generated in computer graphics technology. 

 

4.1   Event and Ball-Related Event  

In sports video, an event is an interesting occurrence. The events are defined 

by the particular sports game and are usually well-known to both players and 

viewers of the sport. For example, in soccer video the interesting events are 

goals, corner kicks, free kicks, penalty shots, etc. In tennis, the interesting 

events are scoring, serving and play/break. 

In soccer videos, the events can be divided into ball-related and non-

ball-related events. An event is called ball-related if its occurrence involves the 
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ball location in the soccer field or ball status (moving, stopping, holding, etc). In 

a soccer game, some of the events are non-ball-related. For example, kicking 

an opponent, red card, and stumbling are non-ball-related. Nevertheless, most 

of the events in a soccer game are ball-related. For example, touch, passing, 

goal, team possession, play/break, corner kicking, and hand ball are ball-

related events. Table 4.1 shows examples of ball-related events, with names 

and definitions extracted from “FIFA Law of the Game” [FIFAlaw] and the 

“Soccer Dictionary” [SoTe2002]. 

Table 4.1    Definitions of the Selected Ball-Related Events of Soccer. 

Name Definition 
Break ll is out of the field or the play has been he referee The ba  stopped by t
Clear  the ball away from one’s goal To kick
Corner Kick A kick made from corner arc 
Dribbling Run with the ball at your feet, playing it on eve  other step ry step or every
Driving Playing the ball well forward and running after it 
Free Kick The player kicks a stationary ball without any yers within 10 

feet of him 
 opposing pla

Goal Kick A type of restart where the ball is kicked 
Hand Ball berate handling of a ball by a player o goalkeeper in 

the penalty area 
A deli ther than the 

Near Missing A ball that crosses the goal line out of but ver oalmouth y close to the g
Passing A player kicks the ball to his teammate from inside the goal area away 

 goal from the
Penalty Kick  kicks are taken from the penalty (of both 

pt the kicker and opposite goalk main on the 
field of play outside the penalty area and penalty arc 

Penalty
teams) exce

mark. All players 
eeper must re

Play  term as in “play the ball” A generic
Possession A player or a team in control of the ball 
Shooting A player kicks the ball at the opponent’s net in an attempt to score a goal 

 

In this chapter, we propose a structured metho ing a number 

of ball-related events in broadcast soccer video, includ passing, goal, 

team possession, and play/break. 

 

 

 

d for detect

ing touch, 
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4.2   Related Work in Event Detection in Soccer Video 

We first give a ew of previous work on event soccer video. 

The content of a soccer video is intrinsically multimo o author 

uses visual, auditory, and textural channels together to convey meaning. In 

detecting event, text was used as an aid for variou eos such as 

football [MHBK2002], baseball [ZhCh2002], soccer [S 003]. In detecting 

the events of soccer, many algorithms used mainly vis itory low-level 

features. Some efforts have started to use the object  features, derived 

from the detected objects such as ball, goalmouth, ellipse, etc., to improve the 

event detection performance [ABCB2003(a-c), GLD2004, 

GLCZ1995, YXLT2003, WLXY2003]. There was a interest in 

detecting soccer events with the aid of the ba  [GLCZ1995, 

CHHG2003, ToQi2001] or based on the ball trajectory  YLLT2003] 

because many events closely correlate with the bal  to the used 

features, the event detection algorithms can be divided into the following six 

categories:  

• Visual low-level feature-based 

• Low-level auditory feature-based 

• Visual and auditory low-level feature-ba

• Shape-based 

• Ball location-aided 

• Ball trajectory-based 

The first three categories are based on the lo ures; the last 

three categories are based on the object-related fe e following 

sections, we examine the algorithms in these six categories. 

quick revi detection in 

dal since a vide

s sports vid

nWo2

ual and aud

-related

ACN2002, D

n increasing 

ll location

 [YXLT2003,

l. According

sed 

w-level feat

atures. In th
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4.2.1 Visual L evel Feature-Based Methods 

There were some event detection algorithms using only visual low-level 

features.  Kawashima et al [KaYA1994] proposed a qu lysis of team 

behavior based on multi-scale region analysis for soccer video. They used the 

color backprojection to identify the player and used the m analysis 

to discriminate the team of players. Then they evalu am behavior 

through analyzing the relative places among the player

aki et al [TaHF1996] employed several cameras placed along the 

touchli

lyzing the movement of players. 

Xie et al [XiCD2002] proposed an algorithm for parsing the structure of 

occer video. They used hidden Markov models (HMM) to model the various 

states of soccer game. Standard dynamic programming techniques were used 

 obtain the maximum likelihood segmentation of the game into two states: 

atio of 

the number of the pixels in grass color to the number of all the pixels in a frame) 

ow-L

alitative ana

 color histogra

ated the te

s. 

T

ne on the soccer field, covering the whole soccer field. They extracted 

the field and the players from fixed-camera video (FCV). Then they evaluated 

the team performance through ana

s

to

play and break. The features used in HMM are dominant-color ratio (the r

and motion intensity (the average magnitude of effective motion vectors in a 

frame). 

Xu et al [XXCD2001] classified frames into three kinds of views (global, 

zoom-in and close-up). This classification is based the observed fact that the 

grass areas of the global, zoom-in and closed-up frames are in a decreasing 

order.  The paper then used heuristic rules to segment the input video play and 

break segments. The algorithms in the paper are very fast because it 

developed the effective rules based on few features.  
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Misu et al [MNZI2002] used a technique of integrating multiple visual 

features, including color statistics, texture of whole object, texture of head, and 

local motion vector, to robustly track players from soccer video. The paper 

made different templates for different features and used pattern-matching unit 

to evaluate the matching cost functions. Simultaneously, it generated an 

observation covariance matrix. The final evaluation value was computed based 

on the matching cost functions and the covariance matrix. The strength of the 

paper is that i ich makes the algorithm relies on 

the rig eatu ause the matrix varies with the 

occlus  stat

sed two approaches to detect events such as 

penalt k from BSV. The first approach uses 

camer d also included information regarding 

the loc

 et al [NgPZ2001] 

used histograms to represent motion and color features from shots and 

exploited a hierarchical clustering approach to aggregate shots with similar 

 auditory features for 

tennis 

t used the covariance matrix, wh

ht f res in the corresponding status bec

ion us. 

Assflag et al [ABBN2002] u

y kick, free kick and corner kic

a motion only, whereas the secon

ation of players on the soccer field. 

Instead of frame-level analysis, several shot-level sports video parsing 

techniques were proposed in [NgPZ2001, DuXT2003]. Ngo

visual low-level features. Through manual investigation of the clustering results, 

they tried to explain semantic meanings for each cluster. 

Ekin [Eki2003] in his PhD thesis used a rule-based algorithm to detect 

goal. Their rules were built on the shot level and the shots were classified by a 

Bayesian classifier based on the visual features [EkTe2003a, EkTe2003b, 

EkTe2003c]. In his thesis, Ekin detected events using the

and baseball video but not for soccer video. 
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4.2.2   Auditory Low-Level Feature-Based Methods 

The auditory channel also provides strong clues for the presence of semantic 

events in video doc

referees, commentators, and audience in broadcast 

sports v

4.2.3 Visual and Auditory Low-Level Feature-Based Methods 

nd auditory channels is a 

natura

soccer video before the work of [YXLT2003].  

uments. Xu et al [XDXT2003, XMXK2003] employed 

representations of the audio signal in terms of time-domain measurements and 

frequency-domain measurements to train game-specific sound recognizers (e.g. 

“Applause”, “Whistling”, “Excited/plain commentator speech”, “Silence”, and 

“Ball hitting”, etc.) by hierarchical Support Vector Machines to detect events 

such as serve, reserve, ace, return, and score in tennis video. Clearly, there are 

strong relationships between those significant game-specific sounds have and 

the action of players, 

ideos. These actions can be heuristically mapped to interesting events 

according to specific sports game rules. 

 

The integrated use of low-level features from visual a

l extension of single modality low-level feature approaches in video 

indexing research. Because there is more information available, the results of 

event detection improve when the low-level features from both video and audio 

are employed. In using visual and auditory low-level features to detect events, 

many algorithms have been developed for other sports video such as football 

video [CZKA1996, MHBK2002], baseball video [HHXG2002, RuGA200, 

ZhCh2002], tennis video [Ekin2003, XDXT2003], and multiple-game video 

[Ekin2003, NaHu2001], but no such algorithms were developed specially for 

 81



 

Woudstra et al [WVPM1998] modeled auditory and visual information of 

soccer video. Their objective is to develop a soccer video retrieval system, 

which 

Wo2002] gave a review on detecting 

event 

developed a unified 

framew

the results of semantic shot 

mplates. A successful 

application of their semantic shot classification is an audio-visual integration 

scheme for detecting events in tennis videos [XDXT2003]. 

 

semantically retrieves soccer video based on the auditory and visual 

features. They discussed the possibility to detect events using the extracted 

features, but they give neither more details nor the implementation. 

Snoek and Worring [SnWo2004, Sn

using auditory, visual and textual information. They presented a 

framework for multimodal video indexing. Snoek and Worring [SnWo2003] 

proposed an algorithm to detect event from soccer video using auditory, visual, 

and textual information. They addressed the synchronization problem of the 

heterogeneous information sources.  

Recently, Duan et al [DXTX2003, DXTX2004] 

ork for semantic shot classification of sports video including soccer, 

tennis, basketball, etc. The paper used the domain knowledge of each game to 

perform a top-down video shot classification, including identification of video 

shot categories for a specific sports game, visual and auditory feature 

representation, and supervised learning. Based on 

classification, events are detected using shot change te

4.2.4   Shape-Based Methods 

An algorithm is called shape-based if it detects event mainly using the detected 

shapes to infer events. For soccer video, the detected shapes facilitate the 

event detection. For example, the scope to detect goal can be reduced through 
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detecting goalmouth because a goal only happens in a goalmouth scene. Many 

algorithms made use of detected shapes as one kind of cues to detect event.  

Gong et al [GSCZ1995] proposed an automatic soccer parsing system 

to classify a sequence of frames into various play categories (e.g. shot at left 

oal, top-left corner kick, etc.) based on a priori model mainly comprising line 

Wan et al [WLXY2003] developed an automatic algorithm to track the 

camera field-view in real time. They detected straight lines and ellipse and used 

lines, ellipse, motion vector, etc to infer the camera field-view.  

Assfalg et al [ABCB2003(a-c)] developed an algorithm to extract soccer 

highlights, including forward launch, shooting, turnover, placed kick. Their 

algorithm first detected the shapes such as lines, corner, etc. Then it classified 

the soccer field zones. Last, it used the model based on the zone classification 

and camera motion to extract the highlights.  

Although the above-mentioned algorithms used other features, the 

detected shapes played a major role in detecting events. 

 

locations in 

event 

g

mark recognition, motion detection, ball detection, etc. 

4.2.5   Ball Location-Aided Methods 

An algorithm is called ball location-aided if it detects events mainly using low-

level feature and using the ball location as an aid to improve the accuracy of 

event detection. An increasing number of algorithms used the ball 

detection and video enhancement for soccer games. They mainly used 

visual and auditory low-level features and the information derived from ball 

location was used as an aid to improve the accuracy of event detection 

[YYYL1995, ABCB2003(a-c), CHHG2003, GSCZ1995, MiIi2000, YaSM2002].  
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Yow et al [YYYL1995] created a trace of all ball positions at a single 

frame using the ball locations in a sequence of frames to produce interesting 

panora

method requires the 

3D pos ormation of the ball as input. However, their paper does not give 

ns of the ball. 

Haas et al [HMSP2002] developed a system to decide whether there is a 

goal by analyzing the relative position between the ball and the goalmouth. 

Chen et al [CHHG2003] used the ball locations to improve the event detection. 

The events in their experiments were shooting, goal, corner kick, and free kick. 

Assfalg et al [ABCB2003(a-c)] developed an automatic annotation 

system to identify the various highlights based on the various video cues 

including the ball motion. Since they think that the ball locations cannot be 

detected robustly, they did not develop an algorithm for locating the ball.   

 

4.2.6   Ball Trajector

e use of the ball 

mic views, which can be considered as a kind of video enhancement.  

Gong et al [GSCZ1995] classified a sequence of soccer frames into 

various play categories, such as shot at left goal, top-left corner kick, play in 

right penalty area, in midfield, etc, based on a priori model comprising four 

major components: a soccer court, a ball, the players, and the motion vectors.   

Tovinkere and Qian [ToQi2001] proposed a method for detecting 

semantic events which may happen in a soccer game. Their method uses a set 

of heuristic rules which are derived from a hierarchical entity-relationship model 

representing the prior knowledge of soccer events. Their 

ition inf

a method to obtain the 3D positio

y-Based Methods 

An algorithm is termed as ball trajectory-based if processing ball trajectory is 

one of the key steps in event detection. Some algorithms mak
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locatio

ges form the pivots in the ball 

trajecto

r event analysis. In 

ddition, the relation between the ball trajectory and the soccer field also helped 

alysis can give us better performance 

because the algorithms using it can closely follow the rules of soccer game. 

The algorithms in trajectory-based event detection not only improve play/break 

analysis and high-level semantic event detection, but also detect the basic 

actions and analyze team ball possession, which may not be achieved based 

only on the low-level feature [YXLT2003, YLLY2003].   

 

Both t

s 

are fas

exactly

n but not the ball trajectory to improve the event detection. Here, we 

propose to detect event based on ball trajectory, in which the primary results 

were presented in [YXLT2003]. Generally speaking, events cause the changes 

of ball motion because most of the events are the results of the interactions 

between players and the ball. These chan

ry. Hence, we can obtain the event candidates by finding the pivots of 

ball trajectory. The ball speed also gives us some cues fo

a

us in event detection. This relation an

4.2.7   Low-Level Feature and Object-Related Feature Approaches 

he low-level feature-based and the object-related feature approaches 

have their virtues and demerits. There are three virtues in the former approach. 

First, the features are relatively easier to be extracted. Second, the algorithm

t because they did not need to do time-consuming object detection. Last, 

the algorithms of the former approach can sometimes be generalized to detect 

events for different sports video. The demerit of this approach is that the results 

may not be very accurate because the low-level features do not correlate 

 with the events. The virtue of the latter approach is that it can achieve 

relatively more accurate results than the low-level feature approach. But the 
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object-related features are very difficult to be obtained because it is difficult to 

detect objects, especially the ball in ball-game video.  

 

4.3   Our Proposed Event Detection Algorithms 

 

wherea

eak. 

Our method decomposes each ball-related event into (i) a number of 

simpler basic actions involving the ball, and (ii) other salient information relating 

to surrounding objects (players, referees, etc). We use the ball location and 

4.3.1   Detection of Basic Actions 

We first give the key idea behind our approach. In soccer game, most events 

are caused by interactions. There are two important types of interactions: 

player-ball and player-player. Player-ball interactions relate to the ball motion,

s player-player interactions relate to the team tactics. In our approach to 

event detection, we take advantage of our accurate ball detection and tracking 

results to help in event detection and we target ball-related events in broadcast 

soccer video, including touch, passing, goal, team possession, and play/br

trajectory information to help in detecting the basic actions and these are then 

combined with other information to detect the more complex ball-related event.  

 

The touch (of the ball) is the basic action because many events are defined 

according to how a player touches the ball. Thus, touch detection is a chief 

component in many other ball-related events, as listed in Table 4.1. 

Relation between Pivot and Touch: One of the main objectives of the soccer 

players is to control the motion of the ball. To achieve this objective, players 

attempt to touch the ball with the right force and direction. Each touch of the ball 
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will alter the speed and direction of the ball. These touches translate to motion 

change points in the trajectory of the ball. We call such motion change points 

pivot points of the ball motion, or pivots in short. However, pivots may also be 

caused by a number of other factors, such as camera motion, ball bounce, and 

so on. Therefore, pivot is a necessary (but not sufficient condition) for touches 

f the ball. 

a local 

speed minimum point or an acceleration start point}. Let f1(p) = r and f2(p) = c 

be the functions, representing Y curve and X curve of the ball position over 

frames, where r and c are the row and the column of the ball center in the 

frame p respectively. Let S1 = {p | p is a local trajectory minimum of f1}, and S2 = 

{p | p is a local trajectory maximum or minimum of f2}. Then, we consider 

S=V+S1+S2 to be the pivot set of the segment.  V, S1, and S2 are the sets of the 

points that the ball has the significant changes in (apparent) speed, row and 

column respectively. The apparent speed is the speed of the ball in the image 

coordinate system. Figure 4.1 shows the pivot detection result for a sample 

segment in which a vertical bar indicates a pivot point. In Figures 4.1 to 4.3, v 

stands for the ball speed and n stands for the serial number of the frame.  

o

Detection of Pivot: Now we first detect the pivots. Let V = {p | p is 

n 

Figure 4.1   Pivots from ball trajectory (vertical bars). 

v 
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Touch Detection: A touch point is defined to be a frame where a person 

touches the ball. The touch includes ball kick (by foot), and other categories of 

touches. When a person touches the ball, the ball trajectory should form a pivot 

point. For each pivot point, we also check whether a person touches the ball. 

The pivots where nobody touches the ball are removed, and the rest form a set 

of touch points. Figure 4.2 shows the curve of the ball speed over frames in 

which the black vertical bars indicate the touch points. 

Detection of Passing: A passing is an action that a player passes the ball to 

his teammate. Normally, such an action produces a significant ball trajectory. 

Passings are vital to the understanding the game as they comprise a large 

portion of the game. So we designed a scheme to detect passings. Besides the 

n 

Figure 4.3   Passings (line segments between two bars). 

v 

n 

Figure 4.2   Touch points (vertical bars). 

v 
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passing, a soccer game consists of mainly fighting, dribbling, possession transit, 

and shooting. These actions comprise a smaller portion of the game. Figure 4.3 

shows the obtained passings for a sample video segment, in which a horizontal 

line segment with two vertical bars at its two ends indicates a passing.  

 

4.3.2   Detection of Complex Events 

shooting against the goalmouth. In the second phase, we further find the bal

Complex events are detected based on the detection result of the basic actions, 

the ball trajectory, and the result of mark detection. We choose goal as an 

example to show how complex events are detected in our proposed approach. 

The steps involved in goal detection are shown in Figure 4.4. 

lmouth, and then we detect the 

l 

that is close to the goalmouth for a number of frames. However, the fact that 

the ball is in the goalmouth in a frame can not infer that there is a goal since we 

are detecting the event that happened in 3D space through processing 2D 

frames. Hence, we decide whether there is a goal by considering the ball 

trajectory and goalmouth position relation. Notice that in a near-missing 

Figure 4.4   Architecture of goal detection. 

Ball 
trajectory 

Shooting detection 

Goalmouth 
detection 

Goal/just-missing discrimination 

Goalmouth and
ball detection 

Audio data
detection 

In the first phase, we first detect the goa
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sho l might also be in the goalmouth for a few frames. Indeed, the 

challenge we are facing is how to avoid classifying the near-missing into the 

goal. We can further verify the goal with whistling and audience shout.  

 

4.4   Team Possession Analysis 

W  based on the result of touch detection as 

described above. To credit the ball possession, we must determine which team 

touches the ball. For each frame where a touch is encountered, the objects in 

the ball neighborhood are extracted first. Then, each object is evaluated to 

check whether it is a player (person). Finally, a Support Vector Machine (SVM) 

is used to recognize the team of each person found [ChLi2002]. In addition, 

when a team consecutively touches the ball, we consider that the team 

po ession analysis is depicted 

l might also be in the goalmouth for a few frames. Indeed, the 

challenge we are facing is how to avoid classifying the near-missing into the 

goal. We can further verify the goal with whistling and audience shout.  

 

4.4   Team Possession Analysis 

W  based on the result of touch detection as 

described above. To credit the ball possession, we must determine which team 

touches the ball. For each frame where a touch is encountered, the objects in 

the ball neighborhood are extracted first. Then, each object is evaluated to 

check whether it is a player (person). Finally, a Support Vector Machine (SVM) 

is used to recognize the team of each person found [ChLi2002]. In addition, 

when a team consecutively touches the ball, we consider that the team 

po ession analysis is depicted 

oting, the bal

e analyze the team ball possessione analyze the team ball possession

ssesses the ball. The flowchart of team ball possssesses the ball. The flowchart of team ball poss

in Figure 4.5.  in Figure 4.5.  
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Local minimal 
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position 

Play/break 
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Figure 4.5.  Flowchart of team ball possession 
analysis for broadcast soccer video. 
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4.4.1   Color histogram 

In a soccer game, the people in the soccer field are in five categories: the 

players in Team A and B, goalkeepers in Team A and B, and the referee. The 

jerseys of these five categories of people are in five different colors.  Hence, the 

ine which team he belongs to. For each 

 color to differentiate them from other 

 

4.5   Play/break Structure Analysis  

Figure 4.6 s. 

color histogram of a person can determ

type of people, we manually identify a

people in advance. For each such color, we build several color bins which span 

a range of color around it. Then for each person we calculate his color 

distribution on the pre-built bins, which is used to evaluate his team by a SVM 

developed by C.-C. Chang and C.-J. Lin [ChLi2002]. 

Ball trajectory

Ball motion 
analysis 

R ctureule-based stru  analysis

Whistling 
ion

Video play-break structure 

detect

   Architecture of play-break analysi

In a soccer game, the ball is either in play or break [XCDS2002, XXCD2001]. 

There is a break when the ball is out of the field or the referee stops the game. 

In the soccer video, almost all play frames show the ball, but not all the frames 

with the ball are play frames. Thus, the ball trajectory provides the solid basis 

for the play/break structure analysis. A series of connected trajectories form a 

ball curve, whose two ends may not be in play. Thus, our aim is to decide how 
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long of two ends are not part the play portion. Besides the motion speed of the 

ball, whistling is another reference for determining play/break cutting point. 

Hence, we analyze the play/break structure based on the ball trajectory with the 

id of whistling. Figure 4.6 depicts the architecture of play/break analysis.   

4.5.1 Whistling Detection 

 

4.5.2   Structure Analysis 

Now we describe the f  the system of play/break analysis shown in 

Figure 4.6. The i histling over frames 

(time). We also use the apparent ball speed to indicate whether the frame 

Figure 4.7   A sample of p aration. The result for FIFA 2002 final (frames 
from 49256 to 49496). 

Result 

a

 

In soccer game, there are three types of whistling: long, double, and multiple. 

All the whistlings indicate game resume and stop or separating points of 

play/break. Since Xu et al [XMXK2003] have developed a whistling detection 

algorithm for BSV, we consider the result of whistling detection as one of the 

inputs. 

 49256                                          6                             49496 

break play 

Data 
No ball fast  slow 

whistling 

Ball speed  

           4937                         

lay/break sep

ions ofunct

nputs are the ball trajectory and the w
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belongs to the play portion too. The primary goal of the first phase of the 

detection, team ball possession analysis, and play/break analysis.  

4.6.1 Results of Even

For semantic analysis inputs t dules are the ball 

trajectory and the video. Various analysis results are shown in Tables 4.2-4.4 

respectively. We can detect almost all the touches visible in the frames. 

Unfortunately, not all the rames. Furthermore, when 

a touch is not show  the corresponding 

trajectory is a pass or otherwise. This is the main reason why we are unable to 

d with 6 segments that contain 27 

system is to compute the derived information such as the ball speed and the 

grass ratio in each frame. A rule-based procedure decides the separation 

points by fusing the derived information from the ball trajectory and the whistling. 

Figure 4.7 shows the result for finding one play/break separation point. 

 

4.6 Experimental Results of Event Detection 

Here we present the experimental results of touch, passing, goal, near-missing 

 

t Detection 

to BSV, the o our detection mo

 touches are shown in the f

n in the frame we do not know whether

detect some passings. Initially, we have teste

touches and 18 passings for touch and passing detection. The total time length 

of these 6 segments is 55 seconds. For goal detection, we have tested with 2 

games each that took place during day and night. Two games contain 5 goals 

and 16 near-missings. For goal and near-missing detection, we differentiate 

them by checking the relative position between the ball trajectory and the 

goalmouth. However, the issue for this discrimination is that for some near-
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missings, the ball is very close to the goalmouth in a number of frames. Thus, 

the algorithm considers them as goals.  

Table 4.2   Event detection performance. 

Event Precision Recall # events 

Touch 95.6% 81.5% 27 

Passing 100% 76.8% 18 

Goal 100% 100% 5 

Near-missing 81.2% 100% 16 
 

There are no results of detecting touches and passings in existing 

papers. For goal detection, previous results are at shot level, i.e. the algorithm 

detected the goal shots [ChSZ2004] and the reported recall and precision were 

90-94%. Here the goal detection is at frame-level, i.e. the algorithm reports the 

frames in which the ball are inside the goalmouth. 

 

4.6.2   Results of Team Ball Possession Analysis 

We cut the play portion of the soccer video at its touch points. Hence, the play 

portio ded into a set of touch segments. A touch segment is called a 

Team A (B) posses s two touches are from Team A (B). For 

the team possession ana e player team discrimination is reliable and the 

error is mostly inherited from the error of touch point detection. In the 

e able 4.3, v is the correctly detected number and w is the 

ground truth of team ball possession. 

xpression “v/w” in T

lysis, th

sion segment if it

n is divi

 94



 

Table 4.3   Team possession analysis performance. 

Sequence # frames Brazil Germany Accuracy 

002900-003001 102 100/80 0/0 78.4% 

003240-003308 169 0/0 169/169 100% 

005368-005503 136 0/0 0/0 100% 

008026-008296 271 183/271 0/0 66.5% 

048957-049102 146 0/0 100/146 68.5% 

049415-049974 560 0/0 481/560 85.9% 

 

4.6.3   Results of Play/Break Analysis 

Table 4.4 shows play/break analysis results using only ball speed, only grass 

ratio, and both the ball speed and the grass ratio. The results show that the 

(apparent) ball speed derived from the ball locations in frame can improve the 

ether with the grass ratio.   performance when they are used tog

Table 4.4   Play/break analysis performance. 
  ball motion grass ratio ball and ratio     sequences # fram. 
# corr    % # corr    % # corr    % 

1006300-1006723 424 348 82 330 77 338 79 
1007203-1007317 115 48 41 45 39 47 40 
1007880-1008181 302 172 56 225 74 237 78 
1008347-1008557 211 163 77 158 74 178 84 
1008792-1008924 133 86 64 63 47 83 62 
1008974-1009684 711 461 64 424 59 421 59 
1009819-1010399 581 454 78 552 95 581 100 
1010490-1011433 944 503 53 675 71 660 69 
1011457-1011964 508 424 83 423 83 443 87 
1012403-1012622 220 103 46 143 65 143 65 
1012650-1013377 728 578 79 526 72 534 73 
1013588-1013943 356 317 89 292 82 312 87 
1014556-1017351 2796 1425 50 1728 61 2277 81 
1017353-1017546 194 97 50 127 65 135 69 
1017876-1018646 771 441 57 674 87 683 88 
1018764-1019217 454 390 85 291 64 311 68 
1019340-1019857 518 235 45 490 94 503 97 
1019859-1020200 342 151 44 221 70 234 68 
1020227-1023272 3046 1992 65 2051 67 2533 83 
1023643-1024083 441 402 91 181 41 187 42 

TOTAL 13795 8790 64% 9619 70% 10840 79% 

In Table 4.4, “ball motion”, “grass ratio”, and “ball and ratio” mean that we 

analyze the play/break using ball motion only, grass ratio only, and both ball 
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motion and grass; “# corr” and “%” mean the numbers of the frames the 

algorithms correctly tell their play/break classes and the corresponding 

accuracy. 

 

4.7   Enhancement and Enrichment of Broadcast cer Video  

In this section, we present a video gener and enrichment system to 

enhance and enrich broadcast soccer video. We generate the video based on 

the results of camera calibration and the generated video is enriched with 

music and illustrations. The illustrations are figures and icons which illustrate 

the video contents and help viewers to understand the video better.   

 

.7.1    Overview of the Proposed System 

nerating and enrichment 

system. It performs four main steps. In the first step, the feature points of an 

image are extracted based on our straight line detection algorithm and ellipse 

detection algorithm. They are used to compute eye-position, look-at, and fovy.  

In the second step, the 3D positions of the ball and players are estimated from 

their locations in the images. Next, a video is generated using computer 

graphics. Finally, the system creates figures and icons to illustrate the video 

contents. The music suitable for the video contents is also added.    

The input video of the system, which is recorded from TV signal using a 

WinTVTM card, is in MPEG-1 format (the resolution is 352X288). For each 

frame, we construct a corresponding frame using Direct3DTM and compress all 

reconstructed frames in the original order into a new video clip.  

Soc

ating 

4

Figure 4.8 gives the overview of the proposed video ge
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Video 

 

To generate a fram st be known 

[BeBi2000, HaZi2003]: 

e ra ( -pos ):  eye(e z

vie  (loo ): )centercenter(center zy, x, 

f t me p-ve r): )up(u y, . 

: (  asp . 

Am eters, the v  of t aspe tio aspect is 352:288 he 

eye yeeye z ideo fined  eac ideo l ne 

eye ca  com d th gh c ra c ratio ing s D 

to 3 nd s [ 003 t d th ye 

position, this chapter ts ral  of the lef  r a h 

frames to compute t

4.7.2   Camera Calibration 

Figure 4.8  Overview of the enhancement and enrichment 
system of broadcast soccer video.  

e, four groups of parameters of camera mu

1. Position of th came eye ition ) . eyey, yex, 

2. Direction of wing k-at . 
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crossings of lines can be located. As [BeBi2000] has stated, the orientation of 

camera )upup(up zy, x, can be safely assumed to be )010( , , . Hence, the 

frame-varying parameters, which have different values for each frame, are look-

at, i.e. )centercenter(center zy, x,  and fovy. To compute the frame-varying 

the soccer field are needed for each frame [HaZi2003]. In this chapter, two 

types of scenes are reconstructed: goalmouth scene and midfield scene. 

Sections 5.1 and 5.2 describe how to find feature points for a frame of the 

goalmouth or midfield scene respectively. 

When four feature points are found on the ground, we can determine the 

2D homography transform given in the following formulae (5.1) (see page 87-91 

in [HaZi2003] for more details), which transforms an image point 

31 z )321

parameters through 2D homography transform, at least four feature points in 

)(X '''' , x, xx=  to a world point ( X , x, xx= .  Thus we can determine look-

Feature Point Detection in Goalmouth Scene   

The straight-line Hough transform is used to detect the straight lines in the 

goalmouth scene [KHXK1995]. Once the lines are detected in a goalmouth 

scene, the crossing points of these lines can be found. These crossing points 

are the desired feature points for camera calibration as their coordinates in the 

real world are known. 

at and fovy easily because determining look-at and fovy are equivalent to 

finding the real-world coordinates of three points (176, 144), (176, 0), and (176, 

288) in the frame.  

'HXX =  (4.1) 

where H is the homography transform matrix.  
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Feature Point Detection in a Midfield Scene 

Here we find four feature points base ich is detected in a 

robust and fast m ng our algo ented in Chapter 5, 

to compute look-   

In Figur osition of  and C are the crossing 

points between the central line (CL) and  is the crossing between 

the upper to , and X is any point on the CL in the real world; 

b, c, d, and x oints of B,  respectively.  Then they 

satisfy the follo  as the cro ariant, which is the most 

fundame r more details).   

d on the ellipse, wh

anner usi

at and fovy.

rithm that will be pres

e 4.9, A is the p  the camera, B

 the circle, D

uch line and the CL

are the image p

wing equation

C, D, and X

ss-ratio is inv

ntal projective invariant (see page 42 in [HaZi2003] fo

bdxdBDXD
bc :xcBC :XC

=  (4.2) 

the image according to the equation (4.2); vise versa we can obtain x for any 

X on the CL in the real world.   

In Figure 4.10, let O be the center of the circle; let U and V be the middle 

points of BO and OC. In the frame, o, u, and v are not the midpoints of the line 

segments bc, bo, and oc because of the perspective projection. Hence, we 

Figure 4.9  ctive transformation of the 

C B D 

d 

A c 

x 

b 

X 

 The proje
central line in the soccer field.   

If we have detected b, c, and d, we can obtain X for any x on the CL in 
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need the equation (4.2) to compute u and v in the image. Let p (q) be the 

crossing point between the ellipse and the line that p  (v) and be 

perpendicular to the CL in the image. Then b, c, p, and q are four feature points 

because inates.  

asses u

 we know their world coord

q

p

v 

d 

u 

c 

o 

b 

 
dot represents a point involved in the procedure of finding the feature points.   

4.7.3   Results of Enhancement and Enrichment  

A graphical user interface (GUI) is developed to display the generated video 

and the illustrations because general media players do not have such function. 

Figure 4.11 shows two generated and enriched frames of the goalmouth and 

midfield scenes respectively. In each frame, there are four small info icons 

around the main viewing window. From top to down, they illustrate the apparent 

ssession, and the aim of the 

Figure 4.10   A frame with the ellipse and the points involved. Each black 

ball speed, the apparent ball direction, the team po

camera (or lookat) respectively. A sequence of generated frames is encoded 

into video. The generated video then further is decorated with matching music.  
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one frame of the midfield scene. 

4.8   Summary   

By using th basic actions that 

may not be det rthermore, it analyzed the 

team ball poss ne by the existing 

approach sis and goal 

detecti rule-based model 

which is derived from istics. The ball 

trajectory play  the ball closely 

correla

Figure 4.11   Two enhanced and enriched frames: one frame of the goalmouth scene and 

e computed ball locations, this chapter detected 

ected by the existing approaches. Fu

ession, which is another analysis not easily do

es. In addition, we improved the play/break analy

on. In event detection, for each event we built the 

 the soccer game rules rather than heur

s an important role in building models as

tes relation with game events. Our primary experimental results are very 

promising. In addition, we developed an enhancement and enrichment system 

for broadcast soccer video. 
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Chapter   5 

A Robust Ellipse Hough Transform   

 

In this chapter, we present a robust ellipse Hough transform (RobustEHT) that 

is capable of detecting small and partial ellipses. This work was motivated by 

our need for a robust ellipse detection algorithm as part of the ball-size 

estimation routines described in Chapter 3. Our new algorithms are based on 

two main ideas: (1) a new notion of unbiased measure function for partial 

ellipses and small ellipses that make our RobustEHT more robust, and is 

normalized which greatly simplifies the peak detection procedure, and (2) a 

new accumulator-free computation scheme for finding the top k peaks of the 

measure function, without the need of a complex peak detection procedure. 

 

5.1   Introduction 

In computer vision and image processing, detecting ellipses in 2D digital 

images has been widely studied. Ellipses in 2D digital images arise either 

from actual elliptic objects or from circular objects projected onto 2D images. 

Ellipse detection has a wide spectrum of applications such as locating an 

object, computing 3D objects, and recognizing certain manufactured parts.  

The Hough transform (HT), first introduced in 1962 by P.V.C. Hough 

[Hou1962], is a widely used technique for detecting ellipses in digital images 

[Bal1981, BeBS1999, ChLi2003, GuZa1997, HsHu1990, IlKi1988, ImHT2002, 
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KHXO1995, Lea1993, Ols1998, PrIK1994, SiDH1984, YoSe1993, YuIK1989]. 

A Hough transform is called an ellipse Hough transform (EHT) when it is 

applied to detect ellipse. Like the general Hough transforms, the basic idea of 

EHT is to gather the evidences of the ellipse occurrences in the Hough space 

through various voting procedures. The Hough space consists of cells and 

each cell defines a unique ellipse in the image space. The procedure of 

gathering evidence transforms the problem of ellipse detection into the 

problem of detecting the peaks of a measure function. In the literature, this 

function appeared as a voted accumulator that has a counter for each cell in 

the Hough space. 

In the past several decades, a large number of EHTs were proposed. 

These EHTs shared two common key steps: (a) the voting procedure used to 

compute the accumulator, and (b) a peak detection procedure for finding local 

maxima (corresponding to potential ellipses) of the voted accumulator. We 

term the voted accumulator as a measure function defined on the Hough 

space. We further term the measure functions used by most of the existing 

EHTs as the absolute measure functions (AMFs) because they measure a cell 

by the absolute vote count of the cell. An AMF is biased against the small 

ellipses and partial ellipses as these ellipses possess fewer sample points 

than large perfect ellipses, respectively. The bias against small ellipses is 

eliminated if the AMF is normalized by the visible length of the cell considered 

as observed in [Kul1979, Dav1992b]. However, the bias against the partial 

ellipses is not eliminated by this normalization. 

This chapter first gives an introduction to the standard EHT (SEHT) 

and the combinatorial EHT (CEHT) as well as their improvements (or variants). 
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Then it presents a robust EHT (RobustEHT), which is robust for detecting the 

partial ellipses and the small ellipses in the presence of different sizes of 

ellipses.  To correctly handle partial ellipses, we define the unbiased measure 

function (UMF) by considering all “significant arcs” of the partial ellipse in the 

original image. Thus, the RobustEHT is more robust when it is applied to the 

detection of partial ellipses in noisy images. In addition, the UMF is a 

normalized measure function and so it greatly simplifies the peak detection 

procedures. The slight penalty with the use of the UMF is an increase in the 

computational complexity associated with the need to find the significant arcs 

of each cell.  

We remark here, that there are several ways to control this increase in 

the computational complexity by first using a procedure to produce a tighter 

Hough space. However, our focus in this research work is on developing a 

robust ellipse Hough transform and thus we pay less effort on computational 

time in this chapter.  

In computing the UMF, our algorithm considers each cell in ellipse 

Hough space one by one. Suppose that we are given an estimate (say k) of 

the number of ellipses to be detected. Since the measure function is 

normalized, the RobustEHT algorithm only needs to keep a small number of 

“peak-values” cells (cells with maximal measures). Our accumulator-free 

algorithm is better than that of [ImHT2002] since the computational complexity 

for computing the UMF is the same as that for computing the measure 

function for the SEHT.  

The RobustEHT has been tested on the synthesized frames and the 

real data (broadcast soccer video) and compared with the SEHT. Experiment 
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results strongly demonstrate that the RobustEHT is better than the SEHT as 

well as other existing EHTs in robustness.    

 

5.2   An Introduction to Ellipse Hough Transforms 

This section describes the existing EHTs organized according to their voting 

ways. Section 5.2.1 first gives the formal definition of the EHT. Then, we 

describe the standard EHT and the combinatorial EHT respectively. Lastly, we 

comment on the existing measure functions and EHTs. 

 

5.2.1   Definition of Ellipse Hough Transform 

The general procedure of ellipse detection is as follows. Let F be the given 

digital 2D image, or image in short. Assume that a procedure has already 

been chosen to produce the sample points, which are edge points in most of 

the literature. The first step in the algorithm of ellipse detection is to obtain 

sample points using the chosen procedure. Then, it detects the presence of 

ellipses and finds the parameters of ellipses in F from the sample points 

computationally. Particularly, an EHT transforms a given frame into a 

measure function defined on the Hough space. Thus, the problem of ellipse 

detection is changed into the problem of function analysis. Here, we give a 

formal definition of the EHT. 

 

Definition 5.1   Let F be an image and , , and 1P 2P 3P  be three procedures. 

Then  is called as an ellipse Hough transform (EHT) if  )P ,P ,P );(M( 321•

a.  can form the Hough space H of any given frame F; 1P
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b. ,  for any ; 0  )M( ≥c H∈c

c.  can compute all values of 2P )M(•  on H;  

d. can find some cells in H according to 3P )M(• . The found cells are 

considered as the cells corresponding to the wanted ellipses in F. 

 

In most of the papers on the EHTs, the measure functions were 

computed by various voting procedures. In a hidden way, each voting 

procedure actually defines a measure function. There are two types of voting 

procedures: 

• one-to-many: In a procedure of this type, each sample point votes for all 

the cells that might have produced the point. The standard EHT (SEHT), 

described by D. H. Ballard in 1981, and its improvements, use this type of 

voting procedures [Bal1981, BeBS1999, ChLi2003, GuZa1997, Hou1962, 

HsHu1990, IlKi1988, ImHT2002, KHXO1995, Lea1993, Ols1998, 

PrIK1994, SiDH1984, YuIK1989]. 

• five-to-one: In a procedure of this type, each combination of 5 sample 

points votes for the cells determined by the 5 points. The combinatorial 

EHT (CEHT), proposed by D. Ben-Tzvi and M. B. Sandler in 1990, and its 

variants, use this type of voting procedures [XuOK1990, XuOj1993, 

Lea1993, KHXO1995].    

 

5.2.2   Standard Ellipse Hough Transform 

The representative of the one-to-many type of the EHTs is the SEHT. Hence, 

we first examine how the SEHT detect ellipses. In the Cartesian coordinate 
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system, each ellipse in an image can be represented by a 5-parameter cell 

),,,,( θbayx , where  is the center, a and b are the major and minor 

axes respectively,

),( yx

θ  is the tilt degree, of the ellipse. All the ellipses in the 

image consist of a 5-parameter family. The SEHT needs to determine the 

Hough space that comprises all the ellipses in the image in its initialization.  

This determined Hough space H can be expressed as follows.  

        (5.1) .S  H
1i iU

k

=
=

where   

 for i =1 to k. 

, aa,ayy,  yxxx,x, y, a, b iiiiii
maxminmaxminmaxmini  : ) ( {S <<<<<<= θ

}i
maxminmaxmin θθ, θbbb iii <<<<

Figure 5.1   Illustration of voting way of the standard ellipse Hough transform. 

The main part of a SEHT is the procedure of gathering the evidence of 

ellipse. Every sample point votes for the cells that might have produced the 

sample point illustrated in Figure 5.1. Let F be the considered image and H be 

its Hough space. Let  be all sample points in F. Let } ..., , , ,{P 321 npppp=
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),( vup =  be a sample point and H),,,,( ∈= θbayxc  be a cell, we say that p 

votes for c if p meets the following equation. 

.1
b

)cossin(-
a

)sincos(
2

2

2

2

=
−⋅+⋅

+
−⋅+⋅ yvuxvu θθθθ  (5.2) 

Then, the voting function on),V( cp HP× , where  and P∈p

H),,,,( ∈= θbayxc ,  can be defined as follows 

    (5.3) 
⎩
⎨
⎧

=
otherwise.,0

;forvotesif,1
)V(

cp
cp,

Voting function determines the particular SEHT being implemented. In 

general, this function is defined implicitly through the choice of a 

parameterization and a quantization of the Hough space [PrIK1994]. Let 

 be the final count of cell c after voting procedure has terminated. We 

name  as the standard measure function (SMF) defined on the Hough 

space H, which maps each cell of the Hough space into the final count of the 

cell in the accumulator array. Then, we have the following formula   

)(Ms c

)(Ms •

∑=
=

n

1is )V()(M c,pc i  (5.4) 

Once the voting procedure has finished, the SEHT estimates the 

presence and location of the local peaks of the SMF. Thus, the SEHT obtains 

the cells corresponding to the potential ellipses in the given image. Many 

ways of speeding up the voting procedure were studied since the voting 

procedure of the SEHT is very time-consuming. 

• Multistage Hough Transform:  Multistage EHTs decompose the problem 

of detecting five parameters of ellipse into several stages. Each stage 

detects some of the five parameters. Hence, the total number of voting is 

reduced as finding fewer parameters can be done by voting on the lower 
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dimension Hough space [MuNi1991, GuZa1997, Dav1989, LeWo1999, 

XiJi2002, KaOh2002].  

• Voting Group by Group: C. F. Olson [Ols1998, Ols1999] speeded up the 

voting by grouping the edge points. This method votes group by group 

instead of one by one so the total number of voting is reduced.  

• Probabilistic Voting: Kiryati et al [KiEB1991] proposed the Probabilistic 

HT (PHT) to speed up the SEHT. The PHT uses a small, randomly 

selected subset of the edge points in the image to do voting. Because a 

small subset can perform a good voting, the voting time can be reduced 

considerably. 

• Coarse-to-Fine Voting: The fast HT by Li et al [LiLL1986], the adaptive 

HT by Illingworth and Kittler [IlKi1987], the multi-resolution HT by M. 

Atiquzzaman [Ati1992] all used coarse-to-fine voting. Their method detects 

shape including ellipse in a rough to fine resolutions. In both rough and 

fine resolutions, the Hough spaces are small so that the time for voting is 

reduced significantly. Note that coarse-to-fine voting can be involved in 

both image and Hough spaces.   

• Parallel Implementation: Ben-Tzvi et al [BeNS1989] speeded up the 

voting procedure with parallel implementation. 

 

5.2.3    Combinatorial Ellipse Hough Transform 

The simple form of the EHTs in the five-to-one class is the combinatorial 

Hough transform proposed by V. F. Leavers et al [LeBS1989] and Ben-Tzvi 

and Sandler [BeSa1990], which is based on the fact that a single cell that has 
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n parameters can be determined uniquely with n feature points from the 

image. Particularly, in ellipse detection each 5-point votes the cell determined 

by them, which is illustrated in Figure 5.2.  

We concisely describe how the combinatorial EHT (CEHT) works.  Let 

F be the given image.  Let } ... , , ,{P 321 npppp=  be all sample points in F. Let 

 be all 5-point combinations that can determine a cell 

(ellipse). Then, the voting function on

} ... , , ,{R 321 mrrrr=

),V( cr HR × , where  and R∈r

H),,,,( ∈= θbayxc ,  can be defined as follows 

⎩
⎨
⎧

=
otherwise.,0

;determines if,1
)V(

cr
cr,  (5.5) 

Figure 5.2   Illustration of voting way of the combinatorial ellipse Hough transform. 

Let be the final count of cell c after the voting procedure has 

terminated. We name as the combinatorial measure function (CMF) 

defined on the Hough space H, which maps each cell of the Hough space into 

)(Mc c

)(Mc •
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the final count of the cell in the accumulator array. Then, we have the 

following formula 

∑=
=

n

1ic )V()(M c,rc i  (5.6) 

Once the voting procedure has finished, the CEHT analyzes the CMF 

to estimate the presence and location of the local peaks of the CMF.   

Like the SEHT, the CEHT is very slow in voting because normally the 

number of 5-point combinations is very large. To reduce the computational 

time, a lot of improved CEHTs were proposed. For example, Xu et al 

[XuOK1990] proposed the Random HT. The REHT is run long enough to 

detect a global maximum of the measure function dynamically. The REHT 

does not select the subset before voting. Instead, it selects and votes in the 

same time and stop the voting when one cell meets the predefined criteria. 

The REHT actually computes an approximate proportional function of .   

In recent years, many improvements have been done to the CEHT and the 

REHT. Some of them are the Dynamic HT [Lea1992], which combines the 

technique of randomly selecting edges and the connectivity detection of 

edges, the improved implementations of the RHT [XuOj1993], the Connective 

HT [Yue1991], which reduces the computational complexity of the Dynamic 

Combinatorial HT [LeBS1989].  

)(Mc •

 

5.2.4   Comments on the Existing Hough Transforms 

As we have seen above, the existing ellipse Hough transforms defined two 

types of measure functions: )(Ms •  as well as its variants and  as well as 

its variants. Generally speaking, the approximate proportional measure 

)(Mc •
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functions used by probabilistic ellipse Hough transforms are not as robust as 

the SMF and the CMF.  Hence, the SEHT and the CEHT probably are two of 

the most robust EHTs in the literature.  

Another key factor to determine the performance of an EHT is how to 

compute the measure function. Most of the existing variants of the EHTs 

employ the voting procedures to compute the measure functions. Differences 

among the voting procedures are in two aspects. One difference is whether 

they are one-to-many voting or many-to-one voting, which are determined by 

the used measure function. The other difference lies in the data structures for 

recording the voting results, among others, bin-structure [LiLa1986], fixed 

accumulator array [Bal1881], dynamic link [Lea1992a], etc. All the voting 

procedures share a common voting direction which is from sample points in 

image to the Hough space, illustrated in Figure 5.1 and 5.2. 

In general, there are three issues for the existing EHTs. 

• Firstly, they are not robust in detecting either the small ellipses or the 

partial ellipses since the AMF is biased against both the small ellipses and 

the partial ellipses. An AMF is fair only when all the target ellipses are 

nearly complete and there is not any big difference in their perimeters. 

• Another issue is that the existing EHTs require a large amount of memory 

for the accumulator. Imiya et al [ImHT2002] proposed an EHT without 

accumulator. Their basic idea is that a target shape must be made of a 

subset of sample points. The simple implementation of this idea needs to 

consider all the subsets of the sample points. They partitioned the image 

and consider the subsets of the sample points in a sub-image to reduce 

the number of the subsets. Their method overcomes the memory 
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requirement issue, but at the expense of greatly increasing the 

computational complexity. 

• Thirdly, peak detection remains problematic. The peaks vary in 

magnitudes so a uniform criterion cannot be used for peak detection. 

 

5.3   Our Proposed Robust Ellipse Hough Transform 

5.3.1   Definitions and Notations 

We define EHTs using set-theoretic notations and our definition can be 

considered to be an extension of the sets defined in [HaAn1997] for the 

straight line HT. We believe that this gives a more rigorous treatment to the 

EHT than the voting function and the accumulator.  

 Let H be the Hough space. For any H ∈c , we can draw an ellipse 

defined by c on the image F illustrated in Figure 5.3. Note that the part of the 

ellipse defined by c may lie outside the given image as illustrated in Figure 5.3. 

 

The given image

The ellipse defined by c 

Figure 5.3   A sample image of broadcast soccer video and an ellipse defined.  
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Definition 5.2   Let F be the given image and H ∈c . A point p in the image 

space is called the base point of c if p is on the ellipse defined by c regardless 

of whether p is in the given image. We define the following three notations.  

a. The ideal support  
of sample cell c. 

b. The support   
of sample cell c. 

c. The voting support  
of sample cell c. 

Figure 5.4   A cell c of the Hough space, its ideal support )(cΘ , support 
and voting support . ) )(cΩ(cℜ

a. The set , called the ideal support, comprises all the base points of c; )(cΘ

b. The set , termed the support, is given as follows. )( cℜ

)(F )( cc Θ=ℜ I  (5.7) 

c.  The set , termed the voting support, is given as follows.      )(cΩ

1}  ) V(&  P  :{  )( =∈=Ω p, cppc  (5.8) 

The sample , , and )(cΘ )( cℜ  )(cΩ are showed in Figure 5.4. The 

support and the voting support defined for ellipse in this chapter are 

equivalent to the support and the voting support defined for straight line in 

[HaAn1997]. However, we have also introduced the concept of the ideal 

support which is valid for closed shapes such as ellipses. 

We also note that |)(|  )(Ms cc Ω=  for each cell H ∈c . Thus, for each cell 

in the Hough space, we explicitly define the evidence set )(cΩ , while the 

voting procedure only computes its size. 
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5.3.2   Measure Function Normalization 

In the SEHT, the values of )(Ms •  differ greatly between the small ellipse and 

the large ellipses.  Let  and  be two cells in the Hough space H. Assume 

that they correspond to two complete ellipses in the given image F. However, 

 if 

1c 2c

)(M )(M 2s1s cc << | )(| |)(| 21 cc Θ<<Θ . This shows that cannot fairly 

measure the small and large ellipses. In other words, it cannot indicate how 

likely cell c corresponds to an ellipse. To fairly measure the ellipse with the 

different sizes, we define the normalized measure function 

 )(Ms c

 )N(• to replace the 

standard measure function )(Ms • . 

Definition 5.3 (NMF)   The following defined on H is called the 

normalized measure function (NMF).    

 )N(c

|)(|
)(M  )N( s

c
cc

Θ
=  (5.9) 

For the small shapes defined by c,  may be sensitive to noise. To 

handle this problem, one way is to use the threshold for  that varies with 

the size of the measured shape and the noise level in the input image.  

)N(c

)N(c

 
Proposition 5.2   if cell c corresponds to a complete ellipse in the 

given image. 

1  )N( =c

According to the above discussion, we know that  )N(• can measure 

cells better than . With )(Ms •  )N(• we need to find only the global peaks 

instead of the local peaks of )(Ms • . Thus, we form a normalized EHT (NEHT) 

for detecting ellipses from a given image as follows. 
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Algorithm 5.1 (Normalized Ellipse Hough Transform) 

The input is an image and the output is a set of ellipses. 

1. (Initialization)  

    Find all sample points ; } ... , , ,{P 321 npppp=

    Determine the Hough space H. 

2. (Voting)   

    For each P∈p  and for each H∈c ,  .c,pcc i )V(  )(M)(M ss +=  

3. (Normalizing)  

     For each H∈c ,    .
c|
cc

|)(
)(M)N( s

Θ
=  

4. (Peak Detecting)  

Find the global peaks of  to obtain the parameters of the ellipses occurring in 

the given image.   

)N(c

 

5.3.3   Accumulator-Free Computation Scheme   

 Unlike the conventional voting procedures, we use a procedure to compute 

 in the direction from the Hough space to the image. This procedure 

computes cells in the Hough space one by one and more details of this 

procedure is described below. Let 

)N(c

c  be the considered cell in the Hough 

space.  We first compute the ideal ellipse in the image defined by c . Then, we 

find all feature points in the computed ideal ellipse and count the number of 

the found feature points. In another word, we produce . Finally, we 

convert  into  by dividing  by the cardinal number of the ideal 

support. Based on the above discussion, we have the following the 

Accumulator-Free EHT (AFEHT). 

)(Ms c

)(Ms c )N(c )(Ms c
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Algorithm 5.2   (Accumulator-Free Ellipse Hough Transform)  

The input is an image and the output is a set of ellipses. 

1. (Initialization)  

   Find all sample points ; } ... , , ,{P 321 npppp=

   Determine H, the Hough space of the given image.   

   Determine k, the upper-bound of the number of ellipses in F; 

   Create and initialize a list L with k elements;    

2. (Measuring each cell)   

    For each , do: H ∈c

Compute on )(Ms c )(cℜ for the current cell c.  

Convert  into . )(Ms c )N(c

Replace the element of the smallest value in L with 

)N(c if it is larger than the smallest value in L and the distance from c is to 

the other cells in L is larger than a threshold. 

3. (Selection)  

Select the elements with the largest values from L according to the given threshold.    

 

5.3.4   Unbiased Measure Function for Partial Ellipses  

To the best of our knowledge, no work has been done to modify the SMF to 

facilitate detection of partial ellipses. To improve the robustness of detecting 

partial ellipses, we modify the SMF and the NMF to benefit detecting partial 

ellipses. As a result, we form a robust accumulator-free EHT (RobustEHT). It 

can robustly detect partial ellipses from the given image simultaneously. 

To measure partial ellipses better, we identify the significant arcs of the 

ellipse defined by the considered cell. In other words, we search along the 

ellipse to find the arcs. To do so, we define an unbiased measure function 

(UMF).  To define the UMF, we prepare several notations. Let F be the given 

image. For any , let E(c) be the ellipse defined by c. Let H ∈c OX  be the ray 

from the center to its farthest right point on E(c). Let Op  be the ray from the 
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center to  p on E(c). We use  ) ( cp,∠ to represent the angle from OX  to Op  

in the considered ellipse, which  ) ( cp,∠ is illustrated in Figure 5.5.  

O 

p 

) (p c,∠ X 

Figure 5.5   The ellipse defined by c and a sample angle  ) ( cp,∠ on it. 

 

Definition 5.4 Assume that the set of arcs ∂ =  such that U
k

1i ii ),(
=

βα

πβαβαβα 2....0 2211 ≤<<<<<<≤ kk  and δαβ >− ii  for k ..., 2, 1,i = , where δ  is 

a predefined threshold. ],[ c∂ℜ , called the arc potential set, is given as follows.  

} ) ( & )(   :{],[ ∂∈∠ℜ∈=∂ℜ cp,cppc  (5.10) 

 

Definition 5.5 For each cell H∈c , its value of , termed as the unbiased 

measure function (UMF), is given as follows 

)U(c

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂Θ
= ∑

∂ℜ∈

=∂

],[

nto1i
)V(

|)(|
1max)U(

cp

i

i

c,p
c

c
I

 (5.11) 
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The UMF, the NMF, and the SMF all have different values when we 

measure a partial ellipse. Figure 5.6 illustrates these different values. 

O

2β

2α

1β 1α

Figure 5.6  A sample partial ellipse. Its center is at O. Its two arcs are ),( 11 βα  and ),( 22 βα . 
Its values of the SMF, the NMF, and the UMF are 683, 0.495, and 1 respectively. 

 

 

Algorithm 5.3  (Robust Accumulator-Free Ellipse Hough Transform) 

The input is an image and the output is a set of ellipses. 

1. (Initialization)  

     Find all sample points ; } ... , , ,{P 321 npppp=

     Determine H, the Hough space of the given image.   

     Determine k, the upper-bound of the number of ellipses in F;    

     Create and initialize a list L with k elements;  

2. (Measuring each cell)  

     For each H ∈c , do: 

 Compute  on the base set of the current cell c.   )I(c

 Replace the element of the smallest value in L with  if it is larger than the 

smallest value of L and the distance from c to the other cells in L is larger 

than a threshold.  

)I(c

3. (Selection)  

Select the elements with the largest values from L according to the threshold.    
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Comment 5.1   We should set proper thresholds for δ  and || ∂  in Definitions 

5.4 and 5.5 in implementing the above algorithm. Otherwise, the unbiased 

measure function would be very sensitive to noises. )U(c

In practice, we compute  as follows. First we arrange all points in 

 in a list L in ascending order, according to 

)U(c

)(cΘ  ) ( cp,∠ and this creates a 

corresponding binary list R. For ith point of L, R[i] = 1 if this point is a sample 

point; R[i]=0 otherwise. Then, for list R we search for all significant ellipse arcs. 

Last, we compute  on these found segments. )U(c

 

5.4   Samples and Experiment Results 

Firstly we use synthesized samples to explain the merits of the NMF over the 

SMF and the UMF over both the SMF and the NMF. Then, we compare the 

robustness of the RobustEHT with the robustness of EHTs using the SMF or 

the NMF including the SEHT (the algorithm in [Bal1881]), the NEHT 

(Algorithm 5.1), and the AFEHT (Algorithm 5.2) in detecting partial ellipses 

from broadcast soccer video (BSV). Before comparing the robustness of the 

algorithms, we will describe the framework for detecting ellipses from BSV. 

This framework mainly has two components in detecting the ellipse from each 

frame of BSV. One is the estimation component, which estimates the 

locations and sizes of the target ellipses using image processing techniques 

and domain knowledge of soccer video. The other is the search component, 

which uses the various EHTs (SEHT, NEHT, AFEHT, and RobustEHT) to 

search the best ellipse around the estimated ellipses.   

 

 120



 

5.4.1   Synthesized Samples 

Synthesized sample one: We synthesize an image called F1 with the 

resolution of 400X300 shown in Figure 5.7 to show the merits of the NMF over 

the SMF in measuring cells.  Assume that all black points are sample points.  

Figure 5.7   A synthesized binary image of an ellipse, a half circle, and a square. 

Let }2200;08 300; y,x0 :) {( πθθ <<<≤<<< ab,x, y, a, b be the 

determined Hough space H. We consider three cells in H, 

)2/ 70, 100, 144, (38,  1 π=c , )0 10, 10, 152, (80,  2 =c , )0 90, 90, 144, (278,  3 =c . 

F1 comprises three objects .  is a complete ellipse defined 

by .  is semicircle corresponding to .  is a square, which works as 

noise, and which  corresponds to the circle that covers most of its points of 

this square. Let H be its Hough space for detecting ellipses. The values of 

 in  and 

321 O and  ,O ,O 1O

1c 2O 2c 3O

3c

321  and  c,, cc )(Ms • )N(•  are shown in Table 5.1. 
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Table 5.1   Values of )(Ms •  and )N(• on  for F321 c and ,c ,c 1. 

 c1 c2 c3
# of Base Set 980 116 1020 
Values of  )(Ms • 980 60 108 
Values of  )N(• 1.00 0.517 0.106 

 

In Table 5.1,  is larger than  but c)(M 3s c )(M 2s c 2 corresponds to a 

small half circle while c3 does not correspond to any ellipse. Hence, )(Ms •  

cannot obtain perfect candidates if the ellipse candidates are selected simply 

by choosing those cells being larger than a global threshold against the SMF. 

In contrast, perfect candidates can be obtained by setting a threshold with 

value 0.20 against the NMF. 

Figure 5.8   A circle and a hexadecagon centered at (144, 144) with 16 line segments linking them.  
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Synthesized sample two: We synthesize another image called F2 shown in 

Figure 5.8 to show merits of the NMF over the SMF and the UMF over both 

the NMF and the SMF. The problem is to detect circles from F2.

Let }122r8  144;  y144;x :){( <<==x, y, r  be the determined Hough 

space H. In F2, a circle centers at (144, 144) with radius = 8; a hexadecagon 

centers at (144, 144) too and the length between one of its vertical points and 

its center is 121; 16 evenly-distributed line segments link the vertical points of 

the hexadecogon and the circle. Assume that all black points in F2 are sample 

points. All points except the points on the circle work as noise. All values of 

the SMF )(Ms • , the NMF )N(•  and the UMF )U(•  for the image are given in 

Table 5.2. Table 5.2 shows that by setting a global threshold )(Ms •  cannot 

generate perfect circle candidates, but both )N(•  and )U(•  ca wever, 

)U(•  has a better value pattern to identify peaks, i.e. the peaks in )U(•  are 

er than the ones in )N(• . 

Table 5.2   P  va

n. Ho

sharp

artial lues of )(Ms • , )N(• , and )U(• for F2. 
The values of the different measure functions on the hypothesized circles centered at (144, 

d144) with the various ra ii 
R 8 9 10 11 12 13 14 … 116 117 118 119 120 121 122 

)(Ms •  0 44 116 76 76 444 504 216 32 0 32 32 32 … 32 

)(•N  0.0 0.4 1.0 0.6 0.2 0.2 0.2 … 0.0 0.1 0.3 0.4 0.2 0.0 0.0 

)U(•  0.0 0.0 1.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

ynthesized sample three: We synthesize another image called F3 with the S

size of 640X300 shown in Figure 5.9 to show merits of the UMF over both the 

SMF and the NMF. The problem is to detect circles from F3.  
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igure 5.9    A hexagon and four circles with the various radii.   
en cells in the Hough space H, whicus consider the following sev h 

rge values when they are measured by the SMF and the NMF. The 

 are: c1 = (120, 150, 92), c2 = (120, 150, 93), c3 = (120, 150, 94),  c4 

, 80), c5 = (460, 150, 40),  c6 = (520, 150, 20), c7 = (550, 150, 10).

Table 5.3   Partial values of )(Ms • , )N(• , and )U(•  for F3. 

c c c3 c4 c5 c c71 2 6
e s 060 908  116 et  1044 1052 1  452 228

176 216 128 908 452 228 116 
0.17 0.21 0.12 1.00 1.00 1.00 1.00 
0.00 0.00 0.00 1.00 1.00 1.00 1.00 

 hexagon centers at (120, 150); irc  d  b 4 c5,  four c les are efined y c , 

ectively. The hexagon works as noise. All values of the SMF )(Ms • ,  

)(• and the UMF )U(• for the image are given in Table 5.3. Table 

t the values of )( tha  Ms •  for different size perfect circles have big 

. However, both N( )•  and )U(•  have the same values for different 

t circles. Hence,  can tify the perfect circles using either 

)• . 

 we iden

124



 

Synthesized sample four: We synthesize another image called F4 with the 

size of 640X300 shown in Figure 5.10 to show merits of the UMF over both 

the SMF and the NMF in detecting the partial circles. The problem is to detect 

partial circles from F4.  

Figure 5.10   A hexagon and four arcs of circles with the same radius and 
various lengths of arcs.    

 

Let us consider the following seven cells in the Hough space H, which 

have the large values when they are measured by the SMF and the NMF. The 

seven cells are: c1 = (120, 150, 92), c2 = (120, 150, 93), c3 = (120, 150, 94),  c4 

= (350, 150, 80), c5 = (430, 150, 80),  c6 = (510, 150, 80), c7 = (590, 150, 80). 

In F4, a hexagon centers at (120, 150); four arcs of the different circles are 

defined by c4, c5, c6  and c7 respectively. The hexagon works as noise. All the 

values of the SMF ,  the NMF )(Ms • )N(• and the UMF )U(•  for the image are 

given in Table 5.4. Table 5.4 shows that the values of  and  are 

different for four arcs. However, 

)(Ms • )N(•

)U(•  have the same values for four arcs.  

Hence, we can easily identify the partial circles using )U(• . 
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Table 5.4    Partial values of )(Ms • , )N(• , and )U(•  for F4. 

 Cells c1 c2 c3 c4 c5 c6 c7
# of base set  1044 1052 1060 908 908 908 908 

)(Ms •  176 216 128 450 225 112 58 
)N(•  0.17 0.21 0.12 0.45 0.25 0.12 0.06 
)U(•  0.00 0.00 0.00 1.00 1.00 1.00 1.00 

 
Synthesized sample five: We synthesize another image called F5 with the 

size of 800X600 shown in Figure 5.11 to show merits of the UMF over both 

the SMF and the NMF in detecting ellipses in a complex image. F5 comprises 

nine full ellipses and four partial ellipses and they overlap one another. 

Let us consider the following twenty four cells in the Hough space H, 

which have the large values measured by the SMF. The twenty four cells are: 

nine cells corresponding to full ellipses c1 = (200, 400, 150, 50, 0), c2 = (350, 

400, 150, 50, 0), c3 = (275, 300, 100, 100, 0), c4 = (530, 400, 100, 100, 0), c5 = 

(500, 170, 120, 40, π750. ), c6 = (150, 200, 80, 80, 0), c7 = (270, 200, 40, 40, 

0), c8 = (330, 200, 20, 20, 0), c9 = (360, 200, 10, 10, 0); three cells 

corresponding to partial ellipses c10 = (550, 200, 80, 80, 0), c11 = (630, 200, 80, 

80, 0), c12 = (710, 200, 80, 80, 0); thirteen cells not corresponding to any 

ellipse but they have large values of the SMF c13 = (126, 405, 76, 45, 0), c14 = 

(217, 370, 37, 20, 0),  c15 = (264, 226, 39, 25, 0),  c16 = (270, 187, 36, 25, 0),  

c17 = (275, 304, 100, 65, 0),  c18 = (390, 406, 55, 41, π50. ),  c19 = (564, 407, 

66, 94, π50. ),  c20 = (465, 407, 37, 35, π50. ),  c21 = (275, 284, 94, 84, 0) ),  c22 

= (275, 388, 62, 27, 0),  c23 = (273, 429, 64, 17, 0),  c24 = (430, 321, 57, 37, 0). 
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Figure 5.11   A complex synthesized image: nine full ellipses and four partial 
ellipses overlapped one another.    

In F5, the real ellipses intersect with one another. As a result, some 

cells that do not correspond to any ellipse have large values of the SMF. All 

the values of the SMF ,  the NMF )(Ms • )N(•  and the UMF )U(•  for the image 

are given in Table 5.5, in which # means the number of the points in the base 

set. In calculating , an arc is valid to be measured if its length is longer 

than 7% of the perimeter of the considered ellipse. Furthermore, we calculate 

 if the sum of lengths of all arcs on an ideal ellipse of cell c is longer than 

12% of the perimeter of the ideal ellipse. 

)U(•

)U(c

Table 5.5    Partial values of )(Ms • , )N(• , and )U(•  for F5. 
 Cells c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

   #   1268 1268 1132 1132 1012 908 452 228 116 908 908 908 
)(sM •  1268 1268 1132 1132 1012 908 452 228 116 452 225 112 

)N(•  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.45 0.25 0.12 
)U(•  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 Cells c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24

   #   756 357 400 381 1031 600 1001 450 1112 556 505 587 
)(sM •  145 78 90 97 188 122 202 116 363 134 58 70 

)N(•  0.19 0.22 0.22 0.25 0.18 0.20 0.22 0.26 0.33 0.24 0.11 0.12 
)U(•  0.91 0.00 0.00 1.00 0.00 0.89 0.00 0.60 0.90 0.00 0.00 0.00 
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Table 5.5 shows that identifying the ellipses from the values of  is 

much easier than from the values of 

)U(•

)(Ms •  and )N(• , though we still have 

problem in identifying all ellipses in one round. For such complex image, we 

need two rounds. The first round is to identify the almost full ellipses and 

remove them. The second is to identify the partial ellipses. After all almost full 

ellipses are removed the values of )I(•  on cells c12 to c24 would be 0.00. Thus, 

we can identify the partial ellipses easily. When we use just a single round, 

there is the tangent ellipse problem, which a cell has a high measured value if 

it is tangent to a real ellipse. By avoiding the tangent ellipse problem, some 

random Hough transforms (RHT) were implemented to detect the ellipse one 

by one, i.e. they remove the shape that they have detected and then they 

detect another shape [XuOK1990, XuOj1993, KiKA2000]. 

 

5.4.2   Framework for Detecting Ellipse from BSV  

Here we describe the framework for detecting ellipse from broadcast soccer 

video (BSV), which is depicted in Framework 1. This framework targets to 

detect partial ellipses that have less than half of their areas out of the frame.  

The center line of the soccer field appears in frame when more than half of 

the ellipse appears in the same frame. Hence we first detect the center line 

and rotate the frame to make the center line vertical. As a result, the ellipse 

becomes horizontal since it is perpendicular to the center line. Then, we 

estimate the horizontal ellipse in the rotated frame through sample point 

statistics and template matching. Note that before the rotation we may shift 

the frame a little, so the transformed frame can contain most sample points. 
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Hence, in general we do a transform to the frame including shift and rotation.  

In the transformed frame, we estimate the locations and sizes of the target 

ellipses by detecting characteristic points or by making sample point statistics 

according to the symmetry of ellipse. Once we obtain the estimated ellipses in 

the transformed frame, we convert them into estimated ellipses in the original 

frame. Lastly, we search for the best ellipse around the estimated ellipses 

using various EHTs, including the SEHT, the NEHT, the AFEHT, and the 

RobustEHT. In this search procedure, we modify the measure function by 

considering the obliqueness of the ellipse. The concrete measure function 

was presented in [YLXT2004a].    

                Framework 5.1 
Input is a frame and a prespecific threshold.   

Component 1. Estimation of the target ellipse. 

1.1. Detection of the center line.  

1.2. Transform of the frame.  

1.3. Estimation of the target ellipse. 

1.4. Conversion of the estimated ellipses. 

Component 2. Use various EHTs to detect the target ellipse around the estimated 

ellipses. 

2.1. Determine the set of the sample points and the Hough space H. 

2.2. Find the measure value of each cell in H.  

2.3. Find the cell with the maximum value in H. Output is zero if the maximum value is 

less than the predefined threshold; otherwise is the cell with the maximum value. 

 

In the next two subsections, we will compare the performances of 

different EHTs based on the above framework. The test has been conducted 

on a whole MPEG1 video of a game, which is the quarter final of 2002 FIFA 

World Cup (Senegal vs Turkey). This MPEG1 video is recorded from TV 

signal using WinTV card. The framework gets its frames from the video using 

Microsoft DirectXTM 9.0.   
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5.4.3    Comparison on Robustness   

Although the NEHT has eliminated the bias to measure small ellipses, it still 

has a bias against the partial ellipses. We give the detection results of the 

NEHT on several given global thresholds to show the dilemma of the NEHT 

between the recall and the precision when it is applied to detect partial 

ellipses in the frames of BSV. In contrast, the RobustEHT achieves a high 

recall and 100% precision with the properly-set global threshold. All these 

results are shown in Table 5.6.  

Table 5.6   Comparison on the robustness of RobustEHT and NEHT. 

EHT thresh. false alarm recall precision 
RobustEHT 0.650 0 91.3% 100% 

NEHT 0.600 0 50.3% 100% 
NEHT 0.500 6 68.0% 99.9% 
NEHT 0.400 60 88.4% 99.3% 
NEHT 0.300 179 92.0% 98.0% 

   

We give the detection results of the SEHT on several given global 

thresholds to show the dilemma of the SEHT between the recall and the 

precision when it is applied to detect partial ellipses in the frames of BSV, 

which are shown in Table 5.6. From Table 5.6 and 5.7, we can see that the 

NEHT is slightly better than the SEHT and the RobustEHT is much better than 

the NEHT and the SEHT.  

Table 5.7    Comparison on the robustness of RobustEHT and SEHT. 

EHT thresh. false alarm  recall precision 
RobustEHT 0.650 0 91.3% 100% 

SEHT 350 0 68.3% 100% 
SEHT 300 93 81.3% 98.8% 
SEHT 250 163 88.9% 98.1% 
SEHT 200 366 89.9% 95.9% 
SEHT 150 485 91.4% 94.7% 
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5.5   Conclusions 

This chapter has presented a new robust ellipse Hough transform 

(RobustEHT). Since it has eliminated the biases against both the small and 

partial ellipses, RobustEHT can robustly detect both the small and partial 

ellipses. Furthermore, it also eliminated the requirement for large amount of 

memory as it uses an accumulator-free computation scheme. This scheme 

also eliminated the complex peak detection of the SMF. The experimental 

results showed that the RobustEHT is more robust than all the existing EHTs.   
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Chapter   6 

Summary and Future Work  

 
The work in this thesis was motivated by a desire to develop a better 

automatic indexing and retrieval system for broadcast sports video. With the 

fast-paced advances in computer and video recording, consumers of 

broadcast sports video have set higher requirements for their video 

consumption. Consumers are no longer satisfied with just passively viewing 

the entire sports video; instead they also want to have freedom to choose the 

video they are interested in and the choice of only receiving the video 

segments that they deem to be interesting. Therefore, event detection is a 

vital requirement of any modern software application for management of 

broadcast sports video to address this user requirement. Another important 

requirement is that of providing enriched broadcast sports video – namely, 

interesting video segments that have been enriched with graphically 

generated contents (such as advertisements).  

This thesis addressed three closely-related problems that arise in 

building automatic indexing and retrieval system for broadcast sports video to 

help in fulfilling these user requirements. In this chapter, we summarize the 

key contributions in these areas and discuss some avenues for improvements 

and extensions.   
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6.1   Summary 

This thesis has addressed the following three problems: 

• the ball detection and tracking problem in broadcast sports video 

• the applications of the ball locations computed in ball-related event 

detection and the enrichment of broadcast soccer video 

• the ellipse detection problem in broadcast soccer video  

 

In Chapter 3, we presented a trajectory-based ball detection and 

tracking algorithm for BSV for the first problem that the thesis addressed. In 

this algorithm, a batch of techniques was used to overcome the challenges of 

the problem. A ball-size estimation method, which estimated the ball sizes 

from the sizes of the detected salient objects, overcame the challenge that the 

ball sizes change over frames. Then we built six sieves (anti-models) to 

identify the non-ball objects, which avoided the difficult task to build the 

representation of the ball. By using six sieves to remove the non-ball objects, 

we obtained the ball candidates, which have high false positives and low false 

negatives. The candidate feature image (CFI) was introduced to visually 

present the space-temporal relation among the candidates of a sequence of 

frames. The CFIs gave us a great intuition in designing our algorithms and a 

great convenience for visually verifying the results of our algorithms. The 

Kalman filter was successfully used to generate the candidate trajectories 

from various CFIs. To avoid being fooled by the non-ball objects that look like 

the ball more than the actual ball itself, we did not decide whether an object is 

a ball. Instead, we determined whether a trajectory was a ball trajectory, 

termed as ball trajectory mining. We recovered from high false positives 
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through trajectory mining. Based on the mined ball trajectories, we further 

refined the ball trajectories. The proposed ball detection and tracking 

algorithm achieved a very good result in terms of the accuracy of locating the 

ball and the false alarms. In addition, the false alarms are very close to the 

real ball locations. 

We did various experiments relating to the above-mentioned algorithm. 

First, we evaluated the detection and tracking performances of the algorithm.  

Second, we tested the techniques of ball size estimation and ball trajectory 

mining. Experimental results showed that ball trajectory mining technique is 

very robust, i.e. it can tolerate a certain percentage of missing real ball 

candidates. Thus, the estimated ball sizes were not very accurate, but they 

helped us to obtain the candidates with good quality. The experiments also 

proved that the penalty mark filter was indispensable because without it the 

algorithm might consider that a trajectory of a penalty mark was a ball 

trajectory. Last, we compared our algorithm with the algorithm presented in 

[DACN2002, DGLD2004] by D’Ozao et al. The experimental results showed 

our algorithm much outperformed theirs. 

We also applied the trajectory-based approach to develop a ball 

detection and tracking algorithm for broadcast tennis video. This algorithm 

adopted many principles and techniques used in the algorithm for locating the 

ball from BSV. On the other hand, we proposed several techniques to tackle 

the unique challenges of locating the ball from BTV. For example, we used 

the hitting point to infer the pivot (direction turn point) of ball trajectory. We 

also used the position of player and hittings to infer the approximate ball 

position. 
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In Chapter 4, we proposed a trajectory-based event detection approach 

for the detection of ball-related events in broadcast soccer video. Our 

approach also makes use of the ball locations obtained in Chapter 3. This 

approach not only improved play-break analysis and high-level semantic event 

detection, but also detected the basic actions and analyzed team ball 

possession, which might not be analyzed based on only the low-level features. 

Following this approach, we designed various algorithms to detect touching, 

passing, goal, team possession, and play/break. In addition, we developed an 

enhancement and enrichment system. This system first automatically 

generated the video of the goalmouth scene as the existing systems did and 

the midfield scene, i.e. our system extended the generation range of BSV. 

Then the system enriched the generated video using the icons that illustrate 

the information derived from ball locations and the results of event detection 

to enhance the viewers’ viewing experience. 

In Chapter 5, we presented a robust and accumulator-free ellipse 

detection algorithm. This algorithm was motivated by our need for an accurate 

and robust ellipse detection algorithm that is capable of detecting the partial 

ellipses commonly found in BSV. This algorithm is robust because we 

proposed an unbiased measure function that could fairly measure the ellipses 

in different sizes and/or partial ellipses. This algorithm is accumulator-free 

because it could select the limited number of the cells that have a higher 

probability to correspond to real ellipses among the measured cells. 

Experimental results showed that this algorithm is much more robust than the 

existing ellipse Hough transforms that used the absolute measure functions.    
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6.2   Future Work 

This thesis also leaves a number of topics unexplored. Here, we highlight 

some possible extensions and new research directions.  

• The algorithms in Chapter 3 were designed to overcome the key 

challenges in ball detection and tracking but some challenges remain. One 

such challenge is the presence of shadow – and extending the algorithm 

to account for shadow will enlarge the application range of the algorithms. 

• The algorithms in Chapter 3 require the manual settings of some 

parameters such as the ball color, line color, and player color as their 

inputs. Automatically obtaining these parameters should be a good 

extension of the algorithms. 

• The trajectory-based approach proposed in the thesis has been applied to 

two sports: soccer and tennis video with promising results. We aim to 

extend the use of this approach to other sports. For example, we can 

develop trajectory-based algorithms for locating the ball in badminton 

video, basketball video, golf video, etc. 

• In Chapter 3, trajectory analysis including trajectory generation and 

trajectory processing showed its power and robustness. Along this 

direction, it is possible to build a trajectory process machine, which 

produces the target trajectory from the given candidates and does 

trajectory criteria evaluation. 

• The trajectory-based event detection is another new approach. In Chapter 

4, several algorithms were designed to detect various events. These 

algorithms have shown the advantage of trajectory-based event detection 

approach. Following this approach, a further study can afford us to detect 
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more events and more details of the events. It is possible that this 

approach can improve the performance of event detection for other ball 

games. 

• The ball trajectory has some relations to high-level events. Thus, it might 

be good to index the video using different types of trajectory.  

• Based on the ball trajectory and detected trajectory-based events, an 

improved annotation system may be a promising research area. 

• It is a possible interesting direction to apply the techniques of 

enhancement and enrichment of sports video to the game industry. 

Currently, making games requires a large amount of manual work. The 

automatic generating video has the possibility to be adopted to reduce this 

manual work.  

• The presented ellipse detection algorithm offers many opportunities for 

improvement. For example, it is possible to speed up the algorithm. When 

our ellipse detection algorithm was applied to detect the ellipse in BSV, we 

made use of the domain knowledge to tighten the Hough space. For the 

normal images, it is possible that the algorithm can integrate the existing 

speed-up techniques such as probabilistic sampling to form even better 

ellipse detection algorithms.    

• Chapter 5 developed some techniques to make ellipse detection 

algorithms robust and accumulator-free. These techniques have the 

potential to be applied to other shape detection algorithms. 
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Appendix   A 

Use of Kalman Filter  

 

The state equation is described by the following linear equation: 

 Xk+1 = Ak Xk + Wk (A.1) 

where Xk is the state vector at time k, Wk is the system noise and Ak is the 

state transition matrix. The measure vector Zk is related to the state vector via 

the measure equation:  

 Zk = Ik Xk + Vk (A.2) 

where Ik is the measurement matrix and Vk  is the noise measure matrix.  

In the ball motion, the state will include the x and y coordinates of the 

ball, the velocity components of the ball vx and vy, and the acceleration 

components of the ball ax and ay. So the state at any point in time can be 

represented with the vector (x, y, vx, vy, ax, ay)T. The state transition matrix is 

derived from the theory of motion under constant acceleration which can be 

expressed with the equations. 
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Therefore, in equation A.1, the system noise matrix is initialized to 0, 

and the state transition matrix, A0, is initialized as follows:  
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The system noise covariance matrix (used in updating Wk) is initialized as 

follows:  
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The measure matrix, Ik, we use is independent of k and is given by:  
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The initial value for the noise measure matrix, V0, is given by: 
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 0V   (A.7) 

To compute the initial state vector, X0, we look for two ball candidates that are 

“close by” in two consecutive frames. Let (x0,y0) and (x1,y1) be the positions of 

the ball candidates in the two frames, respectively. We use these to compute 

the initial velocity for the ball candidate. We initialize the acceleration to 0. 

Then, the initial state vector, X0, is given by: 

T
0101110 )00( ,,xy,xx,y,xX −−=  (A.8) 

The author wishes to thank his colleague, Mr. Yang Minjiang, for help with the 

use of Kalman filter in OpenCV. 
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Appendix   B 

Sequences and Symbols of the Test Video  

 

 

The test video is a whole video of the first half of the game between Senegal 

and Turkey (FIFA2002), in which the game starts at the frame 06310. We first 

segment the video into the sequences with the soccer field and we obtain 139 

sequences with soccer field. At the same time, we obtain 138 sequences 

without the soccer field because there is a sequence without the soccer field 

between each pair of adjacent sequences with the soccer field. Among the 

sequences with soccer field, there are 15 replay sequences that are detected 

by detecting the moving replay sign, which is a large object, using algorithm 

presented in [PaLS2002]. In addition, there are 56 ball-less sequences. A 

sequence is called a ball-less sequence if the whole sequence does not 

contain any ball at all. The remaining 68 sequences are classified into three 

classes according to the number of frames in sequences: S-length (21-300 

frames), M-length (301-1000 frames), and L-length (longer than 1000 frames). 

All the sequences with the soccer field and their symbols are tabulated in 

Table B.1. In the table, “~ball” means “ball-less”; the numbers after a symbol 

indicate the start and end frames of the corresponding sequence. 

 166



 

Table B.1  Sequences with the soccer field and their symbols of the test video 
(FIFA2002 quarter-final Senegal vs Turkey).  

Type  Symbols and Their Frames  
 

Replay 
 

R01: 07478-07608, R02: 14002-14143, R03: 23374-23635, R04: 31506-31679, R05: 34646-34929, 
R06: 36139-36608, R07: 37855-38058, R08: 40289-40746, R09: 43317-43482, R10: 47400-47642, 
R11: 48987-49306, R12: 63519-63723, R13: 63728-63772, R14: 71321-71508, R15: 71529-71577 

 
 
 
 
 

~ball 
 

X01: 06816-07011, X02: 07028-07073, X03: 07727-07874, X04: 08189-08267, X05: 10405-10485, 
X06: 13385-13557, X07: 14348-14548, X08: 17557-17630, X09: 17639-17671, X10: 23325-23366, 
X11: 24323-24393, X12: 24944-25038, X13: 25075-25098, X14: 25829-25983, X15: 27546-27593, 
X16: 27606-27678, X17: 27689-27747, X18: 29340-29365, X19: 29371-29397, X20: 29429-29455, 
X21: 33444-33474, X22: 34186-34207, X23: 34938-34971, X24: 36026-36091, X25: 36096-36129, 
X26: 38865-39027, X27: 39035-39068, X28: 40225-40279, X29: 42456-42717, X30: 42876-42943, 
X31: 43162-43307, X32: 47012-47239, X33: 48938-48980, X34: 49826-49860, X35: 49945-50016, 
X36: 50146-50243, X37: 50313-50445, X38: 50448-50484, X39: 50494-50701, X40: 52121-52196, 
X41: 57441-57639, X42: 57979-58143, X43: 58178-58251, X44: 58322-58521, X45: 58533-58844, 
X46: 58856-58917, X47: 66867-67489, X48: 67701-67743, X49: 71257-71314, X50: 71630-71714, 
X51: 72960-73226, X52: 74183-74206, X53: 74233-74419, X54: 74554-74673, X55: 77064-77471, 
X56: 77473-77507 

 
S-length 

 

S01: 07203-07317, S02: 08347-08557, S03: 08792-08924, S04: 12403-12622, S05: 17353-17546, 
S06: 31148-31386, S07: 33479-33610, S08: 35667-35954, S09: 39073-39185, S10: 42996-43160, 
S11: 52379-52571, S12: 52573-52635, S13: 72799-72951, S14: 73877-74169 

 
 
 
 
M-length 

 

M01: 06300-06723, M02: 07880-08181, M03: 08974-09684, M04: 09819-10399, M05: 10490-11433, 
M06: 11457-11964, M07: 12650-13377, M08: 13588-13943, M09: 17876-18646, M10: 18764-19217, 
M11: 19340-19857, M12: 19859-20200, M13: 23643-24083, M14: 24413-24899, M15: 25104-25793, 
M16: 26276-26695, M17: 26698-27493, M18: 29706-30271, M19: 30386-31110, M20: 31689-32248, 
M21: 33676-34080, M22: 34216-34549, M23: 35197-35614, M24: 36615-37408, M25: 37432-37842, 
M26: 38066-38857, M27: 39230-40213, M28: 40783-41158, M29: 43733-44316, M30: 47909-48859, 
M31: 49320-49719, M32: 55540-56359, M33: 56412-57385, M34: 59204-59916, M35: 70780-71211, 
M36: 71821-72791, M37: 73232-73834, M38: 74830-75523, M39: 75552-76334, M40: 76356-77057 

 
L-length 

L01: 14556-17351, L02: 20227-23272, L03: 27785-29256, L04: 32257-33400, L05: 41174-42450, 
L06: 44346-45525, L07: 45533-47004, L08: 50944-52024, L09: 52652-55391, L10: 60078-61650, 
L11: 61766-63511, L12: 63784-65202, L13: 65204-66720, L14: 67748-70744 

 
 

For the whole test video, the number of the sequences of each type and 

their total frames are tabulated in Table B.2, in which “~field” means “without 

the soccer field”. 

Table B.2   Distribution of various types of the sequences in the test video  
(FiFA 2002 quarter-final Senegal vs Turkey). 

Type # of seg. # of frames Symbols of seg. 
~Field 138 8585 Not Available 
Replay 15 3341 R01 – R15 
~Ball 56 6385 X01-X56 

S-length 14 2512 S01-S14 
M-length 40 24465 M01-M40 
S-length 14 25460 L01-L14 

Total 177 70748 Not Applicable 
  

 167


	F-LHW-Chh01.pdf
	Chapter 1�Introduction

	F-LHW-Chh02.pdf
	Chapter   2�Ball Detection and Tracking in Sports Video
	Problem of Ball Detection and Tracking
	Motivation of Detecting and Tracking the Ball in BSV
	Challenges of Locating the Ball in BSV
	Related Work in Ball Detection and Tracking
	Previous Work on General Object Detection and Tracking
	Previous Work on Ball Detection and Tracking
	Other Work Related to the Ball Location
	Summary


	F-LHW-Chh03.pdf
	3.1   Overview of the Algorithm
	3.2   Ball Size Estimation
	3.2.1   Principle of Ball Size Estimation
	3.2.2   Salient Object Detection
	3.2.3   Ball Size Computation and Adjustment

	3.3   Ball Candidate Generation
	3.3.1   Object Production
	3.3.2   Sieves and Candidate Generation
	3.3.3   Candidate Classification

	3.4   Candidate Trajectory Generation
	3.4.1   Candidate Feature Image
	3.4.2   Candidate Trajectory Generation
	3.4.3   Trajectory Joint

	3.5   Trajectory Processing
	3.5.1   Confidence Index
	3.5.2   Overlapping Index
	3.5.3   Ball Trajectory Production
	3.5.4   Ball Tracking

	3.6   Experiments on the Ball Detection and Tracking in BSV
	3.6.1   Performance of the Soccer Ball Detection and Trackin
	3.6.2   Experiments on Ball Size Estimation
	3.6.3   Experiments on Ball Size Filter
	3.6.4   Experiments on the Robustness of Ball Trajectory Min
	3.6.5   Contribution of Penalty Mark Filter

	3.7   Application of the Trajectory-Based Approach to BTV
	3.7.1   Challenges of Tennis Ball Detection and Tracking
	3.7.2   Algorithm for Locating the Ball in BTV
	3.7.3   Experimental Results of Locating the Ball in BTV


	F-LHW-Chh04.pdf
	Chapter   4
	Detection of Ball-Related Event
	in Broadcast Soccer Video
	4.1   Event and Ball-Related Event
	4.2   Related Work in Event Detection in Soccer Video
	4.2.1 Visual Low-Level Feature-Based Methods
	4.2.2   Auditory Low-Level Feature-Based Methods
	4.2.3 Visual and Auditory Low-Level Feature-Based Methods
	4.2.4   Shape-Based Methods
	4.2.5   Ball Location-Aided Methods
	4.2.6   Ball Trajectory-Based Methods
	4.2.7   Low-Level Feature and Object-Related Feature Approac

	4.3   Our Proposed Event Detection Algorithms
	4.3.1   Detection of Basic Actions
	4.3.2   Detection of Complex Events

	4.4   Team Possession Analysis
	4.4.1   Color histogram

	4.5   Play/break Structure Analysis
	4.5.1 Whistling Detection
	4.5.2   Structure Analysis

	4.6 Experimental Results of Event Detection
	4.6.1 Results of Event Detection
	4.6.2   Results of Team Ball Possession Analysis
	4.6.3   Results of Play/Break Analysis

	4.7   Enhancement and Enrichment of Broadcast Soccer Video
	4.7.1    Overview of the Proposed System
	4.7.2   Camera Calibration
	4.7.3   Results of Enhancement and Enrichment

	4.8   Summary


	F-LHW-Chh05.pdf
	Chapter   5
	A Robust Ellipse Hough Transform
	5.1   Introduction
	5.2   An Introduction to Ellipse Hough Transforms
	5.2.1   Definition of Ellipse Hough Transform

	5.3   Our Proposed Robust Ellipse Hough Transform
	5.3.1   Definitions and Notations
	5.3.2   Measure Function Normalization




