14 research outputs found

    Selective Sampling with Drift

    Full text link
    Recently there has been much work on selective sampling, an online active learning setting, in which algorithms work in rounds. On each round an algorithm receives an input and makes a prediction. Then, it can decide whether to query a label, and if so to update its model, otherwise the input is discarded. Most of this work is focused on the stationary case, where it is assumed that there is a fixed target model, and the performance of the algorithm is compared to a fixed model. However, in many real-world applications, such as spam prediction, the best target function may drift over time, or have shifts from time to time. We develop a novel selective sampling algorithm for the drifting setting, analyze it under no assumptions on the mechanism generating the sequence of instances, and derive new mistake bounds that depend on the amount of drift in the problem. Simulations on synthetic and real-world datasets demonstrate the superiority of our algorithms as a selective sampling algorithm in the drifting setting

    Online Clustering of Bandits

    Full text link
    We introduce a novel algorithmic approach to content recommendation based on adaptive clustering of exploration-exploitation ("bandit") strategies. We provide a sharp regret analysis of this algorithm in a standard stochastic noise setting, demonstrate its scalability properties, and prove its effectiveness on a number of artificial and real-world datasets. Our experiments show a significant increase in prediction performance over state-of-the-art methods for bandit problems.Comment: In E. Xing and T. Jebara (Eds.), Proceedings of 31st International Conference on Machine Learning, Journal of Machine Learning Research Workshop and Conference Proceedings, Vol.32 (JMLR W&CP-32), Beijing, China, Jun. 21-26, 2014 (ICML 2014), Submitted by Shuai Li (https://sites.google.com/site/shuailidotsli

    Wisely Using a Budget for Crowdsourcing

    Get PDF
    The problem of “approximating the crowd” is that of estimating the crowd’s majority opinion by querying only a subset of it. Algorithms that approximate the crowd can intelligently stretch a limited budget for a crowdsourcing task. We present an algorithm, “CrowdSense,” that works in an online fashion where examples come one at a time. Crowd-Sense dynamically samples subsets of labelers based on an exploration/exploitation criterion. The algorithm produces a weighted combination of a subset of the labelers’ votes that approximates the crowd’s opinion. We then introduce two variations of CrowdSense that make various distributional assumptions to handle distinct crowd characteristics. In particular, the first algorithm makes a statistical independence assumption of the probabilities for large crowds, whereas the second algorithm finds a lower bound on how often the current sub-crowd agrees with the crowd majority vote. Our experiments on CrowdSense and several baselines demonstrate that we can reliably approximate the entire crowd’s vote by collecting opinions from a representative subset of the crowd

    Online Passive-Aggressive Active Learning

    Get PDF
    corecore