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Abstract

Subspace clustering algorithms are usually used when processing high-dimensional

data, such as in computer vision. This paper presents a robust low-rank rep-

resentation (LRR) method that incorporates structure constraints and dimen-

sionality reduction for subspace clustering. The existing LRR and its extensions

use noise data as the dictionary, while this influences the final clustering results.

The method proposed in this paper uses a discriminant dictionary for matrix re-

covery and completion in order to find the lowest rank representation of the data

matrix. As the algorithm performs clustering operations in low-dimensional la-

tent space, the computational efficiency of the algorithm is higher, which is also

a major advantage of the proposed algorithm in this paper. A large number of

experiments on standard datasets show the efficiency and effectiveness of the

proposed method in subspace clustering problems.
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1. Introduction

Many practical computer vision and image processing applications require

high-dimensional data representation and processing. Many clustering tech-

niques face the challenge of the curse of dimensionality [1] as well. In the actual

environment, we often face high-dimensional data sets, such as face images un-5

der different lighting conditions, moving object trajectories, various other im-

age data. In addition, for the analysis and processing of high-dimensional data,

the data processing time and data storage requirements increases dramatically,

while in the same time, the quality of data analysis and processing tends to

decrease. Fortunately, however, a large number of studies have shown that the10

intrinsic dimension of these high-dimensional data is often much smaller than

the actual dimension, in other words, these high-dimensional data samples can

also be considered to be in a group of low-dimensional structures [2, 3].

For high-dimensional data, the feature dimensions of many data are usually

irrelevant. For example, for a digital image, which often consists of billions of15

pixels, usually the main features of the image can be represented by only a few

parameters. Therefore, many researchers point out that high-dimensional data

can be approximated by a group of low-dimensional structures [4, 5], which is

the focus of the so-called subspace algorithms. Subspace methods have been

widely studied and applied in computer vision. These methods are also at20

the forefront of the research on high-dimensional data analysis and processing,

especially for exploring and identifying the low-dimensional structures of high-

dimensional data [4, 5, 6, 7]. At present, subspace clustering algorithms have

been widely studied, and researchers have proposed a lot of related algorithms.

These algorithms can be basically divided into four categories: subspace clus-25

tering algorithms based on iteration [8, 9]; subspace clustering based on spectral

clustering algorithms [10, 11, 12]; subspace clustering based on statistical algo-

rithms [13] and subspace clustering based on algebraic algorithms [14, 15]. In

particular, subspace clustering algorithms based on low-rank and sparse rep-

resentations [16, 17, 18, 4, 11] have received extensive attention and intensive30
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research in recent years. The usual flow of this kind of algorithms is to get

the representation coefficients of the data matrix by using sparse or low rank

representation, then construct the affinity matrix by using the representation

coefficient matrix, and finally segment the affinity matrix by spectral clustering.

One of the advantages of this method is robustness to noise and occlusion. In35

addition, some algorithms based on low-rank or sparse representation do not

have to know the number and dimension of the subspace in advance.

The sparse subspace clustering algorithm (SSC) uses L1-norm minimization

to obtain the sparse representation of the data matrix. This can be interpreted

to mean that a data sample point can be obtained by linear representation of40

other data sample points in the same subspace. Then, we can use the obtained

sparse coefficient matrix to construct the affinity matrix, and finally use the

spectral clustering to segment the affinity matrix to get the final clustering re-

sult. The SSC algorithm has been widely successful in many fields. However,

one of the main drawbacks of the SSC algorithm is that it can not capture the45

global characteristics of the data matrix, which leads to poor clustering perfor-

mance of the SSC algorithm when the data sample matrix has noise or outlier

data samples. In addition, the SSC algorithm needs to calculate the sparse

representation of each data sample point, which means that the computational

complexity of the SSC algorithm is relatively high.50

Liu et al. [4] recently proposed a subspace clustering algorithm based on low

rank representation (LRR). Like SSC, LRR assumes that a data sample point

can be represented by linear representations of other data sample points in the

same subspace. The LRR algorithm obtains the lowest rank representation of

the matrix of the high-dimensional data. The LRR algorithm can capture the55

global structure of the data matrix. In addition, since the rank function min-

imization is NP-hard, the LRR algorithm uses the nuclear norm minimization

to replace the rank function, this is also a common approximation. By now,

many researches have improved the robustness of the LRR algorithm. Chen

et al. [19] introduced a symmetric constraint in the low rank representation60

algorithm to extend the LRR algorithm, thus avoiding the subsequent steps of
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symmetric operation on the affinity matrix. Zheng et al. [20] introduced a local

constraint regularization term into the original LRR algorithm, which enables

the algorithm to obtain both global and local structure information of the data

matrix. Considering the subspace clustering problem in the presence of noise,65

[21] proposed a two-step procedure for robust subspace clustering. Li et.al [22]

proposed a unified optimization framework for learning both the affinity and the

segmentation. Because the norm of L0-norm is non-convex, therefore, in prac-

tical application, L1-norm or L2-norm is usually used for approximate substitu-

tion. However, these methods require certain assumptions. In practice, while,70

these assumptions are not fully guaranteed. [23] proposed an approximate L0-

SSC method to tackle this problem. Unlike the traditional representation based

subspace clustering methods, which transform the subspace clustering problem

into a two-steps algorithm including building the affinity matrix and spectral

clustering, [24, 25] directly learns the different subspaces indicator so that the75

low-rank based different groups are obtained clearly.

These algorithms have achieved great success in many areas, but the disad-

vantages are obvious. Because clustering is an unsupervised learning problem,

there is no prior knowledge to use. Therefore, in the subspace clustering al-

gorithm, the data matrix itself is usually used as the data dictionary. But, in80

practical applications, this leads to poor clustering performance, especially in

certain specific cases, such as when the data matrix contains noise or data cor-

ruption. Therefore, it is hoped to recover a discriminant dictionary from the

noisy data matrix and use it for sparse or low rank representation.

Computing sparse and low-rank representations of data matrices requires85

high computational cost, especially for data matrices with higher feature di-

mensions [11, 26, 27], which is also a disadvantage of subspace clustering algo-

rithms based on sparse as well as low-rank representation. In order to solve this

problem, traditional methods usually use dimensionality reduction algorithms to

preprocess data before clustering. Dimensionality reduction algorithms, such as90

Random Projections (RP) algorithm and Principle Component Analysis (PCA),

can effectively reduce data dimension. By using dimensionality reduction algo-
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rithms, a better clustering result can also be obtained in the low dimensional

latent space. To solve this problem, researchers have proposed some algorithms,

that is, to compute the low rank representation or the sparse representation of95

the data in a latnet low-dimensional space [28, 29, 30]. However, these dimen-

sional reduction algorithms are usually designed for supervised classification

problems. For unsupervised clustering problems, these methods cannot be di-

rectly used for dimensionality reduction. Recently, Patel [31] et al. proposed an

extended SSC algorithm, called latent space sparse subspace clustering (LS3C).100

For a given data matrix, the LS3C algorithm can simultaneously learn to get a

low-dimensional space and a sparse representation coefficient matrix of the data

matrix. And in the low-dimensional latent space, the sparse subspace clustering

algorithm can get better clustering results.

Motivated by recent progresses in LRR techniques, in this paper, we further105

study the problem of subspace clustering in a new latent low-dimensional space

by introducing the structure constraints and a discriminative dictionary. The al-

gorithm proposed in this paper uses matrix recovery and completion techniques

[32, 7] to obtain a discriminant dictionary from noisy data, and then it uses the

dictionary to compute the low-rank representation of the data. Thus, our algo-110

rithm will be called the Robust Structure Low-Rank Representation in LATent

space algorithms (LatRSLRR). The experimental results on the standard test

databases also show that the proposed LatRSLRR algorithm is superior to the

most state-of-the-art subspace clustering algorithms. The main contributions

of this paper are summarized below:115

1. In this paper, we propose a new latent space robust subspace segmentation

method (LatRSLRR) based on low-rank and structure constraints.

2. The proposed algorithm uses matrix recovery and completion techniques

to obtain a discriminant low-rank dictionary from noisy data, and then it uses

the discriminant dictionary to compute the low-rank representation of the data120

matrix. The proposed algorithm has better robustness. Especially, it has good

clustering performance for the data samples with noise or outlier.

The rest of this paper is organized as follows. Section 2 briefly reviews some
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extensions of the LRR and LS3C algorithms. The robust structure low-rank

representation in latent space (LatRSLRR) algorithm is proposed in Section 3.125

The experimental results are shown in Section 4, and finally we conclude this

paper in Section 5.

2. Related work

In this section, we briefly introduce sparse representation, low-rank represen-

tation and the latent space sparse subspace clustering algorithms. For a given130

data matrix X = [x1, x2, · · · , xn] ∈ RD×N , its feature dimension is D, each

data sample vector comes from a set of linear subspace {Si}mi=1. The goal of

subspace clustering is to divide the data sample vectors into corresponding m

subspaces.

2.1. Sparse subspace clustering (SSC)135

The Sparse Subspace Clustering (SSC) [11] is a representative subspace clus-

tering algorithm. Its objective is to find the sparsest representation of a data

matrix. The objective function is defined as:

minZ ∥Z∥0

s.t. X = XZ and diag(Z) = 0
(1)

Among them, Z is the sparse representation coefficient matrix. ∥·∥0 repre-

sents the l0 -norm of the vector, and its value represents the number of non-zero140

elements of the vector. diag(Z) ∈ RN represents the diagonal elements of a

matrix Z. The solution Z∗ to the above optimization problem is a sparse repre-

sentation of matrixX. Because the l0 -norm optimization problem is non-convex

and NP-hard, the l1 -norm is usually used to replace the l0 -norm.

minZ ∥Z∥1

s.t. X = XZ and diag(Z) = 0
(2)
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where ∥·∥1 denotes the l1-norm of a matrix.145

When the data sample matrix contains noise or outliers, the optimization

objective function of the SSC algorithm is defined as:

minZ ∥Z∥1 + α ∥E∥1 +
β

2
∥C∥2F

s.t. X = XZ + E + C and diag(Z) = 0

(3)

Among them, E represents the sparse outliers and C represents the noise

matrix. The non-negative parameters α > 0 and β > 0 regulate the weights of

the three items in the above objective optimization function. After the coeffi-150

cient representation matrix Z is obtained, the affinity matrix |Z|+ |Z|T can be

constructed by the coefficient representation matrix Z in the subsequent pro-

cessing. Finally, the affinity matrix can be partitioned with a spectral clustering

algorithm to get the final segmentation results.

2.2. Low-Rank Representation (LRR)155

Different from SSC, LRR finds the lowest-rank representation. The objection

function of the LRR is defined as follows:

minZ rank(Z)

s.t. X = AZ
(4)

where, A represents the data dictionary. As the optimization of the rank

function is a NP-hard problem, in practice, we usually use the nuclear norm for

approximate substitution. Then the objective function is proposed as:160

minZ ∥Z∥∗

s.t. X = AZ
(5)

where ∥Z∥∗ is the nuclear norm, defined as the sum of all singular values of

Z, which is the convex envelope of the rank function. Considering the fact that
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samples are usually noisy or even grossly corrupted, a more reasonable objective

for LRR can be expressed as:

minZ,E ∥Z∥∗ + λ ∥E∥2,1

s.t. X = AZ + E
(6)

where the l2,1-norm is defined as ∥E∥2,1 =
∑n

j=1

√∑d
i=1 e

2
ij and the param-165

eter λ is used to balance the effect of the low-rank term and the error term.

2.3. Latent space sparse subspace clustering (LS3C)

Traditional SSC and LRR algorithms calculate the sparse representation and

low rank representation of each data sample vector in the original space. LS3C

algorithm hopes to find a low-dimensional latent space firstly, and then calculate170

the sparse representation of data matrix in this low-dimensional space, and get

the final clustering segmentation results. The objective function of the LS3C

algorithm is defined as follows:

minP,Z λ1

∥∥PTX − PTXZ
∥∥2
F
+ λ2

∥∥X − PPTX
∥∥2
F
+ ∥Z∥1

s.t. PTP = I and diag(Z) = 0
(7)

Among them, λ1 and λ2 are two non-negative parameters, P ∈ RD×d

is the projection matrix, mapping data from high-dimensional space to low-175

dimensional space. The first and third terms of the objective function (7)

describe the objectives of the LS3C algorithm. The second term of the ob-

jective function guarantees that the reconstruction of data from the original

high-dimensional space to the low-dimensional space will not lose too much in-

formation. The objective function can solve P and Z by an iterative method.180

As the author claims, the LS3C algorithm can calculate the representation co-

efficients of each data sample in low-dimensional latent space, so the LS3C

algorithm is more effective than the SSC algorithm.
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3. Low-Rank Robust Structure Representation in Latent Space

In this section, we introduce the proposed robust structure low-rank repre-185

sentation in latent space (LatRSLRR) method. LatRSLRR learns a structured

low-rank representation in a latent low-dimensional space, and can get a better

clustering performance.

3.1. Motivation

One of the main drawbacks of the LS3C algorithm is that it uses the l1-norm190

to compute the sparse representation of the matrix. However, the l1-norm can

not capture the global structure information of the data. However, the LRR

algorithm and its extension are proved to be able to capture the global structure

information of the data matrix.

The LRR algorithm can capture the global structure of the data matrix, but195

the local structure information of the data matrix is also very useful for the

subspace clustering problem. Therefore, we hope that the coefficient matrix Z

obtained by the optimization problem (6) can reflect the local structure infor-

mation of the data at the same time. If the affinity matrix G constructed by

G = (|Z|+
∣∣ZT

∣∣)/2 can reflect the similarity between data samples, the following200

minimization optimization objective function needs to be satisfied:

∑
ij

|Gij | d(xi, xj) = 1/2
∑
ij

(|Zij |+
∣∣ZT

ij

∣∣)d(xi, xj)

=
∑
ij

|Zij | d(xi, xj) = ∥Z ⊙M∥1
(8)

where M ∈ Rn×n, Mij = d(xi, xj). d(xi, xj) is a kind of distance between

xi and xj , ⊙ denotes the Hadamard product. In this paper, we define

dij = 1− exp(−
1−

∣∣x∗T
i x∗

j

∣∣
σ

) (9)

where x∗
i and x∗

j are the normalized data points of xi and xj , respectively,

and σ is the average of the elements of matrix B (where B is defined as Bij =205
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1−
∣∣x∗T

i x∗
j

∣∣ ). We add Eq. (9) into the LRR objective as a l1-regularizer, which

can also help to keep Z to be sparse as much as possible.

The LRR and its extensions use the data matrix itself as the dictionary.

However, in the practical data matrix, noise and data corruption is a very com-

mon phenomenon, and we can not expect tht the actual high-dimensional data210

are obtained under good control. Therefore, when the original data matrix con-

taining noise is used as a dictionary, the clustering performance of the algorithm

is often severely limited. Therefore, it is very important to learn a discriminant

dictionary from a noisy data matrix. Many papers have also studied this prob-

lem in depth [32, 33, 34].215

In practical applications, it is difficult to find a suitable method to remove

all the noise in the data, because the noise comes in many forms. Different ma-

trix recovery techniques are also suitable for different types of noise. According

to the latest developments in low-rank matrix recovery and completion meth-

ods, we hope to find a more suitable data dictionary, such as a discriminatory220

low-rank dictionary, instead of learning the low-rank representation by using

the noise-contained data matrix itself. When the data sample is only slightly

corrupted by Gaussian noise with small variance, the PCA algorithm can deter-

mine the best low rank approximation. However, in practice, especially in data

analysis and image processing, large errors are common, which seriously limits225

the application of the PCA algorithm. In recent studies, the RPCA algorithm

[7] has been proposed, which can recover the discriminant low-rank dictionary

from the corrupted data matrix. Its objective function is defined as follows:

minA,E ∥A∥∗ + λ ∥E∥1

s.t. X = A+ E
(10)

where ∥·∥∗ denotes the nuclear norm of a matrix, and ∥·∥1 denotes the l1

-norm of a matrix. This problem can be solved by the inexact Augmented230

Lagrange Multiplier (ALM) method [35]. By using the RPCA algorithm, we

recover a discriminant low rank matrix A from the noisy data matrix, and use
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this matrix as a data dictionary to learn the low rank representation.

In addition, we also use the recovered data matrix to construct the graph

Laplacian matrix L. The weight matrix is defined as follows:235

Wij = ∥ai − aj∥2

where ai and aj are samples of the recovered data. Note that L = D−W is

the Laplacian matrix of the graph, where D is a diagonal matrix with diagonal

entries Dii =
∑

j Wij .

Through the above analysis, then we have the so called latent space ro-240

bust structure low-rank representation for subspace clustering, and the objective

function can be expressed as:

minP,Z ∥Z∥∗ + β ∥W ⊙ Z∥1 +
α

2
tr(ZTLZ)

+λ(∥PX − PAZ∥2F +
∥∥A− PTPA

∥∥2
F
)

s.t. PPT = I , X = AZ + E

(11)

where tr(·) is the trace of a matrix. P is the projection transformation. The

first term of (11) promotes the low-rankness of the data, the second term is a

l1-regularizer which can help to keep Z to be sparse as much as possible. The245

third term is the Laplacian graph. The last two term ensures that the projection

does not loose too much information available in the original domain. α, β and

λ are non-negative parameters to control the influence of each term.

3.2. Solution to the above optimization problem

For the basis projection transformation P, we have the following proposition.250

Proposition 1: There exists an optimal solution P ∗ to (11) that has the

following form:

P ∗ = ΦTAT (12)

for some Φ ∈ RN×d , where N is the number of data sample and d is the

dimension of the latent output space.
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It should be pointed out that proposition 1 has been applied in subspace255

clustering and dictionary learning in [14]. With proposition 1, by substituting

(12) in (11), the objective function can be represented as:

minΦ,Z ∥Z∥∗ + β ∥W ⊙ Z∥1 +
α

2
tr(ZTLZ)+

λ(
∥∥ΦTATX − ΦTATAZ

∥∥2
F
+
∥∥A−AΦΦTATA

∥∥2
F
)

(13)

Let K1 = ATX and K = ATA , then the proposed method (11) can be

illustrated as follows

minΦ,Z ∥Z∥∗ + β ∥W ⊙ Z∥1 +
α

2
tr(ZTLZ)+

λ(
∥∥ΦTK1 − ΦTKZ

∥∥2
F
+
∥∥A−AΦΦTK

∥∥2
F
)

(14)

s.t. ΦTKΦ = I260

It can be seen that the optimization problem (14) contains two variables. In

order to solve this minimization optimization problem, we adopt the alternat-

ing optimization strategy, that is, fixing one variable to solve another variable.

Therefore, the optimization problem is divided into two steps.

3.2.1. Update Φ with fixed Z265

For solving Φ , the minimization problem (14) after fixing Z can be written

as

min
∥∥ΦTK1 − ΦTKZ

∥∥2
F
+
∥∥A−AΦΦTK

∥∥2
F

(15)

s.t. ΦTKΦ = I

This cost function can be expanded as follows:

tr((K−1K1 − Z)(K−1K1 − Z)TKTQTK) + tr((K − 2KTQTK +KTQTKQK))

(16)
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where Q = ΦΦT ∈ RN×N . The constraint ΦTKΦ = I leads to the new270

constraint ΦΦTKΦΦT = QKQT = ΦΦT = Q . The objective function (16) can

be further simplified as:

tr(((K−1K1 − Z)(K−1K1 − Z)T − I)KTQTK) (17)

where we have made use of the quality constraint and used the fact that

trace(K) is constant. Using the eigen decomposition of K = V SV T , we get

KTQTK = V S
1
2MMTS

1
2V T

275

where M = S
1
2V TΦ . As a result, (17) can be rewritten as:

tr(MTS
1
2V T ((K−1K1 − Z)(K−1K1 − Z)T − I)V S

1
2M) = tr(MTΘM)

Where Θ = S
1
2V T ((K−1K1−Z)(K−1K1−Z)T−I)V S

1
2 ,MTM = ΦTV SV TΦ =

ΦTKΦ = I

We arrive at the following optimization problem, which is equivalent to (15)280

M∗ = min tr(MTΘM)

s.t. MTM = I
(18)

Once the optimal M∗ is found, the optimal Φ∗ can be recovered as

Φ∗ = V S− 1
2M∗ (19)

3.2.2. Update Z with fixed Φ

Once Φ is obtained, we can compute Z. Let Y = ΦTK1 , B = ΦTK , we

have to solve the following problem to obtain Z.

minZ ∥Z∥∗ + β ∥W ⊙ Z∥1 +
α

2
tr(ZTLZ) + λ ∥Y −BZ∥2F (20)

This problem can be solved by using the Augmented Lagrange Multiplier285

(ALM) method. We introduce two auxiliary variables J and L in order to make
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the objective function separable, and convert the above problem to the following

equivalent problem:

minZ,J,L ∥J∥∗ + β ∥W ⊙ L∥1 +
α

2
tr(JTLJ) + λ ∥Y −BZ∥2F

s.t. Z = J , Z = L

(21)

Then, the augmented Lagrangian function of Eq. (21) is

minZ,J,L ∥J∥∗ + β ∥W ⊙ L∥1 +
α

2
tr(JTLJ)

+λ ∥Y −BZ∥2F + ⟨Y1, Z − J⟩+ ⟨Y2, Z − L⟩+
µ

2
(∥Z − J∥2F + ∥Z − L∥2F )

(22)

Among them, Y1 and Y2 are Lagrange multipliers, and the non-negative290

parameter µ > 0 is the penalty parameter. In order to solve this optimiza-

tion problem, we adopt the alternative optimization method, that is, by fixing

other variables, we get the variable J, L, Z in sequence. The detailed updating

methods for variable J, L, Z are as follows.

A. Update J with other variables fixed. When we update J , we drop the295

irrelevant terms w.r.t to J in (22), then in the k-th iteration, we have:

Jk+1 = arg minJk

1

µk
∥Jk∥∗ +

α

2µk
tr(JT

k LJk) +
1

2

∥∥∥∥Jk − (Zk +
Y k
1

µk
)

∥∥∥∥2
F

(23)

which does not have a closed-form solution. By the spirit of LADMAP [35],

we denote the smooth component of above equation by

q(J, Zk, Y
k
1 ) =

α

2
tr(JTLJ) +

µk

2

∥∥∥∥J − (Zk +
Y k
1

µk
)

∥∥∥∥2
F

(24)

Then according to LADMAP, minimizing (23) can be replaced by solving

the following problem:300

minJ ∥J∥∗ + ⟨▽Jq(Jk), Zk − J⟩+ η1
2

∥Zk − J∥2F (25)

14



Where q(J, Zk, Y
k
1 ) is approximated by its linearization ⟨▽Jq(Jk), Zk − J⟩ at

Jk plus a proximal term η1

2 ∥Zk − J∥2F , and ▽Jq(Jk) is the gradient of q w.r.t.

Z. As long as η1 > α ∥L∥2, where α ∥·∥2 is the spectral norm of a matrix, i.e.,

the largest singular value, the above replacement is valid. Then (25) can be

reformulated as:305

Jk+1 = argminJk
∥Jk∥∗ + ⟨▽Jk

q(Jk), Zk − Jk⟩+
η1
2

∥Zk − Jk∥2F

= argminJk

1

η1
∥Jk∥∗ +

1

2

∥∥∥∥Jk − (Zk +
▽Jk

q(Jk)

η1
)

∥∥∥∥2
F

(26)

Suppose UkSkV
T
k is the SVD of the matrix Zk+

▽Jk
q(Jk)

η1 and Sk = diag(
{
ski
}
1≤i≤r

)

(r is the rank of Zk +
▽Jk

q(Jk)

η1 ), then Jk+1 = UkΘ 1
η1

(Sk)V
T
k . Here Θ is the

singular value thresholding operator [36].

B. Update L with other variables fixed. By ignoring the terms independent

of L, we have:310

Lk+1 = argminLk
β ∥W ⊙ Lk∥1 + ⟨Y2, Zk − Lk⟩+

µk

2
(∥Zk − Lk∥2F )

= arg minLk

β

µk
∥W ⊙ Lk∥1 +

1

2

∥∥∥∥Lk − (Zk +
Y k
2

µk
)

∥∥∥∥2
F

(27)

Then, the solution to Eq. (27) satisfies [Lk+1]ij = Ψεij (
[
Zk +

Y k
2

µk

]
ij
) , where

Ψε(x) = max(x− ε, 0) +min(x− ε, 0) and εij =
β
µk

[W ]ij .

C. Update Z with other variables fixed. Similar to the previous method, we

collect the related terms of Z in Eq. (22), then we have:

Zk+1 = arg minZk
λ ∥X −BZk∥2F +

⟨
Y k
1 , Zk − Jk

⟩
+
⟨
Y k
2 , Zk − Lk

⟩
+

µ

2
(∥Zk − Jk∥2F + ∥Zk − Lk∥2F )

= arg minZk
λ ∥X −BZk∥2F +

µk

2

∥∥∥∥Zk − Jk +
Y k
1

µk

∥∥∥∥2
F

+
µk

2

∥∥∥∥Zk − Lk +
Y k
2

µk

∥∥∥∥2
F

(28)

Therefore,315

Zk+1 =
1

2
(λXTB + µkI)

−1(2λXTB + µk(Jk − Y k
1

µk
+ Lk − Y k

2

µk
)) (29)
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D. Update Y1, Y2 and µ

Y k+1
1 = Y k

1 + µk(Zk+1 − Jk+1) (30)

Y k+1
2 = Y k

2 + µk(Zk+1 − Lk+1) (31)

µk+1 = min(µmax, ρµk) (32)

Where µmax and ρ are two positive parameters, k denotes the number of

iteration.

3.3. Convergence and complexity analysis

The criterion function J = ∥Z∥∗+β ∥W ⊙ Z∥1+
α
2 tr(Z

TLZ)+λ(∥PX − PAZ∥2F+320 ∥∥A− PTPA
∥∥2
F
) converges to a minimum. Firstly, according to the definition

of J , we have J > 0 for any P , Z. Secondly, based on the algorithm, once

Zk is obtained, we have Pk+1 = arg minPJ(Pk, Zk). Therefore, J(Pk+1, Zk) ≤

J(Pk, Zk). After Pk+1 is obtained, we also have Zk+1 = arg minZJ(Pk+1, Zk),

so J(Pk+1, Zk+1) ≤ J(Pk+1, Zk). Finally, J(Pk+1, Zk+1) ≤ J(Pk, Zk), namely325

Jk+1 ≤ Jk. Hence, we can conclude that the proposed algorithm is convergent.

In general, we can assume that the dimension of data samples is larger than

the number of data samples. That is, m > n. From the optimization process of

the proposed algorithm, we can see that the computational complexity of the

algorithm mainly comes from the eigen-decomposition of formula (20) and the330

ALM algorithm. The time complexity of eigen decomposition is O(m3), and the

main calculation of ALM algorithm is the SVD decomposition. The complexity

of each iteration algorithm is O(m3). If the algorithm converges within the

iteration steps of its outer loop, the total computational complexity is up to

O(Tm3 + Ttm3), where t represents the number of iterations within the ALM335
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algorithm. If the data sample size and T are large, the algorithm complexity

is very large. Fortunately, the outer iteration converges very fast, so the total

computational complexity of the proposed algorithm is the same as that of the

traditional PCA algorithm. In addition, when the dimension of the data sample

is very large, we can also use the KL transformation to calculate the standard340

eigenvectors of the data matrix, which will greatly reduce the computational

complexity of the algorithm.

4. Experiments

In this section, we experimented with the proposed LatRSLRR algorithm

on three public data sets: the extended YaleB data set, the AR data set and345

the MINIST data set. The specific experimental settings and results are shown

below. We compare the proposed LatRSLRR method with the graph-based

clustering approaches of S3C [22], FeaMAC [37] , LRRSC [19], LRR [4], SSC

[11], local subspace affinity (LSA) [38], and spectral clustering (SC) [39], which

provide a good baseline for evaluation.350

In the experiment, we use clustering error rate to evaluate the performance

of the algorithm, and the clustering error rate is defined as

Error =
Nerror

Ntotal
(33)

where Nerror represents the number of misclassified samples and Ntotal is

the total number of samples. Smaller subspace clustering errors indicate better

clustering performance.355

4.1. Clustering experiments using the extended Yale B database

The extended YaleB dataset contains 2414 face images of 38 people. Each

person probably collected 64 images, which were photographed under different

poses and illumination conditions. In this experiment, for the sake of computa-

tional efficiency, we use the images of the first 10 people in the data set as the360
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Figure 1: Representative examples in the extended Yale database B: (a) sample images under

different illumination conditions, (b) sample images with random pixel corruptions, (c) sample

images of a discriminative low-rank dictionary.

test data set, and manually cropped and normalized each image into 32 × 32

pixels.

Firstly, we validate the algorithm on the original data set, and the test data

set does not receive any corruption. Some example images of the extended YaleB

dataset is shown in Fig. 1a. Next, we consider the clustering performance of365

the algorithm when the data set is contaminated by noise. In order to simulate

the noise, we use random pixel corruptions, in which the original image matrix

is replaced by a random point with a uniformly distributed value in the range

[0, 1]. The damage ratio of the face image matrix is from 5 to 20% . Figure

1b gives some sample examples of randomly damaged image matrices. Fig. 1C370

shows the face image matrix recovered from the randomly corrupted image data

matrix by the RPCA algorithm, which is used as a data dictionary for learning

the low rank representation.

There are three parameters affecting the performance of the LatRSLRR. In

the experiments, the dataset images are without any artificial corruption, and we375

find that the consistent result is insensitive to the varying α values. This can be

seen from the Fig. 2(a). In this subsection, we focus on the influence of β and λ .

We set λ = [0.01, 0.1, 0.3, 0.5, 1, 3, 5, 8, 10] , β = [1e−4, 1e−3, 1e−2, 1e−1, 1, 5, 10]

, and record the segmentation errors of the LatRSLRR on different pairs (λ, β).

Fig. 2(b) shows the experimental results. It is obvious that the performance380
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Figure 2: Segmentation errors of the LatRSLRR versus the variation of parameters

of the proposed LatRSLRR algorithm is stable when λ and β vary in a relatively

large range. These experiments also show that the algorithm proposed in this

paper is very effective for subspace clustering problems.

Next, we considered artificial occlusion, and the parameters of LatRSLRR

were empirically set to α = 0.1 , β = 0.01 and λ = 10 for this experiment.385

We execute each clustering algorithm 10 times, and report the mean clustering

error and standard deviation in Table 1. The results show that LatRSLRR

consistently outperformed all the other methods (by about 2%), particularly

for larger percentages of corrupted pixels. As the percentage of corrupted pix-

els increased, LatRSLRR retained this advantage over the other algorithms.390

These results clearly imply that LatRSLRR is much more robust than the other

algorithms.

Table 1. Clustering error (%) of different algorithms on

the first ten classes of the extended Yale database B contaminated by random pixel corruptions
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Figure 3: Example images of multiple individuals from the AR database

Ration(%) Error LatRSLRR FeaMAC S3C LRRSC LRR SSC LSA SC

0 Mean 2.54 6.07 18.25 4.53 20.62 37.03 56.09 57.03

Std 1.13 0.95 0.94 0.29 1.12 3.04 2.53 2.74

5 Mean 8.62 10.57 15.56 12.97 19.83 38.67 62.34 57.19

Std 1.25 0.73 2.78 0.40 3.83 4.28 2.64 3.05

10 Mean 16.34 17.57 16.31 18.28 25.78 40.66 62.81 57.97

Std 1.54 1.08 0.82 0.37 1.21 5.08 2.71 3.58

15 Mean 18.54 18.85 17.34 19.69 26.00 42.11 63.12 58.12

Std 2.27 1.96 2.67 2.87 3.91 1.39 2.26 4.70

20 Mean 20.56 20.81 19.42 21.87 26.71 43.37 63.91 59.28

Std 1.83 2.09 1.55 4.04 0.88 1.85 3.67 2.40

395

4.2. Clustering experiments using the AR database

The AR dataset contains more than 4000 frontal face images of 126 peo-

ple. These images are captured under different illumination conditions, facial

expressions and facial occlusion (sunglasses and scarves). In the experiments,

these face images have been cropped to 165× 120 pixel gray images. In this ex-400

periment, in order to calculate efficiently, we chose the face images from 5 male

and 5 female to form a test data set. Some of the sample images are shown in

Figure 3.

In the experiments, we considered artificial occlusion, the parameters of

LatRSLRR were empirically set to α = 1 , β = 0.01 and λ = 10 for this experi-405

ment. Table 2 shows the results for all six algorithms. LatRSLRR outperformed

other methods because it simultaneously considers the intrinsic local and global

structure of the high-dimensional data using the low-rank criterion with graph

regularization.

Table 2. Clustering error (%) of different algorithms on the ten classes of the AR410
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Figure 4: Segmentation errors of LatRSLRR versus the variation of parameters (a) AR

database (b) MNIST database

database contaminated by random pixel corruptions

Ration(%) Error LatRSLRR FeaMAC S3C LRRSC LRR SSC LSA SC

0 Mean 2.08 2.23 12.62 2.86 2.86 23.57 37.86 20.71

Std 0 0 0.58 0 0 1.09 1.27 0.65

5 Mean 2.08 2.23 12.85 2.86 2.86 26.93 44.05 21.50

Std 0 0 0.94 0 0.30 1.58 0.65 0.41

10 Mean 2.08 2.31 13.54 2.86 2.86 27.00 44.71 26.71

Std 0 0 1.25 0 0 1.05 2.02 3.89

15 Mean 2.29 2.31 14.05 2.86 2.86 27.45 44.75 30.86

Std 0 0 1.19 0 0 1.27 2.60 3.54

20 Mean 2.34 2.39 15.71 2.86 3.07 29.36 43.64 33.57

Std 0.35 0 1.26 0 0.35 3.54 0.75 4.44

4.3. Clustering experiments using the MNIST database

In order to better verify the robustness and general adaptability of the La-

tRSLRR algorithm proposed in this paper, we use the MNIST handwritten digit415

set to carry out experimental testing. The data consist of 10 class images of

handwritten difits, 0 to 9, with 60000 training images and 10000 test images.

Each image is 28× 28 pixels in size. In this experiment, we select 1000 images

from the training data set as the experimental data set for each number in order

to calculate the experimental efficiency. Figure 4 shows some examples of digits420

0,1,3 and 8.

In the experiments, we considered artificial occlusion, the parameters of
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Figure 5: Example images of the digits from the MNIST database

LatRSLRR were empirically set to α = 0.1, β = 0.01 and λ = 10. Table

3 lists the clustering results for LatRSLRR and the five competing methods.

From these results, we can observe that LatRSLRR outperformed the other425

algorithms.

Table 3. Clustering error

(%) of different algorithms on the MNIST database contaminated by random pixel corruptions

Ration(%) Error LatRSLRR FeaMAC S3C LRRSC LRR SSC LSA SC

0 Mean 28.30 30.85 31.28 33.50 47.50 32.80 36.00 43.70

Std 1.91 2.53 2.15 0.71 2.73 3.17 2.58 1.74

5 Mean 30.39 31.18 33.56 35.78 48.84 34.97 42.45 45.49

Std 1.74 1.86 2.18 0.85 1.60 3.68 3.00 1.69

10 Mean 30.47 31.87 34.82 36.12 50.13 35.08 44.27 46.86

Std 1.98 1.63 1.93 0.79 2.81 3.30 1.91 1.58

15 Mean 33.62 32.36 35.29 36.71 51.13 36.20 47.23 48.02

Std 1.62 1.90 2.05 0.75 3.10 2.52 1.29 2.02

20 Mean 34.87 33.72 37.08 37.56 51.90 38.32 51.27 48.24

Std 2.01 2.18 1.80 1.47 3.03 3.42 3.32 2.05

5. Conclusions430

The recent technological developments have brought a great deal of data,

especially high-dimensional data, which puts forward a higher test to the tra-

ditional data analysis and processing algorithms. It is the unremitting pursuit

of researchers to study and mine the intrinsic structural characteristics of these

high-dimensional data and to analyze and process the data accurately. In this435

paper, we proposed a new subspace segmentation algorithm, termed the ro-

bust structure low-rank representation in latent space (LatRSLRR), to reveal

the structures of high-dimensional datasets. We show that the LatRSLRR can
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be explained in terms of a robust low-rank representation method, so that its

good performance can be guaranteed in theory. Various experiments for sub-440

space segmentation have proven that the LatRSLRR algorithm achieved signif-

icantly better results than the competitive state-of-art subspace segmentation

algorithms.
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