4,954 research outputs found

    Compressive PCA for Low-Rank Matrices on Graphs

    Get PDF
    We introduce a novel framework for an approxi- mate recovery of data matrices which are low-rank on graphs, from sampled measurements. The rows and columns of such matrices belong to the span of the first few eigenvectors of the graphs constructed between their rows and columns. We leverage this property to recover the non-linear low-rank structures efficiently from sampled data measurements, with a low cost (linear in n). First, a Resrtricted Isometry Property (RIP) condition is introduced for efficient uniform sampling of the rows and columns of such matrices based on the cumulative coherence of graph eigenvectors. Secondly, a state-of-the-art fast low-rank recovery method is suggested for the sampled data. Finally, several efficient, parallel and parameter-free decoders are presented along with their theoretical analysis for decoding the low-rank and cluster indicators for the full data matrix. Thus, we overcome the computational limitations of the standard linear low-rank recovery methods for big datasets. Our method can also be seen as a major step towards efficient recovery of non- linear low-rank structures. For a matrix of size n X p, on a single core machine, our method gains a speed up of p2/kp^2/k over Robust Principal Component Analysis (RPCA), where k << p is the subspace dimension. Numerically, we can recover a low-rank matrix of size 10304 X 1000, 100 times faster than Robust PCA

    CUR Decompositions, Similarity Matrices, and Subspace Clustering

    Get PDF
    A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces U=⋃Mi=1Si\mathscr{U}=\underset{i=1}{\overset{M}\bigcup}S_i. The similarity matrices thus constructed give the exact clustering in the noise-free case. Additionally, this decomposition gives rise to many distinct similarity matrices from a given set of data, which allow enough flexibility to perform accurate clustering of noisy data. We also show that two known methods for subspace clustering can be derived from the CUR decomposition. An algorithm based on the theoretical construction of similarity matrices is presented, and experiments on synthetic and real data are presented to test the method. Additionally, an adaptation of our CUR based similarity matrices is utilized to provide a heuristic algorithm for subspace clustering; this algorithm yields the best overall performance to date for clustering the Hopkins155 motion segmentation dataset.Comment: Approximately 30 pages. Current version contains improved algorithm and numerical experiments from the previous versio
    • 

    corecore