17,968 research outputs found

    Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data

    Full text link
    Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a new sparse sensor optimization that is designed to leverage the rich spatiotemporal coherence exhibited by many systems. Our approach is inspired by the remarkable performance of flying insects, which use a few embedded strain-sensitive neurons to achieve rapid and robust flight control despite large gust disturbances. Specifically, we draw on nature to identify targeted neural-inspired sensors on a flapping wing to detect body rotation. This task is particularly challenging as the rotational twisting mode is three orders-of-magnitude smaller than the flapping modes. We show that nonlinear filtering in time, built to mimic strain-sensitive neurons, is essential to detect rotation, whereas instantaneous measurements fail. Optimized sparse sensor placement results in efficient classification with approximately ten sensors, achieving the same accuracy and noise robustness as full measurements consisting of hundreds of sensors. Sparse sensing with neural inspired encoding establishes a new paradigm in hyper-efficient, embodied sensing of spatiotemporal data and sheds light on principles of biological sensing for agile flight control.Comment: 21 pages, 19 figure
    • …
    corecore