5,564 research outputs found

    Environmentally sustainable toll design for congested road networks with uncertain demand

    Get PDF
    This article proposes a new road toll-design model for congested road networks with uncertain demand that can be used to create a sustainable urban transportation system. For policy assessment and strategic planning purposes, the proposed model extends traditional congestion pricing models to simultaneously consider congestion and environmental externalities due to vehicular use. Based on analyses of physical and environmental capacity constraints, the boundary conditions under which a road user on a link should pay either a congestion toll or an extra environmental tax are identified. The sustainable toll design model is formulated as a two-stage robust optimization problem. The first-stage problem before the realization of the future travel demand aims to minimize a risk-averse objective by determining the optimal toll. The second stage after the uncertain travel demand has been determined is a scenario-based route choice equilibrium formulation with physical and environmental capacity constraints. A heuristic algorithm that combines the sample average approximation approach and a sensitivity analysisbased method is developed to solve the proposed model. The upper and lower bounds of the model solution are also estimated. Two numerical examples are given to show the properties of the proposed model and solution algorithm and to investigate the effects of demand variation and the importance of including risk and environmental taxation in toll design formulations. © Taylor & Francis Group, LLC.postprin

    Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures

    Full text link
    Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. However, in order to be reliable in highly dynamic urban areas, such controllers need to be robust with the respect to a series of exogenous sources of uncertainty. In this paper, we develop an open-source callback-based framework for promoting the flexible evaluation of different deep RL configurations under a traffic simulation environment. With this framework, we investigate how deep RL-based adaptive traffic controllers perform under different scenarios, namely under demand surges caused by special events, capacity reductions from incidents and sensor failures. We extract several key insights for the development of robust deep RL algorithms for traffic control and propose concrete designs to mitigate the impact of the considered exogenous uncertainties.Comment: 8 page

    Dynamic traffic assignment: model classifications and recent advances in travel choice principles

    Get PDF
    Dynamic Traffic Assignment (DTA) has been studied for more than four decades and numerous reviews of this research area have been conducted. This review focuses on the travel choice principle and the classification of DTA models, and is supplementary to the existing reviews. The implications of the travel choice principle for the existence and uniqueness of DTA solutions are discussed, and the interrelation between the travel choice principle and the traffic flow component is explained using the nonlinear complementarity problem, the variational inequality problem, the mathematical programming problem, and the fixed point problem formulations. This paper also points out that all of the reviewed travel choice principles are extended from those used in static traffic assignment. There are also many classifications of DTA models, in which each classification addresses one aspect of DTA modeling. Finally, some future research directions are identified.postprin

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukĂŒnftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl fĂŒr Verkehrsprozessautomatisierung (VPA) an der FakultĂ€t Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthĂ€lt einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte MobilitĂ€tssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. DarĂŒber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur

    Deep learning for real-time traffic signal control on urban networks

    Get PDF
    Real-time traffic signal controls are frequently challenged by (1) uncertain knowledge about the traffic states; (2) need for efficient computation to allow timely decisions; (3) multiple objectives such as traffic delays and vehicle emissions that are difficult to optimize; and (4) idealized assumptions about data completeness and quality that are often made in developing many theoretical signal control models. This thesis addresses these challenges by proposing two real-time signal control frameworks based on deep learning techniques, followed by extensive simulation tests that verifies their effectiveness in view of the aforementioned challenges. The first method, called the Nonlinear Decision Rule (NDR), defines a nonlinear mapping between network states and signal control parameters to network performances based on prevailing traffic conditions, and such a mapping is optimized via off-line simulation. The NDR is instantiated with two neural networks: feedforward neural network (FFNN) and recurrent neural network (RNN), which have different ways of processing traffic information in the near past. The NDR is implemented and tested within microscopic traffic simulation (S-Paramics) for a real-world network in West Glasgow, where the off-line training of the NDR amounts to a simulation-based optimization procedure aiming to reduce delay, CO2 and black carbon emissions. Extensive tests are performed to assess the NDR framework, not only in terms of its effectiveness in optimizing different traffic and environmental objectives, but also in relation to local vs. global benefits, trade-off between delay and emissions, impact of sensor locations, and different levels of network saturation. The second method, called the Advanced Reinforcement Learning (ARL), employs the potential-based reward shaping function using Q-learning and 3rd party advisor to enhance its performance over conventional reinforcement learning. The potential-based reward shaping in this thesis obtains an opinion from the 3rd party advisor when calculating reward. This technique can resolve the problem of sparse reward and slow learning speed. The ARL is tested with a range of existing reinforcement learning methods. The results clearly show that ARL outperforms the other models in almost all the scenarios. Lastly, this thesis evaluates the impact of information availability and quality on different real-time signal control methods, including the two proposed ones. This is driven by the observation that most responsive signal control models in the literature tend to make idealized assumptions on the quality and availability of data. This research shows the varying levels of performance deterioration of different signal controllers in the presence of missing data, data noise, and different data types. Such knowledge and insights are crucial for real-world implementation of these signal control methods.Open Acces

    Fair Resource Allocation in Macroscopic Evacuation Planning Using Mathematical Programming: Modeling and Optimization

    Get PDF
    Evacuation is essential in the case of natural and manmade disasters such as hurricanes, nuclear disasters, fire accidents, and terrorism epidemics. Random evacuation plans can increase risks and incur more losses. Hence, numerous simulation and mathematical programming models have been developed over the past few decades to help transportation planners make decisions to reduce costs and protect lives. However, the dynamic transportation process is inherently complex. Thus, modeling this process can be challenging and computationally demanding. The objective of this dissertation is to build a balanced model that reflects the realism of the dynamic transportation process and still be computationally tractable to be implemented in reality by the decision-makers. On the other hand, the users of the transportation network require reasonable travel time within the network to reach their destinations. This dissertation introduces a novel framework in the fields of fairness in network optimization and evacuation to provide better insight into the evacuation process and assist with decision making. The user of the transportation network is a critical element in this research. Thus, fairness and efficiency are the two primary objectives addressed in the work by considering the limited capacity of roads of the transportation network. Specifically, an approximation approach to the max-min fairness (MMF) problem is presented that provides lower computational time and high-quality output compared to the original algorithm. In addition, a new algorithm is developed to find the MMF resource allocation output in nonconvex structure problems. MMF is the fairness policy used in this research since it considers fairness and efficiency and gives priority to fairness. In addition, a new dynamic evacuation modeling approach is introduced that is capable of reporting more information about the evacuees compared to the conventional evacuation models such as their travel time, evacuation time, and departure time. Thus, the contribution of this dissertation is in the two areas of fairness and evacuation. The first part of the contribution of this dissertation is in the field of fairness. The objective in MMF is to allocate resources fairly among multiple demands given limited resources while utilizing the resources for higher efficiency. Fairness and efficiency are contradicting objectives, so they are translated into a bi-objective mathematical programming model and solved using the ϔ-constraint method, introduced by Vira and Haimes (1983). Although the solution is an approximation to the MMF, the model produces quality solutions, when ϔ is properly selected, in less computational time compared to the progressive-filling algorithm (PFA). In addition, a new algorithm is developed in this research called the Ξ progressive-filling algorithm that finds the MMF in resource allocation for general problems and works on problems with the nonconvex structure problems. The second part of the contribution is in evacuation modeling. The common dynamic evacuation models lack a piece of essential information for achieving fairness, which is the time each evacuee or group of evacuees spend in the network. Most evacuation models compute the total time for all evacuees to move from the endangered zone to the safe destination. Lack of information about the users of the transportation network is the motivation to develop a new optimization model that reports more information about the users of the network. The model finds the travel time, evacuation time, departure time, and the route selected for each group of evacuees. Given that the travel time function is a non-linear convex function of the traffic volume, the function is linearized through a piecewise linear approximation. The developed model is a mixed-integer linear programming (MILP) model with high complexity. Hence, the model is not capable of solving large scale problems. The complexity of the model was reduced by introducing a linear programming (LP) version of the full model. The complexity is significantly reduced while maintaining the exact output. In addition, the new Ξ-progressive-filling algorithm was implemented on the evacuation model to find a fair and efficient evacuation plan. The algorithm is also used to identify the optimal routes in the transportation network. Moreover, the robustness of the evacuation model was tested against demand uncertainty to observe the model behavior when the demand is uncertain. Finally, the robustness of the model is tested when the traffic flow is uncontrolled. In this case, the model's only decision is to distribute the evacuees on routes and has no control over the departure time

    Robust Evaluation for Transportation Network Capacity under Demand Uncertainty

    Get PDF
    • 

    corecore