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Abstract We investigate online active learning techniques for online classification tasks.
Unlike traditional supervised learning approaches, either batch or online learning, which
often require to request class labels of each incoming instance, online active learning queries
only a subset of informative incoming instances to update the classification model, aim-
ing to maximize classification performance with minimal human labelling effort during the
entire online learning task. In this paper, we present a new family of online active learn-
ing algorithms called Passive-Aggressive Active (PAA) learning algorithms by adapting
the Passive-Aggressive algorithms in online active learning settings. Unlike conventional
Perceptron-based approaches that employ only the misclassified instances for updating the
model, the proposed PAA learning algorithms not only use the misclassified instances to
update the classifier, but also exploit correctly classified examples with low prediction con-
fidence. Specifically, we propose several variants of PAA algorithms to tackle three types
of online learning tasks: binary classification, multi-class classification, and cost-sensitive
classification. We give the mistake bounds of the proposed algorithms in theory, and con-
duct extensive experiments to evaluate the empirical performance of our techniques on both
standard and large-scale datasets, in which the encouraging results validate the empirical
effectiveness of the proposed algorithms.
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1 Introduction

Both online learning and active learning have been extensively studied in machine learning
and data mining (Freund et al. 1997; McCallum and Nigam 1998; Balcan et al. 2006, 2007;
Cesa-Bianchi and Lugosi 2006; Crammer et al. 2006; Castro and Nowak 2007; Zhao and
Hoi 2010; Hoi et al. 2014). In a traditional online learning task (e.g., online classification), a
learner is trained in a sequential manner to predict the class labels of a sequence of instances
as accurately as possible. Specifically, at each round of a typical online learning task, the
learner first receives an incoming instance, and thenmakes a prediction of its class label. After
that, it is assumed to always receive the true class label from an oracle, which can be used to
measure the loss incurred by the learner’s prediction so as to update the learner if necessary.
In many real-world applications especially for mining real-life sequential arriving data (e.g.,
spam email filtering), acquiring the true class labels from an oracle is often time-consuming
and costly due to the unavoidable interaction between the learner and the environment. This
hasmotivated the recent study ofOnlineActive Learning (Cesa-Bianchi et al. 2006; Dasgupta
et al. 2009; Cesa-Bianchi and Lugosi 2006; Sculley 2007), which explores active learning
strategy in an online learning setting to avoid requiring to request class labels of all incoming
instances.

A pioneering and state-of-the-art technique to online active learning is known as
Label Efficient Perceptron (Cesa-Bianchi and Lugosi 2006) or Selective Sampling Percep-
tron (Cesa-Bianchi et al. 2006; Cavallanti et al. 2009), or called Perceptron-based Active
Learning (Dasgupta et al. 2009). In particular, consider an online classification task, when a
learner receives an incoming instance xt , the learner firstmakes a prediction ŷt = sign( f (xt ))
where f (xt ) = wt ·xt , and then uses a stochastic approach to decide whether it should query
the class label or not, where the query probability is inversely proportional to the prediction
confidence (e.g., the magnitude of the margin, i.e., δ/(δ + | f (xt )|) where δ is a positive
smoothing constant). If no class label is queried, the learner makes no update; otherwise, it
acquires the true label yt from the environment and follows the regular Perceptron algorithm
to make update (i.e., the learner will update the model if and only if the instance is misclas-
sified according to the true class label). We summarize the common Framework of Online
Active learning algorithms in Algorithm 1.

In the above Perceptron-based active learning, if an incoming instance is predicted with
low confidence by the current model, the learner very likely would query its class label.
However, if the instance is correctly classified according to the acquired true label, this
training instance will be discarded and never be used to update the learner according to
the principle of the Perceptron algorithm. Clearly this is a critical limitation of wasting the
effort of requesting class labels. To overcome this limitation, we present a new scheme for
online active learning, i.e., the Passive-Aggressive Active (PAA) learning, which explores
the principle of passive-aggressive learning (Crammer et al. 2006). It not only decides when
the learner should make a query appropriately, but also attempts to fully exploit the potential
of every queried instance for updating the classification model. To tackle different kinds of
machine learning tasks, we propose several variants of the PAA algorithms, i.e. the PAA
algorithm for online binary classification tasks, the Multi-class Passive-Aggressive Active
(MPAA) learning algorithm for online multi-class classification tasks and the Cost-Sensitive
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Algorithm 1 The Framework of Online Active learning
INITIALIZE : classifier f0.
for t = 1, . . . , T do
Observe: xt ∈ R

d , make prediction ŷt based on ft (xt );
Make a decision whether to query the label (Zt = 1) or not (Zt = 0);
if Zt = 1 then
Query label yt , and suffer loss �t ( ft );
if �t ( ft ) �= 0 then
Update: calculate classifier ft+1;

else
ft+1 = ft

end if
else
ft+1 = ft

end if
end for

Passive-Aggressive Active learning (CSPAA) algorithm for online binary classification with
extremely unbalanced data. We theoretically analyse the mistake bounds of the proposed
algorithms and conduct extensive experiments to examine their empirical performance, in
which encouraging results show clear advantages of our algorithms over the baselines.

The rest of this paper is organized as follows. Section 2 reviews background and related
work. Section 3 presents the proposed framework of Passive-Aggressive Active-learning
(PAA) algorithms for online binary classification tasks and analyzes the mistake bounds
of the proposed algorithms. Section 4 extends the proposed framework for online multi-
class classification by presenting a family of multi-class PAA algorithms (MPAA). Section 5
extends the proposed learning framework to tackle cost-sensitive classification by presenting
cost-sensitive PAA (CSPAA) algorithms. Section 6 discusses our empirical studies and the
applications of our technique to large-scale real-world online learning tasks, and finally
Sect. 7 concludes this work.

2 Related work

Our work is closely related to three major categories of machine learning studies: online
learning, online active learning and cost-sensitive classification. Below we briefly review
some representative related work in each category.

2.1 Online learning

Online learning represents a family of efficient and scalablemachine learning algorithms (Hoi
et al. 2014; Rosenblatt 1958; Crammer and Singer 2003; Cesa-Bianchi et al. 2004; Crammer
et al. 2006; Zhao et al. 2011; Wang et al. 2012). Unlike conventional batch learning methods
that assume all training instances are available prior to the learning task, online learning
repeatedly updates the predictive models sequentially, which is more appropriate for large-
scale applicationswhere training data often arrive sequentially. In literature, a variety of online
learningmethods have been proposed inmachine learning.A classical online learningmethod
is the Perceptron algorithm (Rosenblatt 1958; Freund and Schapire 1999), which updates the
model by adding a new example with some constant weight into the current set of support
vectors when the example is misclassified. Recently a lot of new online learning algorithms
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have been developed based on the criterion of maximummargin (Crammer and Singer 2003;
Gentile 2001; Kivinen et al. 2001; Crammer et al. 2006; Li and Long 1999). One notable
technique in this category is the online Passive-Aggressive (PA) learning method (Crammer
et al. 2006), which updates the classification function when a new example is misclassified
or its classification score does not exceed some predefined margin. PA algorithms have been
proved as a very successful and popular online learning technique for solving many real-
world applications. Finally, we note that there are also a number of emerging online learning
algorithms proposed recently, such as second-order online learning (Crammer et al. 2008,
2009; Wang et al. 2012), which make more accurate predictions and often converge faster
than first-order algorithms.

Most of the above existing online learning methods generally belong to supervised and
passive learning. One major weakness of such supervised passive online learning method-
ology (Hoi et al. 2014) is the unrealistic assumption in that it assumes class labels of every
incoming instance will be already requested or made available at the end of every iteration,
which limits the application of online learning techniques for many real-world online learn-
ing tasks where class labels may not be always available or may be expensive to collect or
request.

2.2 Online active learning

Online Active Learning algorithms emerge to address the main problem of conventional
supervised online learning approach, i.e. the strong dependence on labeled data. The basic
process of online active learningworks in iterations. At each iteration, one unlabelled instance
is presented to the learner, and the learner needs to decide whether to query its label. If the
label is queried, then the learner can use the labelled instance to update the model, otherwise
the model is kept unchanged.

Specifically, there are two kinds of settings for online active learning, selective sampling
setting (Cavallanti et al. 2009; Cesa-Bianchi et al. 2009; Dekel et al. 2010; Orabona and Cesa-
Bianchi 2011) and label efficient learning setting. We summarize their differences in several
aspects. Firstly, in the selective sampling setting the instances are drawn randomly fromafixed
distribution, while in the label efficient setting the instances can be generated adversarially.
Secondly, the label efficient model must make predictions on those instance where the label is
not requested,while the selective samplingmodels are concernedwith the generalization error
rather than the performance of the algorithm on the sequence of instances. Our work belongs
to the second category. One of themost representative existing work in label efficient learning
setting is the Label Efficient Perceptron algorithm,where the probability of querying the label
is decided by the classification confidence. Following the similar setting, many variants of
this algorithm were proposed including Adaptive Label Efficient Perceptron, Label Efficient
Second-Order Perceptron (Cesa-Bianchi et al. 2006), Adaptive Label Efficient Second-Order
Perceptron and Label Efficient Winnow (Cesa-Bianchi et al. 2006). Although extensively
studied, the existing active learning algorithms still suffer from a serious limitation: the
effort of querying a correctly classified instance is wasted due to the adoption of Perceptron
update strategy.

In this work, we apply the popular PA algorithm to solve the online active learning task.
Our work enjoys two advantages. On one hand, different from the regular PA setting which
assumes every class label will be revealed, our approach queries the class labels of only a
limited amount of incoming instances through active learning.On the other hand, our effective
updating strategy fully exploits the potential of every queried instance and thus achieves a
superior performance compared to existing active learning algorithms.
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In addition, it is important to note that our work in online active learning is highly related to
but different from active learning in data streams (Zhu et al. 2007, 2010; Žliobaitė et al. 2011).
Both of them attempt to achieve the highest prediction accuracy while querying the fewest
instance labels in the situation of sequentially arriving data. However, online active learning
algorithms focus on the updating strategy when one new instance arrives and may discard
past instances for efficient learning. While active learning in data streams must preserve the
data distribution to detect the potential concept drift (Zliobaite et al. 2014).

2.3 Cost-sensitive classification

Cost-sensitive classification has been extensively studied in datamining andmachine learning
(Liu and Zhou 2006; Zadrozny et al. 2003; Zhu and Wu 2006). To address this problem,
researchers have proposed a variety of cost-sensitive metrics. The well-known examples
include the weighted sum of sensitivity and specificity (Jiawei and Kamber 2001; Brodersen
et al. 2010), and the weighted misclassification cost that takes cost into consideration when
measuring classification performance (Elkan 2001; Akbani et al. 2004). As a special case,
when the weights are both equal to 0.5, the weighted sum of sensitivity and specificity is
reduced to the well-known balanced accuracy (Brodersen et al. 2010). Although lots of
algorithms have been proposed, most of them are in batch setting.

Recently a few existing works have attempted to address online cost-sensitive classifi-
cation problems. Perceptron Algorithms with Uneven Margin (PAUM) (Li et al. 2002) is
an extension of the Perceptron with Margin (PAM) algorithm (Krauth and Mézard 1987)
where the classifier is updated whenever the classification margin is smaller than a prede-
fined threshold. The PAUM algorithm achieves a cost-sensitive update by setting different
thresholds for different class labels. Cost-Sensitive Passive-Aggressive (CPA) (Crammer
et al. 2006) is proposed as a variant of PA algorithms, where the loss function is the
sum of a margin based term and a constant depending on the mistake type. Although
both of the above algorithms can achieve cost-sensitive updating, one main drawback is
that they are not designed to optimize a cost-sensitive measurement directly. Recently
some algorithms such as Cost-Sensitive Online Learning (Wang et al. 2014) and Online
AUC maximization (Zhao et al. 2011) are proposed to address this drawback by directly
solving an optimization problem that optimizes the target cost-sensitive measurements.
Our work follows the idea of cost-sensitive learning but extends it to the active learning
setting, which enjoys a great advantage in saving the labor of labeling huge amount of
instances. Finally, we note that this journal article is based the extensions of our previous
conference papers (Lu et al. 2014; Zhao and Hoi 2013).

3 Passive-Aggressive Active learning

3.1 Problem formulation and background review

We first introduce the problem setting of a regular online binary classification task. Let
{(xt , yt )| t = 1, . . . , T } be a sequence of input patterns for online learning, where each
instance xt ∈ R

d received at the t th trial is a vector of d dimension and yt ∈ {−1,+1}
is its true class label. The goal of online binary classification is to learn a linear classifier
ŷt = sign(wt · xt ) where wt ∈ R

d is the weight vector at the t th round.
For the Perceptron algorithm (Rosenblatt 1958; Freund and Schapire 1999), a learner

first receives an incoming instance xt at t th round; it then makes a prediction based on the
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current classifier wt ; finally the true class label yt is disclosed. If the prediction is correct,
i.e., ŷt = yt , no update is applied to the learner; otherwise, Perceptron updates the model
with the misclassified instance (xt , yt ):

wt+1 ← wt + ytxt

Unlike Perceptron that updates the model only when a misclassification occurs, the
Passive-Aggressive (PA) algorithms (Crammer et al. 2006) make update whenever the loss
function �(wt ; (xt , yt )) is nonzero, e.g., one can choose the hinge loss �(wt ; (xt , yt )) =
max(0, 1 − ytwt · xt ). In particular, PA algorithms update the model wt+1 by solving three
variants of the optimization task:

argmin
w

F(w) =
⎧
⎨

⎩

1
2‖w − wt‖2 s.t. �t (w; (xt , yt )) = 0, (PA)
1
2‖w − wt‖2 + C�t (w; (xt , yt )), (PA-I)
1
2‖w − wt‖2 + C�t (w; (xt , yt ))2, (PA-II)

where C > 0 is a penalty cost parameter. The closed-form solutions can be derived for the
above optimizations, i.e.,wt+1 ← wt +τt ytxt , where the stepsize τt is computed respectively
as follows:

τt =
⎧
⎨

⎩

�t (wt ; (xt , yt ))/‖xt‖2, (PA)
min(C, �t (wt ; (xt , yt ))/‖xt‖2), (PA-I)
�t (wt ; (xt , yt ))/(‖xt‖2 + 1/(2C)). (PA-II)

(1)

Thus, PA algorithms are more aggressive in updating models than Perceptron.

3.2 Passive-Aggressive Active learning algorithms

In this section, we aim to develop new algorithms for online active learning. Unlike con-
ventional online learning (Rosenblatt 1958) and pool-based active learning (McCallum and
Nigam 1998; Tong and Koller 2002), the key challenges to an online active learning task are
two-fold: (i) when a learner should query the class label of an incoming instance, and (ii)
when the class label is queried and disclosed, how to exploit the labeled instance to update
the learner in an effective way. We propose Passive-Aggressive Active (PAA) learning to
tackle the above challenges. In particular, the PAA algorithms adopt a simple yet effective
randomized rule to decide whether the label of an incoming instance should be queried, and
employ state-of-the-art PA algorithms to exploit the labeled instance for updating the online
learner.

In particular, for an incoming instance xt at the t th round, the PAAalgorithmfirst computes
its prediction margin, i.e.,

pt = wt · xt ,
by the current classifier, and then decides if the class label should be queried according to a
Bernoulli random variable Zt ∈ {0, 1} with probability equal to

δ/(δ + |pt |),
where δ ≥ 1 is a smoothing parameter. Such an approach is similar to the idea of margin-
based active learning (Tong and Koller 2002; Balcan et al. 2007) and has been adopted in
other previous work (Cesa-Bianchi et al. 2006; Dasgupta et al. 2009). If the outcome Zt = 0,
the class label will not be queried and the learner is not updated; otherwise, the class label is
queried and the outcome yt is disclosed. Whenever the class label of an incoming instance is
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queried, the PAA algorithms will try the best effort to exploit the potential of this example for
updating the learner. Specifically, it adopts thePAalgorithms to update the linear classification
modelwt+1 according to Eq. (1). Based on the different updating strategies, we name the hard
margin algorithm as PAA and the two soft margin algorithms as PAA-I and PAA-II. Clearly
this is able to overcome the limitation of the Perceptron-based active learning algorithm that
only updates the misclassified instances and wastes a large amount of correctly classified
instances with low prediction confidence which can be potentially beneficial to improving
the classifier. Finally, we summarize the detailed steps of the proposed PAA algorithms in
Algorithm 2.

Algorithm 2 Passive-Aggressive Active learning algorithms (PAA)
INPUT : penalty parameter C > 0 and smoothing parameter δ ≥ 1.
INITIALIZATION : w1 = (0, . . . , 0)�.
for t = 1, . . . , T do
observe: xt ∈ R

d , set pt = wt · xt , and predict ŷt = sign(pt );
draw a Bernoulli random variable Zt ∈ {0, 1} of parameter δ/(δ + |pt |);
if Zt = 1 then
query label yt ∈ {−1,+1}, and suffer loss �t (wt ) = max(0, 1 − ytwt · xt );
compute τt according to Eq. (1), and wt+1 = wt + τt ytxt ;

else
wt+1 = wt ;

end if
end for

3.3 Analysis of mistake bounds for the PAA algorithms

In this section, we aim to theoretically analyze the mistake bounds of the proposed PAA
algorithms. Before presenting the mistake bounds, we begin by presenting a technical lemma
which would facilitate the proofs in this section. With this lemma, we could then derive
the loss and mistake bounds for the three variants of PAA algorithm. For convenience, we
introduce the following notation: M = {t |t ∈ [T ], ŷt �= yt }, and L = {t |t ∈ [T ], ŷt =
yt , �t (wt ; (xt , yt )) > 0}, where [T ] denotes {1, 2, . . . , T }.
Lemma 1 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R

d and
yt ∈ {−1,+1} for all t . Let τt be the stepsize parameter for either of the three PAA variants
as given in Eq. (1). Then, the following bound holds for any w ∈ R

d and any α > 0

T∑

t=1

Zt2τt
[
Lt (α − |pt |) + Mt (α + |pt |)

] ≤ α2‖w‖2 +
T∑

t=1

τ 2t ‖xt‖2 +
T∑

t=1

2ατt�t (w),

where Mt = I(t∈M), Lt = I(t∈L), I is the indicator function.

The detailed proof of Lemma 1 can be found in “Appendix 1”.
Based on Lemma 1, we first derive the expected mistake bound for the PAA algorithm in

the separable case. We assume there exists some w such that yt (w · xt ) ≥ 1, ∀t ∈ [T ].
Theorem 1 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R

d and
yt ∈ {−1,+1} and ‖xt‖ ≤ R for all t . For any vector w that satisfies �t (w) = 0 for all
t , assuming δ ≥ 1, the expected number of mistakes made by the PAA algorithm on this
sequence of examples is bounded by
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E

[
T∑

t=1

Mt

]

≤ E

[
T∑

t=1

Mt�t (wt )

]

≤ R2

4

(

δ + 1

δ
+ 2

)

‖w‖2.

By setting δ = 1, we can obtain the best upper bound as follows:

E

[
T∑

t=1

Mt

]

≤ E

[
T∑

t=1

Mt�t (wt ))

]

≤ R2‖w‖2.

Proof Since �t (w) = 0, ∀t ∈ [T ], according to Lemma 1, we have

T∑

t=1

Zt2τt
[
Lt (α − |pt |) + Mt (α + |pt |)

] ≤ α2‖w‖2 +
T∑

t=1

τ 2t ‖xt‖2.

Further, the above inequality can be reformulated as:

α2‖w‖2 ≥
T∑

t=1

Zt2τt [Lt (α − |pt |) + Mt (α + |pt |)] −
T∑

t=1

τ 2t ‖xt‖2

=
T∑

t=1

Zt2τt
[
Lt

(
α − |pt | − τt

2
‖xt‖2

)
+ Mt

(
α + |pt | − τt

2
‖xt‖2

)]

=
T∑

t=1

Zt2τt

[

Lt

(

α − |pt | − �t (wt )

2

)

+ Mt

(

α + |pt | − �t (wt )

2

)]

=
T∑

t=1

Zt2τt

[

Lt

(

α − |pt | − 1 − yt pt
2

)

+ Mt

(

α + |pt | − 1 − yt pt
2

)]

=
T∑

t=1

Zt2τt

[

Lt

(

α − |pt | − 1 − |pt |
2

)

+ Mt

(

α + |pt | − 1 + |pt |
2

)]

=
T∑

t=1

Lt Zt2τt

(

α − 1 + |pt |
2

)

+
T∑

t=1

Mt Zt2τt

(

α − 1 − |pt |
2

)

.

Plugging α = δ+1
2 , δ ≥ 1 into the above inequality results in

(
1 + δ

2

)2

‖w‖2 ≥
T∑

t=1

Mt Ztτt (δ + |pt |),

since when Lt = 1, |pt | ∈ [0, 1), (α − 1+|pt |
2 ) = δ−|pt |

2 > 0, and (α − 1−|pt |
2 ) = δ+|pt |

2 .
In addition, combining the fact τt = �t (wt )/‖xt‖2 ≥ �t (wt )/R2 with the above inequality

concludes:

(
1 + δ

2

)2

‖w‖2 ≥ 1

R2

T∑

t=1

Mt Zt�t (wt )(δ + |pt |).
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Taking expectation with the above inequality results in

1

R2E

[

δ

T∑

t=1

Mt�t (wt )

]

= E

[
1

R2

T∑

t=1

Mt�t (wt )(δ + |pt |)EZt

]

= E

[
1

R2

T∑

t=1

Mt�t (wt )Zt (δ + |pt |)
]

≤
(
1 + δ

2

)2

‖w‖2.


�

Remark Since, the above theorem holds for any w such that ∀t, �t (w) = 0, we obtain the
tightest bound when w = w∗, where

w∗ = argmin
w

||w||22,
s.t. min

t∈[T ] ytw
�xt ≥ 1.

We can draw two observations as follows. When the norm of instances diverse greatly, i.e.
mint ||xt ||  R, to guarantee the zero loss of the smallest xt , the optimal ||w∗||22 should be
extremely large, which indicates a loose theoretical bound. Thus a proper data pre-processing
scheme, for example scaling all instance vectors to the same norm, will help improve perfor-
mance. However, adopting two different data scaling scheme, for example, scaling ||xt || = R
and ||xt || = cR, c ∈ R

+, will not affect the performance. That is because when changing xt
to cxt (R to cR), w∗ is changed to w∗/c, which makes no change to the theorem.

The above mistake bound indicates that the expected number of mistakes is proportional
to the upper bound of the instances norm R and inversely proportional to the margin 1/‖w‖2,
which is consistent with existing research (Crammer et al. 2006). One disadvantage of the
above theorem is the linear separable assumption, since real world datasets are usually not
separable. To solve this problem, we present the expected mistake bound for the PAA-I
algorithm, which is suitable for the non-separable problem.

Theorem 2 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
d and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t . Assuming δ ≥ 1, for any vector w ∈ R
d , the expected

number of prediction mistakes made by PAA-I on this sequence of examples is bounded from
above by

E

[
T∑

t=1

Mt

]

≤ β

{(
δ + 1

2

)2

‖w‖2 + (δ + 1)C
T∑

t=1

�t (w)

}

,

where β = 1
δ
max{ 1

C , R2} and C is the aggressiveness parameter for PAA-I. Setting δ = 1
leads to the following bound

E

[
T∑

t=1

Mt

]

≤ max

{
1

C
, R2

}{

‖w‖2 + 2C
T∑

t=1

�t (w)

}

.
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Setting δ =
√

1 + 4C
∑T

t=1 �t (w)

‖w‖2 leads to the following bound

E

[
T∑

t=1

Mt

]

≤max

{
1

C
, R2

}
⎧
⎨

⎩

1

2
‖w‖2 + C

T∑

t=1

�t (w) + 1

2
‖w‖

√
√
√
√‖w‖2 + 4C

T∑

t=1

�t (w)

⎫
⎬

⎭
.

Proof According to Lemma 1, we have

α2‖w‖2 +
T∑

t=1

2ατt�t (w)

≥
T∑

t=1

Zt2τt
[
Lt

(
α − |pt | − τt

2
‖xt‖2

)
+ Mt

(
α + |pt | − τt

2
‖xt‖2

)]

≥
T∑

t=1

Lt Zt2τt

(

α − 1 + |pt |
2

)

+
T∑

t=1

Mt Zt2τt

(

α − 1 − |pt |
2

)

.

Similar to Theorem 1, plugging α = δ+1
2 , δ ≥ 1 into the above inequality will result in

(
δ + 1

2

)2

‖w‖2 +
T∑

t=1

(δ + 1)τt�t (w) ≥
T∑

t=1

Mt Ztτt (δ + |pt |).

Since τt ≥ min{C, 1
R2 } holds when Mt = 1, the above inequality implies:

(
δ + 1

2

)2

‖w‖2 +
T∑

t=1

(δ + 1)τt�t (w) ≥ min

{

C,
1

R2

} T∑

t=1

Mt Zt (δ + |pt |).

Taking expectation with the above equality and re-arranging the result conclude the theorem.

�

This theorem shows that the number of expected mistakes is bounded by a weighted sum
of the model complexity ‖w‖2 and the cumulative loss

∑T
t=1 �t (w) suffered by it. Finally,

we give the mistake bound of the PAA-II algorithm in the following theorem.

Theorem 3 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
d and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t . Then, for any vectorw ∈ R
d , assuming δ ≥ 1, the expected

number of prediction mistakes made by PAA-II on this sequence of examples is bounded from
above by,

E

[
T∑

t=1

Mt

]

≤
{

R2 + 1

2C

}
1

δ

{(
δ + 1

2

)2

‖w‖2 + 2C

(
δ + 1

2

)2 T∑

t=1

�t (w)2

}

,

where C is the aggressiveness parameter for PAA-II. By setting δ = 1, we can further have

E

[
T∑

t=1

Mt

]

≤
{

R2 + 1

2C

} {

(‖w‖2 + 2C
T∑

t=1

�t (w)2

}

.
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Proof Define

O = α2‖w‖2 +
T∑

t=1

τ 2t ‖xt‖2 +
T∑

t=1

2ατt�t (w),

P =
T∑

t=1

α

(
τt√
2Cα

− √
2Cα�t (w)

)2

,

Q = α2‖w‖2 +
T∑

t=1

τ 2t

(

‖xt‖2 + 1

2C

)

+
T∑

t=1

2Cα2�t (w)2,

then it is easy to verify that O ≤ O + P = Q.
Combining O ≤ Q with Lemma 1, we have the following

T∑

t=1

(Lt Zt2τt (α − |pt |) + Mt Zt2τt (α + |pt |) ≤ Q.

Furthermore, the above formulation can be reformulated as:

α2‖w‖2 +
T∑

t=1

2Cα2�t (w)2

≥
T∑

t=1

Zt2τt
[
Lt (α − |pt |) + Mt (α + |pt |)

]
− τ 2t

(

‖xt‖2 + 1

2C

)

=
T∑

t=1

Lt Zt2τt

(

α − 1 + |pt |
2

)

+
T∑

t=1

Mt Zt2τt

(

α − 1 − |pt |
2

)

.

Similar to Theorem 1, plugging α = δ+1
2 , δ ≥ 1 into the above inequality results in

(
δ + 1

2

)2

‖w‖2 +
T∑

t=1

2C

(
δ + 1

2

)2

�t (w)2 >

T∑

t=1

Mt Ztτt (δ + |pt |).

Taking expectation with the above inequality and using τt ≥ 1/{R2 + 1
2C }, will conclude the

theorem. 
�
Remark As proven in previouswork (Cesa-Bianchi et al. 2006), the expectedmistake bounds
for active learning perceptron, which in our notation, could be expressed as:

E

[
T∑

t=1

Mt

]

≤ (2δ + R2)2

8δ
‖w‖2 +

(

1 + R2

2δ

) T∑

t=1

�t (w).

By setting δ = 1, they further have

E

[
T∑

t=1

Mt

]

≤ (2 + R2)2

8
‖w‖2 +

(

1 + R2

2

) T∑

t=1

�t (w).

Wecould find that generally speaking, the bounds are similar and it depends on the parameters
to determine which is better. This is similar to the comparison between the PA bound (Cesa-
Bianchi and Lugosi 2006; Crammer et al. 2006) and Perceptron bound (Freund and Schapire
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1999). However, the bound for Percetron Based Active learning has a R4‖w‖2 order term,
which may make it inferior to ours.

One problem in the above theorem is that the value of δ must be larger than 1, which
may result in too many requests. To fix this issue, we propose the following theorem that can
resolve this limitation.

Theorem 4 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
d and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t . Assume there exists a vector w such that �t (w) = 0
for all t . For the PAA algorithm, if change the parameter for the Bernoulli distribution to
δ/(δ + 1+|pt |) and δ ≥ 0, then its expected number of prediction mistakes on this sequence
is bounded by

E

[
T∑

t=1

Mt )

]

≤ E

[
T∑

t=1

Mt�t (wt )

]

≤ R2
(

δ

4
+ 1

δ
+ 1

)

‖w‖2.

When setting δ = 2, we get the best upper bound

E

[
T∑

t=1

Mt

]

≤ E

[
T∑

t=1

Mt�t (wt ))

]

≤ 2R2‖w‖2.

Proof As proven in Theorem 1,

α2‖w‖2 +
T∑

t=1

2ατt�t (w) ≥
T∑

t=1

Zt2τt

[

Lt

(

α − 1 + |pt |
2

)

+ Mt

(

α − 1 − |pt |
2

)]

.

Plugging α = δ
2 + 1, δ ≥ 0 into the above inequality results in

(
δ

2
+ 1

)2

‖w‖2 >

T∑

t=1

Mt Ztτt (δ + 1 + |pt |),

since, when Lt = 1, |pt | ∈ [0, 1), (α− 1+|pt |
2 ) = δ+1−|pt |

2 > 0, and (α− 1−|pt |
2 ) = δ+1+|pt |

2 .
Taking expectation with the above inequality and using τt ≥ �t (wt )/R2 will conclude the
theorem. 
�

Remark Note this theorem demonstrates that for a new sampling probability δ
δ+1+|pt | , the

expected number of mistakes of the PAA algorithm is bounded. Similar property also holds
for PAA-I and PAA-II. It’s easy to get the corresponding bounds using the facts that τt ≥
min{C, 1

R2 } for PAA-I and τt ≥ 1/{R2+ 1
2C } for PAA-II whenMt = 1.We omit the theorems

since it is similar to Theorem 4.

4 Extension to multi-class online classification

In this section,wewill generalize the PAAalgorithms to solve onlinemulti-class classification
tasks.
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4.1 Problem formulation and background review

We first introduce the problem setting of the multi-class classification problem. Let
{(xt , yt )| t = 1, . . . , T } be a sequence of input patterns for online learning, where each
instance xt ∈ R

d received at the t th trial is a vector of d dimension and yt ∈ Y = {1, . . . , k}
is its true class label. We adopt the multi-prototype model in Crammer et al. (2006). The
classifier is made up of k weight vectors wr ∈ R

d , r ∈ Y , where each vector corresponds to
one class label. During the prediction period of the t th iteration, the classifier first generates
a sequence of k prediction scores for all the class labels:

(w1
t · xt , . . . ,wr

t · xt , . . . ,wk
t · xt ).

Then, by comparing the above scores, it picks the class label with the largest score as the
prediction,

ŷt = argmax
r∈Y wr

t · xt . (2)

We further define st as the irrelevant class with the highest prediction score:

st = argmax
r∈Y,r �=yt

wr
t · xt .

The margin with respect to the hypothesis in the t th iteration is defined to be the gap between
the prediction score of class yt and st :

γt = wyt
t · xt − wst

t · xt .
Obviously, in a correct prediction, themargin γt > 0. In themax-scoremulti-class Perceptron
algorithm (Crammer and Singer 2003), the classifier is only updated when a prediction
mistake occurs, i.e. ŷt �= yt ; otherwise, Perceptron updates the model with the misclassified
instance (xt , yt ):

wyt
t+1 ← wyt

t + xt ,

wst
t+1 ← wst

t − xt .

Unlike Perceptron that updates the model only when a misclassification occurs, the Multi-
class Passive-Aggressive (MPA) algorithms (Crammer et al. 2006) will also updates the
classifier when the prediction is correct while the margin is not large enough. Specifically,
MPA algorithms will update the model when the hinge loss is nonzero, where the hinge loss
is defined as,

�t (wt ) = max(0, 1 − γt ),

in which wt denotes the set of all k weight vectors in the classifier.
If the hinge loss is positive, then multi-class PA algorithms will update the model wt+1

by solving three variants of the following optimization objectives:

argmin
w

F(w) =
⎧
⎨

⎩

1
2

∑k
r=1 ‖wr − wr

t ‖2 s.t. �t (w; (xt , yt )) = 0, (MPA)
1
2

∑k
r=1 ‖wr − wr

t ‖2 + C�t (w; (xt , yt )), (MPA-I)
1
2

∑k
r=1 ‖wr − wr

t ‖2 + C�t (w; (xt , yt ))2, (MPA-II)

whereC > 0 is a penalty cost parameter. Luckily, the above optimizations enjoy closed-form
solutions as follows,

wyt
t+1 ← wyt

t + τtxt ,

wst
t+1 ← wst

t − τtxt ,
(3)
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where the stepsize τt is computed respectively as follows:

τt =
⎧
⎨

⎩

�t (wt ; (xt , yt ))/(2‖xt‖2), (MPA)
min(C, �t (wt ; (xt , yt ))/(2‖xt‖2)), (MPA-I)
�t (wt ; (xt , yt ))/(2‖xt‖2 + 1/(2C)). (MPA-II)

(4)

These update rules generally implies that larger losses will result in larger learning rates.

4.2 Multi-class Passive-Aggressive Active learning algorithms (MPAA)

In this section, we aim to develop a group of new algorithms for online active multi-class
classification tasks, termed as the Multi-class Passive-Aggressive Active learning (MPAA)
algorithms. Firstly, a similar but different stochastic rule is adopted in deciding whether to
query the label of a certain instance. This rule will be introduced in the later paragraphs. If
a label is queried, the update rules of MPAA algorithms simply follow those of the MPA
algorithms introduced in the previous section.

Now we will introduce the randomized rule for querying labels. As stated in the PAA
algorithms, the probability of querying a label, Pr(Zt = 1) should be inversely proportional
to the margin of the model on the current instance (with a smoothing parameter δ), which is
considered as a kind of confidence of the model. However, in multi-class setting, the margin
of the model on the current example is not available, since the label is not disclosed when
the probability is computed.

To solve this problem, we introduce the label with second largest prediction score:

ỹt = argmax
r∈Y,r �=ŷt

wr
t · xt ,

and propose a different confidence score

pt = w ŷt
t · xt − w ỹt

t · xt , (5)

which is the gap between the prediction scores of predicted label ŷt and the second label ỹt .
Note that pt ≥ 0 holds for all cases. The relation between the confidence value pt and the
margin γt has two cases: 1) if the prediction is correct, i.e., ŷt = yt and st = ỹt , then pt = γt ;
2) if the prediction is incorrect, then it is easy to check pt ≤ |γt |. Given this confidence value,
the probability of querying a label is set as

Pr(Zt = 1) = δ

δ + pt
,

where δ > 0 is a smooth parameter. This probability is larger than δ
δ+|γt | , which will facilitate

the theoretical analysis later.
Finally,we summarize the detailed steps of the proposedMPAAalgorithms inAlgorithm3.

4.3 Analysis of mistake bounds for the MPAA algorithms

In this section, we aim to theoretically analyze the mistake bounds of the proposed MPAA
algorithms.

Theorem 5 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R
d and

yt ∈ Y and ‖xt‖ ≤ R for all t . For any classifier w such that �t (w) = 0 for all t , assuming
δ ≤ 1 the expected number of mistakes made by the MPAA algorithm on this sequence of
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Algorithm 3Multi-class Passive-Aggressive Active learning algorithms (MPAA)
INPUT : penalty parameter C > 0 and smoothing parameter δ ≥ 1.
INITIALIZATION : wr

1 = (0, . . . , 0)�, for each r ∈ Y .
for t = 1, . . . , T do
observe: xt ∈ R

d , predict ŷt as Equation(2) and set pt as Equation (5).
draw a Bernoulli random variable Zt ∈ {0, 1} of parameter δ/(δ + pt );
if Zt = 1 then
query label yt ∈ {1, . . . , k}, and suffer loss �t (wt ) = max(0, 1 − γt );
compute τt according to equation (4), and update the model as Equation (3)

else
wt+1 = wt ;

end if
end for

examples is bounded by

E

[
T∑

t=1

Mt

]

≤ E

[
T∑

t=1

Mt�t (wt ))

]

≤ R2

2

(

δ + 1

δ
+ 2

) k∑

r=1

‖wr‖2.

By setting δ = 1, we can obtain the best upper bound as follows:

E

[
T∑

t=1

Mt

]

≤ E

[
T∑

t=1

Mt�t (wt )

]

≤ 2R2
k∑

r=1

‖wr‖2.

The proof can be found in “Appendices 2 and 3”. Similarly, we can get the mistake bounds
for the other variants of MPAA algorithms. Because it is easy, we skip it for conciseness.

5 Extension to cost-sensitive online classification

In this section, we further extend the PAA algorithms to deal with highly imbalanced binary
classification tasks, where instead of simply maximizing the accuracy, we should further
consider some cost-sensitive evaluation metrics.

5.1 Problem formulation and cost-sensitive classification review

For binary classification, the result of each prediction for an instance can be classified into
four cases: (1) TruePosi tive (TP) if ŷt = yt = +1; (2) FalsePosi tive (FP) if ŷt = +1 and
yt = −1; (3) TrueNegative (TN) if ŷt = yt = −1; and (4) FalseNegative (FN) if ŷt =
−1 and yt = +1. We now consider a sequence of training examples (x1, y1), . . . , (xT , yT )

for online learning. Then, we denote by M to be the set of indexes that correspond to the
trial of misclassification:

M = {t |yt �= sign(wt · xt ),∀t ∈ [T ]}.
Similarly, we denote byMp = {t |t ∈ M and yt = +1} the set of indexes for false negatives,
and Mn = {t |t ∈ M and yt = −1} the set of indexes for false positives. Further introduce
notation M = |M| to denote the number of mistakes, Mp = |Mp| to denote the number of
false negative and Mn = |Mn | to denote the number of false positives. Let Tp denote the
number of positive instances and Tn denote the number of negative instances, we have the
following performance metrics: sensitivity is defined as the ratio between the number of true
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positives Tp −Mp and the number of positive examples; and specificity is defined as the ratio
between Tn − Mn and the number of negative examples. These can be summarized as:

sensi tivi t y = Tp − Mp

Tp
, speci f ici t y = Tn − Mn

Tn
.

Without loss of generality, we assume “positive” is the rare class, i.e., Tp  Tn .
For traditional online learning, the performance ismeasured by the prediction accuracy (or

mistake rate equivalently) over the sequenceof examples.This is inappropriate for imbalanced
data because a trivial learner that simply classifies any example as negative could achieve a
quite high accuracy for a highly imbalanced dataset. Thus, we propose to study new online
learning algorithms, which can optimize a more appropriate performance metric, such as the
sum of weighted sensitivity and specificity, i.e.,

sum = ηp × sensi tivi t y + ηn × speci f ici t y, (6)

where 0 ≤ ηp, ηn ≤ 1 and ηp + ηn = 1. When ηp = ηn = 1/2, sum is the well-
known balanced accuracy, which is adopted as a metric in the existing studies for anomaly
detection (Li andTsang2011). In general, the higher the sumvalue, the better the performance.
Besides, another suitable metric is the total cost suffered by the algorithm, which is defined
as:

cost = cp × Mp + cn × Mn, (7)

where Mp and Mn are the number of false negatives and false positives respectively, 0 ≤
cp, cn ≤ 1 are the cost parameters for positive and negative classes, respectively, and we
assume cp + cn = 1. The lower the cost value, the better the classification performance.

5.2 Cost-sensitive Passive-Aggressive Active learning algorithm (CSPAA)

We now propose the CSPAA framework for cost-sensitive online binary classification task
by optimizing the previous two cost-sensitive measures. Before presenting our algorithms,
we prove an important proposition below to motivate our solution. For simplicity, we assume
‖xt‖ = 1 for the rest.

Proposition 1 Consider a cost-sensitive classification problem, the goal of maximizing the
weighted sum in (6) or minimizing the weighted cost in (7) is equivalent to minimizing the
following objective:

∑

yt=+1

ρI(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0), (8)

where ρ = ηpTn
ηnTp

for the maximization of the weighted sum, Tp and Tn are the number of

positive examples and negative examples respectively, ρ = cp
cn

for the minimization of the
weighted misclassification cost, and Iπ is the indicator function that outputs 1 if the statement
π holds and 0 otherwise.

The proof can be found in the “Appendix 4”.
Proposition 1 gives the explicit objective function for optimization, but the indicator

function is non-convex. To tackle this issue, we replace the indicator function by its convex
surrogate, i.e., a modified hinge loss function:

�(w; (x, y)) = max(0, ρ ∗ I(y=1) + I(y=−1) − y(w · x)). (9)
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As a result, we can formulate the primal objective function as follows:

Fb
p(w) = 1

2
‖w‖2 + C

T∑

t=1

�t (w), (10)

where the regularization parameter C > 0, the loss function �t (w) = max(0, ρt − yt (w ·xt ))
and ρt = ρ ∗I(yt=1) +I(yt=−1). The idea of this formulation is somewhat similar to the biased
formulation of batch SVM for learning with imbalanced datasets (Akbani et al. 2004).

To online optimize the above objective (10), following the passive-aggressive learning
method (Crammer et al. 2006), we have a similar online optimization objective:

wt+1 = arg min
w∈Rd

1

2
‖w − wt‖2 + C�t (w),

which enjoys the following closed-form solution:

wt+1 ← wt + τt ytxt , where τt = min(C, �t (wt )). (11)

At the t th round, the CSPAA algorithm decides if the class label should be queried
according to the same margin based Bernoulli random variable Zt ∈ {0, 1} as that used in
the PAA algorithm. Finally, Algorithm 4 summarizes the details of the proposed CSPAA
algorithms.

Algorithm 4 Cost-Sensitive Passive-Aggressive Active learning algorithm (CSPAA).
INPUT: penalty parameter C , bias parameter ρ and smooth parameter δ.
INITIALIZATION : w1 = 0.
for t = 1, . . . , T do
receive an incoming instance xt ∈ R

d ;
predict label ŷt = sign(pt ), where pt = wt · xt ;
draw a Bernoulli random variable Zt ∈ {0, 1} of parameter δ/(δ + |pt |);
if Zt = 1 then
query label yt ∈ {−1,+1};
suffer loss �t (wt ) = �(wt ; (xt , yt ));
wt+1 = wt + τt ytxt , where τt = min{C, �t (wt )};

else
wt+1 = wt + τt ytxt , where τt = 0;

end if
end for

Remark It is interesting to analyze the impact of the sampling factor parameter δ. In general,
the larger the value of δ, the larger the resulting number of queries issued by the online active
learner. In particular, when setting δ → ∞, it is reduced to the extreme case of querying
class label of every instance in the online learning process. In general, one can simply fix
δ to some constant to trade off a proper ratio of queries. Besides, an even better approach
is to adaptively change the value of δ during the online learning process. In particular, we
expect to query more examples at the beginning of the online learning task in order to build
a good classifier, and gradually reduce the ratio of queries when the classifier becomes
more and more accurate during the online learning process. To this purpose, we suggest
a simple yet effective scheme to adaptively update the parameter δ at the t th learning
step as: δt ← δt−1 ∗ t

t+1 . We will examine the impact of the sampling factor δ in our
experiments.

123



158 Mach Learn (2016) 103:141–183

5.3 Theoretical bound analysis for the CSPAA algorithms

Below gives theoretical analysis of its performance on online binary cost-sensitive active
learning tasks in terms of two types of performance metrics. The proofs can be found in the
“Appendices 5, 6 and 7”.

Theorem 6 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
d and yt ∈

{−1,+1} and ‖xt‖ = 1 for all t . Then, for any vectorw ∈ R
d , the expected weighted number

of prediction mistakes made by CSPAA on this sequence of examples is bounded as:

E

[
T∑

t=1

ρt Mt

]

≤ 1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

,

where C ≥ ρ is the aggressiveness parameter for CSPAA.

Now our goal is to analyze the performance of the proposed algorithm in terms of the two
metrics, sum and cost . We first consider the weighted sum of sensitivity and specificity, i.e.,

sum = ηp × sensi tivi t y + ηn × speci f ici t y,

where ηp + ηn = 1 and ηp ≥ ηn > 0. The following theorem gives the bound on the sum
by the proposed CSPAA algorithm.

Theorem 7 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples, where xt ∈ R
d , yt ∈

{−1,+1} and ‖xt‖ = 1 for all t . By setting ρ = ηpTn
ηnTp

, and assuming C ≥ ρ, for anyw ∈ R
d ,

we have the following bound for the proposed CSPAA algorithm:

E[sum] ≥ 1 − ηn

Tn

1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

.

Furthermore, when ηp = ηn = 1/2, the balanced accuracy (BA) is bounded from below by

E[BA] ≥ 1 − 1

2Tn

1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

.

Remark In the above, setting δ = 1 leads to the following bound

E[sum] ≥ 1 − ηn

Tn

{

‖w‖2 + 2C
T∑

t=1

�t (w)

}

.

Setting δ =
√

1 + 4C
∑T

t=1 �t (wt )

‖w‖2 leads to the following bound

E[sum] ≥ 1 − ηn

Tn

⎧
⎨

⎩

1

2
‖w‖2 + C

T∑

t=1

�t (w) + 1

2
‖w‖

√
√
√
√‖w‖2 + 4C

T∑

t=1

�t (w)

⎫
⎬

⎭
.

In the above approach, the bias parameter ρ is set to ηpTn
ηnTp

, in which the ratio Tn
Tp

may
not be available in advance. To alleviate this issue, we consider another approach using the
cost based performance metric. Specifically, we propose to set ρ = cp

cn
, where cp and cn are

the predefined cost parameters of false negative and false positive, respectively. We assume
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cp + cn = 1 and 0 ≤ cn ≤ cp since we would prefer to improve the accuracy of predicting
the rare positive examples. By this setting, the following theorem gives us the cumulative
cost bound of the proposed CSPAA algorithm.

Theorem 8 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples, where xt ∈ R
d , yt ∈

{−1,+1} and ‖xt‖ = 1 for all t . By setting ρ = cp
cn
, and assuming C ≥ ρ, for any w ∈ R

d ,
the overall cost made by the proposed CSPAA algorithm over this sequence of examples is
bounded as follows:

E[cost] ≤ cn
1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

.

Remark Setting δ = 1 for the above theorem leads to the following bound:

E[cost] ≤ cn

{

‖w‖2 + 2C
T∑

t=1

�t (w)

}

.

Setting δ =
√

1 + 4C
∑T

t=1 �t (wt )

‖w‖2 leads to the following bound:

E[cost] ≤ cn

⎧
⎨

⎩

1

2
‖w‖2 + C

T∑

t=1

�t (w) + 1

2
‖w‖

√
√
√
√‖w‖2 + 4C

T∑

t=1

�t (w)

⎫
⎬

⎭
.

6 Experimental results

In this section, we evaluate the empirical performance of the proposed family of Passive-
Aggressive Active-learning algorithms for three types of online active learning tasks: binary
classification, multi-class classification, and cost-sensitive classification tasks.

6.1 Evaluation of PAA algorithms for binary classification tasks

This section will evaluate the empirical performance of the proposed PAA algorithms on
online binary classification tasks.

6.1.1 Compared algorithms and experimental testbed

We compare the proposed PAA algorithms with the Perceptron-based Active learning, and
their random variants, which are listed as follows:

– “RPE”: the Random Perceptron algorithm (Cesa-Bianchi and Lugosi 2006);
– “RPA”: the Random Passive-Aggressive algorithms, including RPA, RPA-I, RPA-II.

These algorithms adopt the same updating strategy as the proposed PAA algorithms,
while the querying strategy is different. Instead of actively querying the class label, these
algorithms utilize a uniform random sampling approach. The comparison between the
RPA algorithms and the proposed PAA algorithms will validate the effectiveness of the
active querying strategy.

– “PEA”: the Perceptron-based Active learning algorithm (Cesa-Bianchi et al. 2006); This
algorithm adopts the same active querying strategy as the proposed PAA algorithm, while
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Table 1 Summary of datasets
used in binary online
classification experiments

Dataset #Instances #Features

a8a 32,561 123

codrna 271,617 8

magic04 19,020 10

mushrooms 8124 112

spambase 4601 57

splice 3175 60

svmguide1 7089 4

w8a 64,700 300

the updating rule follows thePerceptron algorithm.The comparisonbetween the proposed
algorithms and the Perceptron-based algorithmswill support ourmainmotivation, to fully
exploit the potential of every queried instance.

– “SEL-ada”: the Selective Sampling Perceptron with Adaptive Parameter (Cesa-Bianchi
et al. 2006); Unlike the PEA algorithm where the smoothing parameter δ is a constant
for all iterations, the δ in the SEL-ada algorithm is set in an online fashion, i.e. δt ∝√
1 + ErrCountt−1.

– “SEL-2nd”: the Selective Sampling Second-Order Perceptron algorithm (Cesa-Bianchi
et al. 2006). This algorithm adopts the same active querying strategy as the proposed PAA
algorithm, but the update strategy follows the Second-order Perceptron algorithm (Cesa-
Bianchi et al. 2005). The SEL-2nd achieved the best performance among all compared
algorithms in (Cesa-Bianchi et al. 2006).

– “PAA”: the Passive-Aggressive Active learning algorithms, including PAA, PAA-I, PAA-
II.

To examine the performance, we conduct extensive experiments on a variety of benchmark
datasets from web machine learning repositories. Table 1 shows the details of twelve binary-
class datasets used in our experiments.All of these datasets can be downloaded fromLIBSVM
website1 and UCI machine learning repository.2 These datasets are chosen fairly randomly
in order to cover various sizes of datasets.

All the compared algorithms learn a linear classifier for the binary classification tasks. The
penalty parameter C is searched from 2[−5:5] through cross validation for all the algorithms
and datasets. The smoothing parameter δ is set as 2[−10:10] in order to examine varied sampling
situations. All the experiments were conducted over 20 runs of different randompermutations
for each dataset. All the results were reported by averaging over these 20 runs. For perfor-
mance metrics, we select F-measure, which is defined as F-measure = 2 Precision∗Recall

Precision+Recall .

6.1.2 Evaluation on fixed ratio of queries

In the first experiment, we evaluate the performance of our proposed PAA algorithms on
the online binary classification task with fixed query rates. We adjust δ to make the per-
centage of queried instances near 10 and 20% and compare all the algorithms on a fair
platform. The results are shown in Tables 2 and 3. Several observations can be drawn from the
results.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.
2 http://www.ics.uci.edu/~mlearn/MLRepository.html.
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Table 2 Evaluation of the PAA algorithms against the other baselines (time in seconds)

Algorithm Request 10% labels Request 20% labels

F-measure Time Query (%) F-measure Time Query (%)

svmguide1

PEA 0.837 ± 0.006 0.149 9.77 ± 0.82 0.832 ± 0.003 0.151 20.13 ± 0.76

SELada 0.836 ± 0.005 0.154 9.83 ± 1.34 0.831 ± 0.005 0.153 19.83 ± 1.83

SEL2nd 0.838 ± 0.009 0.232 9.91 ± 2.62 0.834 ± 0.007 0.230 20.99 ± 5.98

RPE 0.800 ± 0.008 0.030 9.72 ± 0.31 0.796 ± 0.006 0.031 20.21 ± 0.47

RPA 0.793 ± 0.009 0.031 9.82 ± 0.29 0.796 ± 0.008 0.033 19.82 ± 0.51

RPA-I 0.859 ± 0.003 0.031 9.67 ± 0.39 0.860 ± 0.002 0.033 19.95 ± 0.39

RPA-II 0.858 ± 0.004 0.032 9.69 ± 0.35 0.858 ± 0.002 0.034 19.85 ± 0.56

PAA 0.830 ± 0.006 0.152 9.90 ± 0.62 0.827 ± 0.005 0.152 19.86 ± 0.91

PAA-I 0.864 ± 0.002 0.152 9.71 ± 0.29 0.864 ± 0.002 0.155 20.00 ± 0.49

(p < 0.0001) (p < 0.0001)

PAA-II 0.863 ± 0.001 0.152 9.73 ± 0.37 0.862 ± 0.002 0.155 19.93 ± 0.60

(p < 0.0001) (p = 0.0031)

mushrooms

PEA 0.991 ± 0.001 0.184 9.85 ± 0.46 0.994 ± 0.001 0.183 20.76 ± 0.93

SELada 0.990 ± 0.002 0.188 9.870 ± 0.63 0.992 ± 0.001 0.188 19.87 ± 0.82

SEL2nd 0.993 ± 0.001 1.423 10.36 ± 0.77 0.995 ± 0.001 1.384 19.82 ± 1.20

RPE 0.971 ± 0.006 0.040 9.82 ± 0.28 0.984 ± 0.003 0.041 20.95 ± 0.37

RPA 0.987 ± 0.002 0.041 10.21 ± 0.19 0.992 ± 0.002 0.042 20.26 ± 0.42

RPA-I 0.986 ± 0.003 0.041 10.15 ± 0.22 0.992 ± 0.001 0.042 20.29 ± 0.36

RPA-II 0.986 ± 0.002 0.041 9.86 ± 0.34 0.992 ± 0.002 0.042 20.52 ± 0.35

PAA 0.996 ± 0.000 0.183 10.09 ± 0.33 0.997 ± 0.000 0.185 20.24 ± 0.58

PAA-I 0.996 ± 0.001 0.183 10.14 ± 0.35 0.997 ± 0.000 0.186 20.33 ± 0.37

(p < 0.0001) (p < 0.0001)

PAA-II 0.996 ± 0.001 0.184 9.73 ± 0.44 0.997 ± 0.000 0.185 20.43 ± 0.51

(p < 0.0001) (p < 0.0001)

a8a

PEA 0.572 ± 0.008 0.763 10.29 ± 0.28 0.567 ± 0.007 0.777 19.81 ± 0.70

SELada 0.568 ± 0.006 0.785 10.36 ± 0.58 0.565 ± 0.007 0.791 19.83 ± 1.06

SEL2nd 0.569 ± 0.007 6.960 9.81 ± 0.67 0.574 ± 0.006 6.312 20.36 ± 1.25

RPE 0.510 ± 0.005 0.189 10.29 ± 0.15 0.514 ± 0.005 0.195 19.87 ± 0.21

RPA 0.512 ± 0.006 0.200 9.77 ± 0.11 0.516 ± 0.006 0.211 20.22 ± 0.23

RPA-I 0.606 ± 0.003 0.200 9.97 ± 0.16 0.608 ± 0.003 0.210 19.91 ± 0.20

RPA-II 0.603 ± 0.003 0.204 9.71 ± 0.13 0.606 ± 0.002 0.216 19.93 ± 0.18

PAA 0.571 ± 0.006 0.776 9.72 ± 0.41 0.566 ± 0.005 0.790 20.20 ± 0.47

PAA-I 0.621 ± 0.003 0.780 9.90 ± 0.83 0.626 ± 0.003 0.796 19.90 ± 0.39

(p < 0.0001) (p < 0.0001)

PAA-II 0.623 ± 0.004 0.783 9.73 ± 0.39 0.628 ± 0.004 0.798 19.90 ± 0.37

(p < 0.0001) (p < 0.0001)

Obviously, the two proposed soft margin algorithms, PAA-I and PAA-II are always the two winners (as
highlighted). To test the significance of our experiment, we compare the F-measures of PAA-I and PAA-II
with that of the best one among all the 7 compared algorithms and report the p value of the t test
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Table 3 Evaluation of the PAA algorithms against the other baselines (time in seconds)

Algorithm Request 10% labels Request 20% labels

F-measure Time Query (%) F-measure Time Query (%)

spambase

PEA 0.846 ± 0.006 0.099 10.06 ± 0.46 0.854 ± 0.005 0.100 20.51 ± 0.67

SELada 0.835 ± 0.012 0.102 10.45 ± 0.79 0.849 ± 0.004 0.102 20.22 ± 1.08

SEL2nd 0.843 ± 0.012 0.279 9.85 ± 0.57 0.859 ± 0.006 0.281 20.36 ± 0.77

RPE 0.800 ± 0.012 0.020 10.04 ± 0.44 0.819 ± 0.007 0.021 20.51 ± 0.89

RPA 0.827 ± 0.011 0.021 9.94 ± 0.47 0.838 ± 0.009 0.022 20.33 ± 0.60

RPA-I 0.858 ± 0.007 0.021 9.87 ± 0.50 0.875 ± 0.003 0.022 20.10 ± 0.63

RPA-II 0.860 ± 0.005 0.022 10.01 ± 0.47 0.875 ± 0.005 0.023 19.98 ± 0.64

PAA 0.865 ± 0.006 0.100 9.83 ± 0.56 0.867 ± 0.006 0.101 20.35 ± 0.84

PAA-I 0.881 ± 0.004 0.101 9.72 ± 0.41 0.888 ± 0.002 0.103 20.06 ± 0.44

(p < 0.0001) (p < 0.0001)

PAA-II 0.884 ± 0.003 0.101 9.91 ± 0.40 0.889 ± 0.003 0.104 19.71 ± 0.50

(p < 0.0001) (p < 0.0001)

splice

PEA 0.747 ± 0.014 0.068 9.813 ± 0.48 0.770 ± 0.007 0.068 19.73 ± 0.74

SELada 0.740 ± 0.012 0.070 9.95 ± 0.49 0.759 ± 0.007 0.071 20.01 ± 0.93

SEL2nd 0.752 ± 0.012 0.206 9.71 ± 0.49 0.773 ± 0.008 0.209 20.54 ± 1.06

RPE 0.718 ± 0.015 0.014 9.80 ± 0.59 0.746 ± 0.012 0.015 19.99 ± 0.55

RPA 0.741 ± 0.015 0.015 10.12 ± 0.42 0.763 ± 0.008 0.016 20.47 ± 0.72

RPA-I 0.768 ± 0.011 0.015 9.62 ± 0.57 0.793 ± 0.006 0.016 19.94 ± 0.85

RPA-II 0.771 ± 0.010 0.015 9.96 ± 0.47 0.795 ± 0.008 0.016 20.02 ± 0.49

PAA 0.780 ± 0.008 0.070 9.96 ± 0.39 0.790 ± 0.006 0.071 20.23 ± 0.67

PAA-I 0.794 ± 0.008 0.070 9.70 ± 0.44 0.813 ± 0.005 0.071 19.87 ± 0.69

(p < 0.0001) (p < 0.0001)

PAA-II 0.790 ± 0.008 0.070 9.72 ± 0.39 0.812 ± 0.005 0.072 20.17 ± 0.63

(p < 0.0001) (p < 0.0001)

w8a

PEA 0.263 ± 0.015 1.799 10.04 ± 0.32 0.342 ± 0.013 1.847 20.05 ± 0.26

SELada 0.236 ± 0.018 1.887 9.98 ± 0.57 0.304 ± 0.016 1.819 20.06 ± 0.39

SEL2nd 0.363 ± 0.019 42.26 9.72 ± 0.53 0.428 ± 0.016 42.45 20.48 ± 0.83

RPE 0.188 ± 0.007 0.705 10.01 ± 0.09 0.225 ± 0.007 0.590 20.07 ± 0.15

RPA 0.198 ± 0.013 0.730 9.78 ± 0.14 0.249 ± 0.010 0.636 20.03 ± 0.15

RPA-I 0.280 ± 0.009 0.728 9.83 ± 0.11 0.370 ± 0.008 0.628 19.88 ± 0.12

RPA-II 0.227 ± 0.011 0.736 10.06 ± 0.12 0.290 ± 0.011 0.661 19.93 ± 0.12

PAA 0.385 ± 0.015 1.873 9.78 ± 0.32 0.441 ± 0.021 1.907 20.03 ± 0.66

PAA-I 0.391 ± 0.015 1.961 9.81 ± 0.16 0.461 ± 0.009 1.943 19.92 ± 0.22

(p < 0.0001) (p < 0.0001)

PAA-II 0.386 ± 0.015 1.897 9.98 ± 0.26 0.458 ± 0.012 1.857 19.89 ± 0.37

(p < 0.0001) (p < 0.0001)

Obviously, the two proposed soft margin algorithms, PAA-I and PAA-II are always the two winners (as
highlighted). To test the significance of our experiment, we compare the F-measures of PAA-I and PAA-II
with that of the best one among all the 7 compared algorithms and report the p value of the t test
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First of all, we observe that all the active learning algorithms outperform their corre-
sponding random versions in terms of F-measure results, which validates the efficacy and
advantage of the active learning strategies.

Second, we find that the two soft-margin PAA algorithms (i.e., PAA-I and PAA-II) achieve
similar F-measure performance on most of the datasets, while the hard-margin PAA usually
performs slightly worse. This may possibly be caused by overfitting on noisy training data,
since PAA conducts a more aggressive update and is thus more sensitive to noise.

Third, under the same fraction of queried labels, the two soft PAA algorithms always
achieve significantly higher F-measure than all compared algorithms. This promising result
indicates that PAA can effectively exploit those requested labeled data, especially for those
that are correctly classified but with low confidence. And this observation again supports
our main motivation that the PAA algorithms are designed to address the key limitation of
PEA who wastes the efforts of querying labels but may never uses them for effective update.
Furthermore, the running time cost of PAA and PEA algorithms are similar, as well as in the
same order of magnitude with randomized query algorithms, which validates the efficiency
of the proposed methods.

Finally, wewould like to discuss the performance of the SEL-ada and SEL-2nd algorithms,
which were proposed as improved variants of the PEA algorithm. Surprisingly, SEL-ada
performs slightly worse than PEA in all the datasets. This observation consists with earlier
results while no explanation was provided by Cesa-Bianchi et al. (2006). We think that
the inferior performance of SEL-ada may be caused by the ineffective setting the smoothing
parameter δ. When aiming at maximizing the accumulated accuracy along the whole learning
process, querying labels earlier is more likely to result in better performance. However, the
increasing δ with time t is actually encouraging later query.

When analyzing the performance of SEL-2nd, we find that this algorithm usually outper-
forms PEA in terms of F-measure, which can be explained by the utilization of second order
information. However, it still suffers from the same drawback with PEA, i.e. wasting the
queried labels when the prediction is correct but with low confidence. Thus the F-measure
is still significantly lower than PAA-I and PAA-II. Besides, the O(d2) time and space com-
plexity of SEL-2nd limits its application in high dimensional applications, which is indicated
by its time cost on the “w8a” dataset with 300 feature dimension.

6.1.3 Evaluation on varied ratio of queries

This experiment is to evaluate the performance of the proposed algorithms by varying the
query rate of different online learning algorithms, shown in Fig. 1. From the experimental
results, several observations can be drawn.

Similar to the previous experiments under fixed query rate, we find that the two soft
margin PAA algorithms always achieve higher F-measure than all the other active learning
algorithms, which validates the successful update strategy of our proposed algorithm. And
all the active learning algorithms outperform their corresponding random versions, which
demonstrates the advantage of the active querying rule.

In addition, we observe that the F-measure usually increases as the fraction of queried
labels increases at the beginning, but saturates quickly after the fraction of queried labels
exceeds some value. This result indicates the proposed online active learning strategy can
effectively explore those most informative instances for updating the classifiers in a rather
effective and efficient way.

Finally, it is interesting to see that on some datasets (e.g., a8a, magic04, svmguide1,
etc.), the F-measures achieved by PAA,PEA, SEL-ada and SEL-2nd could decrease when
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Fig. 1 Evaluation of F-measure against the fraction of queried labels on all binary datasets. The plotted curves
are averaged over 20 random permutations
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increasing the fraction of queried labels. This seems a little bit surprising as we usually
expect the more the labeled data queried, the better the predictive performance. Note that this
phenomenon only appears in the hardmargin algorithms (PAA, PEA, SEL-ada and SEL-2nd),
which are not designed for noisy data. While the other two soft-margin algorithms (PAA-I
and PAA-II), which are robust to noisy, tend to be able to avoid such situations. Consequently,
we suspect this was mainly caused due to the overfit issue on the noisy training data.

6.1.4 Application to online text classification

In this section, we apply our proposed Passive-Aggressive Active learning algorithms to
online text classification. Our experimental testbed consists of: (i) a subset of the Reuters
Corpus Volume 1 (RCV1)3 which contains 4086 documents with 29,992 distinct words; (ii)
20 Newsgroups datasets,4 we extract the “comp” versus “rec” and “rec” versus “sci” to form
two binary classification tasks, which have a total of 8870 and 8928 documents, respectively.
Each document is represented by a feature vector of 26,214 distinct words.

As discussed earlier, the SEL-ada algorithm mostly performs worse that PEA because
of the ineffective setting of the δ value. In addition, the SEL-2nd is not applicable to high
dimensional applications due to its O(d2) space and time complexity while its performance
is always worse than PAA-I and PAA-II. We remove the two compared algorithms for the
conciseness of our later experiments.

The text classification results are shown in Fig. 2. We could see that Passive-Aggressive
based algorithms usually outperform the Perceptron based algorithms, which empirically
shows the advantages of large margin approaches for active learning. Among all methods,
PAA algorithms consistently perform better than random querying methods and percep-
tron based active learning methods, which further validates the efficacy of our proposed
approaches.

6.1.5 Application to web data classification

To further evaluate the PAA algorithms, we apply them to web data classification tasks,
which are (i) URL classification (Ma et al. 2009b) which contains 1,782,206 URLs with
3,231,961 features; (ii) webspam classification (Wang et al. 2012), which have a total of
350,000 instance with 254 features, respectively. These two datasets can be downloaded
from the LIBSVM website.5 Similar phenomenon could be observed from the results, as
shown in Fig. 3.

6.2 Evaluation of the MPAA algorithm in multi-class classification tasks

This section will evaluate the empirical performance of the proposed MPAA algorithms on
online multi-class classification tasks.

6.2.1 Compared algorithms and experimental testbed

We compare the proposedMPAA algorithms with theMulti-class Perceptron Active learning
algorithm, which adopts the same querying strategy as MPAA algorithms do but updates in

3 http://thedatahub.org/dataset/rcv1.
4 http://qwone.com/~jason/20Newsgroups/.
5 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools.
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Fig. 2 Evaluation of F-measure
against the fraction of queried
labels for text classification
applications
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Fig. 3 Evaluation of F-measure against the fraction of queried labels for web applications

Table 4 Details of multi-class
classification datasets

Dataset #Instances #Features #Classes

dna 2000 180 3

satimage 4435 36 6

usps 7291 256 10

mnist 10,000 780 10

letter 15,000 16 26

shuttle 43,500 9 7

acoustic 78,823 50 3

covtype 581,012 54 7

poker 1,000,000 10 10

the Perceptron rule. To demonstrate the advantage of our querying strategy, we also compare
the active learning algorithms with their random variants. Note that for all Perceptron based
algorithms, we choose the max-score variant since it is similar to the PA based algorithms
in only updating two weight vectors during each iteration, which is a fair comparison. The
compared algorithms are listed as follows:

– “MRPE”: the Multi-class Random Perceptron algorithm, an extension of RPE (Cesa-
Bianchi and Lugosi 2006) to multi-class setting;

– “MRPA”: the Multi-class Random Passive-Aggressive algorithms, including MRPA,
MRPA-I, MRPA-II, which will uniformly randomly query labels;

– “MPEA”: the Multi-class Perceptron-based Active learning algorithm, an extension of
PEA (Cesa-Bianchi et al. 2006) in multi-class setting;

– “MPAA”: the Multi-class Passive-Aggressive Active learning algorithms, including
MPAA, MPAA-I, MPAA-II.

To examine the performance, we conduct extensive experiments on a variety of benchmark
datasets from web machine learning repositories. Table 4 shows the details of 9 multi-class
datasets used in our experiments. All of these datasets can be downloaded from LIBSVM
website.6 These datasets are chosen fairly randomly in order to cover various sizes of datasets.

6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.
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Fig. 4 Evaluation of accuracy against the fraction of queried labels on all multi-class datasets. The plotted
curves are averaged over 20 random permutations

The parameter settings mostly follow those in the previous binary classification experi-
ments excepts that we select online accuracy for performance metrics.

6.2.2 Performance evaluation

Next we evaluate the performance of all the algorithms on online multi-class active learning
tasks. Figure 4 summarizes the average performance of the eight different algorithms for
online active learning on the 9 datasets. Similar phenomenon could be observed from the
results in Fig. 4 as that in binary setting, which further demonstrates that our proposed
algorithms are effective in dealing with online multi-class active learning tasks.

6.2.3 Application to online text classification

In this section, we apply our proposed Multi-class Passive-Aggressive Active learning algo-
rithms to online text classification. Our experimental testbed consists of: (i) 20 Newsgroups
datasets,7 we use the 20-class dataset, which have a total of 15,935 documents. Each docu-
ment is represented by a feature vector of 62,061 distinct words. (ii) Reuters Corpus Volume

7 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20.
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Fig. 5 Evaluation of accuracy against the fraction of queried labels for multi-class online text classification
applications

1 (RCV1)8 which is a 53-class datasets and contains 15,564 documents with 47,236 dis-
tinct words; The text classification results are shown in Fig. 5. Similar phenomenon could
be observed from the results: Passive-Aggressive based algorithms usually outperform the
Perceptron based algorithms and PAA algorithms consistently perform better than random
querying methods and perceptron based active learning methods, which further validates the
efficacy of our proposed approaches.

6.3 Evaluation of CSPAA algorithms for cost-sensitive classification tasks

This section will evaluate the empirical performance of the proposed CSPAA algorithm.
Specifically, we will evaluate all the algorithms on online malicious URL detection (Ma
et al. 2009a), which is a large-scale online learning task. Our experiments are designed to
answer several open questions: (i) how does the class imbalance issue affect the predictive
performance of online active learning? (ii) if the proposed online active learning approach is
effective to reducing the amount of labeled data significantly in order to maintain comparable
performance? (iii) how is the efficiency and scalability of the proposed learning algorithms
for a web-scale application?

6.3.1 Experimental testbed

To examine the performance of the proposed CSPAA algorithms, we test them on a large-
scale benchmark dataset for malicious URL detection tasks (Ma et al. 2009b), which can be
downloaded from http://sysnet.ucsd.edu/projects/url/. The original data set was created in
purpose to make it somehow class-balanced. In our experiment, we create two subsets by
sampling from the original data set to make it close to a more realistic distribution scenario
where the number of normal URLs is significantly larger than the number of malicious
URLs. Table 5 shows the data sets used in our experiment for online malicious detection,
where Tp/Tn denotes the ratio between the number of positive (malicious) instances and the
number of negative (normal) instances. A variety of features were extracted to represent the
content of a URL, including both lexical features (such as hostnames, primary domain, path

8 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#rcv1.multiclass.
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Table 5 The data set of
malicious URL detection

Dataset #Training examples #Features Tp/Tn

URL1 1,000,000 3,231,961 1:9

URL2 1,000,000 3,231,961 1:99

tokens, etc) and host-based features (such asWHOIS info, IP prefix, AS number, Geographic,
etc.). More details can be found in (Ma et al. 2009b).

6.3.2 Compared algorithms and setup

We compare the proposed CSPAA algorithms against a variety of state-of-the-art algorithms
as follows:

– “PE”: the classical PErceptron algorithm (Rosenblatt 1958), which queries label of every
instance; this is impractical as it requires huge amount of labeled data, which is used as
a yardstick to evaluate the efficacy of our algorithm;

– “PA”: the regular Passive-Aggressive algorithm (Crammer et al. 2006),which also queries
class label of every instance; similarly, this is another yardstick for comparison;

– “CW-diag”: the ConfidenceWeighted (CW) algorithm (Crammer et al. 2008), which also
queries label of every instance, and exploits the second-order info.We adopt the CW-diag
version to make it feasible for high-dimensional data.

– “PAUM”: this is the cost-sensitive Perceptron Algorithm with Uneven Margin (Li et al.
2002), which also queries label of every instance;

– “CPA”: the Cost-sensitive Passive-Aggressive algorithm based on prediction (Crammer
et al. 2006) which also queries all labels;

– “LEPE”: the Label Efficient Perceptron algorithm (Cesa-Bianchi et al. 2006), which
actively queries label for informative instances;

– “CSRND”: a variant of the proposed CSPAA algorithm, but randomly queries label of
incoming instances;

– “CSPAA”: the proposed Cost-Sensitive Passive-Aggressive Active learning algorithm as
shown in Algorithm 4.

To make a fair comparison, all the algorithms adopt the same setup. All the compared
algorithms learn a linear classifier for the malicious URL detection task. In particular, for all
the compared algorithms, we set the penalty parameter C = ρ = Tn/Tp . For the proposed
CSPAAsum algorithm, we set ηp = ηn = 1/2 for all cases, while for the CSPAAcos , we set
cp = Tn/T and cn = Tp/T . The smoothing parameter δ for LEPE and CSPAA is set as
2[−10:2:10] in order to examine varied query ratios.

All the experiments were conducted over 5 random permutations of the dataset. The
results were reported by averaging over these 5 runs. We evaluate the online classification
performance by two key metrics: the weighted sum of sensitivity and specificity, and the
weighted cost. We denote by CSPAAsum the algorithm aiming to improve the weighted sum
of sensitivity and specificity, and CSPAAcos the algorithm aiming to improve the overall cost.
All experiments were run on a machine of 2.3GHz CPU.

6.3.3 Evaluation on fixed ratio of queries

The first experiment is to evaluate the performance by fixing the ratio of queries issued by the
(active learning) algorithms. Table 6 shows the results of the sum performance under a fixed
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Table 6 “Sum” evaluation of cost-sensitive online classification for malicious URL detection

Algorithm Sum (%) Sensi (%) Speci (%) Accur (%) Time (s) Query (%)

URL1a

PE 94.582 90.247 98.917 98.050 8.218 100.000

(±0.023) (±0.041) (±0.005) (±0.008)

PA 95.119 91.094 99.144 98.339 11.321 100.000

(±0.025) (±0.045) (±0.006) (±0.009)

CW-diag 96.255 93.099 99.411 98.779 15.398 100.000

(±0.034) (±0.064) (±0.004) (±0.010)

PAUM 96.734 95.533 97.935 97.695 11.782 100.000

(±0.011) (±0.029) (±0.014) (±0.011)

CPA 96.567 94.905 98.229 97.896 18.187 100.000

(±0.027) (±0.052) (±0.004) (±0.007)

LEPE 93.642 88.334 98.949 97.887 8.398 10.087

(±0.040) (±0.083) (±0.008) (±0.008) (±0.055)

CSRND 95.676 95.214 96.138 96.045 9.005 10.035

(±0.052) (±0.068) (±0.081) (±0.073) (±0.120)

CSPAA 96.712 96.382 97.042 96.976 8.772 10.059

(±0.015) (±0.029) (±0.029) (±0.025) (±0.066)

CSPAA(a) 96.891 96.546 97.236 97.167 8.831 10.077

(±0.017) (±0.029) (±0.030) (±0.027) (±0.073)

URL2b

PE 87.012 74.284 99.741 99.486 18.903 100.000

(±0.100) (±0.199) (±0.002) (±0.004)

PA 87.203 74.544 99.862 99.609 27.458 100.000

(±0.059) (±0.115) (±0.003) (±0.004)

CW-diag 88.550 77.160 99.940 99.712 48.616 100.000

(±0.067) (±0.133) (±0.001) (±0.002)

PAUM 89.049 78.770 99.329 99.123 28.527 100.000

(±0.083) (±0.166) (±0.002) (±0.003)

CPA 92.748 86.410 99.087 98.960 41.248 100.000

(±0.078) (±0.154) (±0.005) (±0.006)

LEPE 79.162 58.492 99.833 99.419 19.414 2.019

(±0.476) (±0.957) (±0.011) (±0.010) (±0.057)

CSRND 87.776 79.018 96.534 96.358 20.984 2.018

(±0.410) (±0.711) (±0.286) (±0.284) (±0.025)

CSPAA 92.697 88.156 97.237 97.146 20.304 2.029

(±0.245) (±0.513) (±0.045) (±0.042) (±0.018)

We compare the Sum of our proposed algorithms with the best one among all compared algorithms with the
same query rate and report the p value of the t test
a CSPAA versus CSRND p < 0.0001; CSPAA(a) versus CSRND p < 0.0001
b CSPAA versus CSRND p < 0.0001
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Table 7 “Cost” evaluation of cost-sensitive online classification for malicious URL detection

Algorithm Cost Sensi (%) Speci (%) Accur (%) Time (s) Query (%)

URL1a

PE 9752.120 90.247 98.917 98.050 8.111 100.000

(±40.872) (±0.041) (±0.005) (±0.008)

PA 8785.540 91.094 99.144 98.339 11.376 100.000

(±45.050) ( ±0.045) (±0.006) (±0.009)

CW-diag 6741.420 93.099 99.411 98.779 15.578 100.000

(±60.673) (±0.064) (±0.004) (±0.010)

PAUM 5878.340 95.533 97.935 97.695 11.645 100.000

(±20.251) (±0.029) (±0.014) (±0.011)

CPA 6179.400 94.905 98.229 97.896 18.229 100.000

(±48.521) (±0.052) (±0.004) (±0.007)

LEPE 11,471.580 88.322 98.932 97.871 8.441 10.051

(±124.696) (±0.141) (±0.008) (±0.013) (±0.139)

CSRND 7838.800 95.107 96.183 96.076 8.904 10.029

(±55.313) (± 0.096) (±0.079) (±0.064) (±0.049)

CSPAA 5889.140 96.403 97.053 96.988 8.780 10.010

(±43.974) (±0.053) (±0.014) (±0.012) (±0.042)

CSPAA(a) 5604.460 96.546 97.227 97.159 8.759 10.052

(±50.018) (±0.059) (±0.018) (±0.015) (±0.057)

URL2b

PE 2571.568 74.284 99.741 99.486 19.994 100.000

(±19.862) (±0.199) (±0.002) (±0.004)

PA 2533.800 74.544 99.862 99.609 28.800 100.000

(±11.678) (±0.115) (±0.003) (±0.004)

CW-diag 2267.124 77.160 99.940 99.712 47.747 100.000

(±13.216) (±0.133) (±0.001) (±0.002)

PAUM 2057.452 79.840 99.378 99.182 28.939 100.000

(±20.843) (±0.208) (±0.005 ) (±0.006)

CPA 1435.806 86.410 99.087 98.960 42.687 100.000

(±15.494) (±0.154) (±0.005) (±0.006)

LEPE 4214.998 57.592 99.832 99.410 21.655 1.984

(±125.053) (±1.275) (±0.013) (±0.007) (±0.045)

CSRND 2314.544 80.030 96.591 96.425 20.371 2.027

(±126.476) (±1.265) (±0.130) (±0.130) (±0.043)

CSPAA 1482.338 87.742 97.285 97.189 22.237 2.027

(±31.270) (±0.324) (±0.029) (±0.027) (±0.030)

We compare the Cost of our proposed algorithms with the best one among all compared algorithms with the
same query rate and report the p value of the t test
a CSPAA versus CSRND p < 0.0001; CSPAA(a) versus CSRND p < 0.0001
b CSPAA versus CSRND p < 0.0001
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ratio of queries to about 2% for URL1 and 10% for URL2 dataset, and Table 7 summarizes
the cost performance under the similar query ratio.

Several observations can be drawn from the results. First of all, according to the classi-
fication accuracy (a misleading metric for cost-sensitive classification), we found that both
PE and PA algorithms significantly outperform the other algorithms, while, in terms of both
sum and cost measures, they are considerably worse than their cost-sensitive variants (i.e.,
PAUM and CPA). This indicates the importance of taking the class imbalance issue into
consideration for online malicious detection tasks. Second, when querying the same ratio of
labeled data, in terms of both sum and cost performances, CSPAA significantly outperforms
the LEPE algorithm, which validates the effectiveness of the proposed cost-sensitive online
updating strategy. Third, when querying the same ratio of labels, CSPAA significantly outper-
forms CSRND, which implies the proposed querying strategy is able to actively select those
fairly informative instances for querying labels, which are considerably better than just ran-
domly querying. Moreover, among all the approaches, the proposed CSPAA algorithm and
the PAUM algorithm achieve the highest sum performance. However, the proposed CSPAA
only queried a extremely small subset of labels, while the PAUM algorithm requires to query
the labels of all the incoming instances, which is very expensive to label 1-million training
instances in a real-world application.We thus believe the proposed CSPAA algorithm is more
practically attractive and suitable for a web-scale application.

Finally,we notice that the proposedCSPAAalgorithmnot only achieves the best sensitivity
performance, but also achieves fairly good specificity performance which is generally quite
comparable to the other algorithms. This implies that the proposedCSPAAalgorithmnot only
significantly improves the prediction accuracy on the rare class, but also does not sacrifice
much the prediction accuracy on the other majority classes. This promising observation again
validates the effectiveness of the proposed CSPAA algorithm.

6.3.4 Evaluation on varied query ratios

This experiment is to evaluate the performance of the proposed algorithms by varying the
ratios of queries for comparing different online active learning algorithms. Figure 6 shows
the online average sum performance and the online average cost performance under varied
query ratios, respectively. From the experimental results, several observations can be drawn
as follows.

First of all, among all four fully supervised online learning algorithms (PE, PA, PAUM,
and CPA), the cost-sensitive algorithms (PAUM and CPA) generally outperform the cost-
insensitive versions. This result validates the importance of studying the proposed cost-
sensitive online learning methodology class imbalanced tasks.

Second, compared with the CSRND algorithm that randomly queries the labels, CSPAA
consistently achieves much higher sum and much lower cost performance over all the ratios
of queried labels, especially when the query ratio is relatively small. This promising result
indicates that the querying strategy of the proposed CSPAA technique is able to effectively
query the informative labeled data from the sequentially arriving of unlabeled data instances.

Third, compared with LEPE, CSPAA achieves higher sum over all the ratios of queried
labels, which implies that the proposed online updating strategy is able to effectively exploits
the labeled data for improving the classifier. In addition, compared with PA, CSPAA with
query ratio equals to 1 (equivalent to querying label of every instance) achieves a significantly
higher sum performance, which shows the biased penalty function does effectively optimize
the objective metric of the weighted sum of sensitivity and specificity.
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Finally, we notice that when the query ratio increases, we generally observe an improve-
ment of the cost-sensitive classification performance by the proposed CSPAA algorithm.
However, While the query ratio reaches about 1%, the improvement tends to become sat-
urated, which is very close to the same algorithm that queries the label of every unlabeled
data. This interesting observation indicates that the proposed learning strategy is able to attain
potentially the best possible predictive performance using a small amount of label data (only
1% or even less) over the entire training data set, which can thus save a significant amount
of labeling cost in a practical real-world application.

6.3.5 Evaluation on adaptive sampling factor

In the above experiments, the sampling factor δ was simply fixed to a constant. This exper-
iment aims to examine if it is possible to further improve the proposed CSPAA approach
using the adaptive sampling factor, denoted as “CSPAA(a)” for short (as discussed in the
“remark” before Sect. 5.3). In this experiment, the initial value of δ is set to an extremely
large value, i.e., δ0 = 214, and is updated adaptively using the proposed strategy in Sect. 5.3.
To enable a fair comparison, we set appropriate parameters of the other algorithms (LEPE,
CSRNDandCSPAA) tomake them sample the similar ratio of labeled data. Table 8 shows the
experimental results for URL2 dataset, where “CSPAA” adopts the constant sampling factor.
In addition, we also show the results on URL1 dataset of varied ratio of queries in Fig. 6.

10
−2

10
−1

10
0

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Fraction of queried labels

S
um

 

 

PE
PA
CW−diag
PAUM
CPA
LEPE
PARND
CSPAA
CSPAA(a)

10
−2

10
−1

10
0

0.5

1

1.5

2
x 10

4

Fraction of queried labels

C
os

t

 

 

PE
PA
CW−diag
PAUM
CPA
LEPE
PARND
CSPAA
CSPAA(a)

10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ratio of Queried Labels

su
m

 

 

PE

PA

CW−diag

PAUM

CPA

LEPE

CSRND

CSPAA

10
−2

10
−1

10
0

1000

2000

3000

4000

5000

6000

7000

Ratio of Queried Labels

co
st

 

 

PE
PA
CW−diag
PAUM
CPA
LEPE
CSRND
CSPAA

(b)(a)

(d)(c)

online cumulative average sum for URL1

online cumulative average sum for URL2

online cumulative average cost for URL1

online cumulative average cost for URL2

Fig. 6 Evaluation of the performance with respect to varied query ratios
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Table 8 Evaluation of malicious URL detection performance on “URL2”

Algorithm Measuresa

Sum (%) Sensi (%) Speci (%) Accur (%) Time (s) Query (%)

CPA 92.748 86.410 99.087 98.960 37.087 100.000

(±0.078) (±0.154) (±0.005) (±0.006)

LEPE 69.556 39.274 99.838 99.232 16.777 0.515

(±1.353) (±2.712) (±0.015) (±0.025) (±0.017)

CSRND 80.724 66.578 94.871 94.588 17.039 0.526

(±1.852) (±3.855) (±0.206) (±0.177) (±0.011)

CSPAA 88.756 83.628 93.883 93.781 17.260 0.513

(±0.746) (±1.701) (±0.373) (±0.359) (± 0.020)

CSPAA(a) 92.401 89.054 95.748 95.681 18.211 0.510

(±0.703) (±1.810) (± 0.406) (±0.384) (±0.014)

Algorithm Measuresb

Cost Sensi (%) Speci (%) Accur (%) Time (s) Query (%)

CPA 1435.806 86.410 99.087 98.960 36.640 100.000

(±15.494) (±0.154) (±0.005) (±0.006)

LEPE 6170.384 37.818 99.855 99.235 17.137 0.525

(±152.639) (±1.549) (±0.009) (±0.009) (±0.023)

CSRND 3618.938 68.634 94.811 94.549 16.843 0.522

(±466.228) (±5.240) (±0.598) (±0.546) (±0.017)

CSPAA 2265.136 82.916 94.204 94.091 17.603 0.525

(±299.126) (±3.226) (±0.275) (±0.249) (±0.017)

CSPAA(a) 1484.396 89.498 95.508 95.448 17.917 0.525

(±117.269) (±0.831) (±0.490) (±0.490) (±0.015)

We compare the Cost and Sum of our proposed algorithms with the best one among all compared algorithms
with the same query rate and report the p value of the t test
a CSPAA versus CSRND p < 0.0001; CSPAA(a) versus CSRND p < 0.0001
b CSPAA versus CSRND p = 0.0006; CSPAA(a) versus CSRND p < 0.0001

Some observations can be drawn from the results. First, the CSPAA(a) algorithm using
the adaptive sampling factor significantly outperforms both CSRND using the random query
strategy and CSPAA using a constant sampling factor under the same query ratio. Second,
we found that by querying only 0.5% out of the entire 1-million instances, the proposed
CSPAA(a) algorithm is able to achieve the best performance, which is almost the same
(statistically no difference according to student t test) to the state-of-the-art cost-sensitive
algorithmCPAwhich has to query labels for all the 1-million instances. This promising result
shows that the proposed CSPAA technique is able to save a significant amount of labeling
cost while maintaining the state-of-the-art performance.

6.3.6 Evaluation on efficiency and scalability

Finally, we examine the time efficiency of the proposed algorithms. The “time” columns of
Tables 6, 7 and 8 show the average time costs of the proposed CSPAA algorithms on the
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Fig. 7 Evaluation of online
cumulative time cost on the
“URL2” dataset
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fixed query ratios. In addition to these tables, we also evaluate the scalability of the proposed
algorithms, as shown in Fig. 7, which measures the online cumulative time cost of different
algorithms over the number of received instances in the online malicious URL detection
process.

From the results, we can see that all the proposed online learning algorithms are fairly
efficient and scalable, which typically took about 20–30s to run on the data set with 1-
million instances on a single regular machine. Moreover, by examining the efficiency and
scalability of the proposed CSPAA algorithms, we found that CSPAA is among the most
efficient and scalable algorithms, which is at least as efficient as the other algorithms and
even slightly better than some of the other algorithms. These encouraging results again
validate the practical value of the proposed CSPAA algorithm for web-scale real-world
applications.

7 Conclusions

This paper investigated online active learning techniques for resolving the open challenges of
learning sequentially arriving data in varied settings. The proposed novel online active learn-
ing technique not only overcomes the drawback of conventional supervised passive online
learning algorithms that have to query (or wait) class labels of every incoming instances,
but also improves the limitation of the existing perceptron-based active learning algorithm
that often wastes a lot of queried/received labeled instances that are barely classified cor-
rectly but with low prediction confidence. Specifically, we have proposed a family of passive
aggressive active (PAA) learning algorithms to tackle three different kinds of online pre-
dictive tasks, including online binary classification, online multi-class classification, and
cost-sensitive online classification tasks. We theoretically analyzed the mistake bounds for
the proposed PAA algorithms in the three different settings, in which the bounds generally
enjoy the similar bounds as those regular fully supervised Passive-Aggressive online learn-
ing algorithms when requesting class labels of every incoming instance. We conducted an
extensive set of empirical studies, in which our encouraging results showed that the pro-
posed PAA algorithms significantly outperform the baseline approaches. For future work,
we plan to address more other challenges of online learning tasks, such as concept drifting
issues (Minku and Yao 2012).
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Appendix 1: Proof Lemma 1

Proof First of all, we need to prove the following inequality holds for every t

(Lt Zt2τt (α − |pt |) + Mt Zt2τt (α + |pt |)
≤ (‖wt − αw‖2 − ‖wt+1 − αw‖2) + τ 2t ‖xt‖2 + 2ατt�t (w).

To prove that, we enumerate all the possible cases for discussions as follows:
Case 1: “Zt = 0” It is clear that the inequality holds with equality since wt = wt+1 and

τt = 0.
Case 2: “Zt = 1 and Mt = 0” The label is requested, but no mistake occurs. Sub-case

2.1: “Lt = 0” Since �t (wt ) = 0, τt = 0 and wt+1 = wt . Thus, the inequality holds.
Sub-case 2.2: “Lt = 1” Since �t (wt ) > 0, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 = −2τt ytwt · xt + 2τtαytw · xt − τ 2t ‖xt‖2.
Since �t (w) = max(0, 1 − ytw · xt ) ≥ 1 − ytw · xt , we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 + τ 2t ‖xt‖2 + 2ατt�t (w) ≥ 2τt (α − ytwt · xt ).
Also Mt = 0 and �t (wt ) > 0 implies 0 ≤ ytwt · xt < 1. Thus, we have the inequality

||wt − αw‖2 − ‖wt+1 − αw‖2 + τ 2t ‖xt‖2 + 2ατt�t (w) ≥ 2τt (α − |pt |).
Case 3: “Zt = 1 and Mt = 1” It means the label is requested and a mistake occurs, but
Lt = 0. Similarly, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 + τ 2t ‖xt‖2 + 2ατt�t (w) ≥ 2τt (α − ytwt · xt ).
Since Mt = 1 implies ytwt · xt ≤ 0 and −ytwt · xt = |pt |, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 + τ 2t ‖xt‖2 + 2ατt�t (w) ≥ 2τt (α + |pt |).
Combining the above cases for all t = 1, . . . , T , we have

T∑

t=1

(Lt Zt2τt (α − |pt |) + Mt Zt2τt (α + |pt |)

≤
T∑

t=1

(‖wt − αw‖2 − ‖wt+1 − αw‖2) + τ 2t ‖xt‖2 + 2ατt�t (w)

≤ α2‖w‖2 +
T∑

t=1

τ 2t ‖xt‖2 +
T∑

t=1

2ατt�t (w) .


�

Appendix 2: Lemma 2

Similarly to the binary section, before presenting the mistake bounds for multi-class clas-
sification, we begin by presenting a technical lemma which would facilitate the proof of
Theorem 5.
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Lemma 2 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R
d and

yt ∈ Y = {1, . . . , k} for all t . Let τt be the stepsize parameter for either of the three MPAA
variants as given in Eq. (4). For any α > 0, the following bound holds for any classifier w
made up of k vectors wr ∈ R

d , r ∈ Y .

T∑

t=1

Zt2τt
[
Lt (α − pt ) + Mt (α + pt )

]

≤ α2
k∑

r=1

‖wr‖2 +
T∑

t=1

2τ 2t ‖xt‖2 +
T∑

t=1

2ατt�t (w),

where Mt = I(t∈M), Lt = I(t∈L), I is an indicator function.

Proof First of all, we need to prove the following inequality holds for every t

(Lt Zt2τt (α − pt ) + Mt Zt2τt (α + pt )

≤
k∑

r=1

(‖wr
t − αwr‖2 − ‖wr

t+1 − αwr‖2) + 2τ 2t ‖xt‖2 + 2ατt�t (w). (12)

To prove that, we should enumerate all the possible cases for discussions. For conciseness,
we only prove the two cases: Mt = 1 and Lt = 1 and omit the others since they are similar
to that in Lemma 1.

First, when Lt = 1, Since �t (wt ) > 0, we have

k∑

r=1

(‖wr
t − αwr‖2 − ‖wr

t+1 − αwr‖2)

=‖wyt
t − αwyt ‖2 − ‖wyt

t − αwyt + τtxt‖2
+ ‖wst

t − αwst ‖2 − ‖wst
t − αwst − τtxt‖2

= − 2τ 2t ||xt ||2 + 2τt (xt · wst
t − xt · wyt

t ) + 2ατt (xt · wyt − xt · wst ).

(13)

Note that st is the highest ranked irrelevant label with regard to the classifier wt , not w.
In a correct prediction, xt · wst

t − xt · wyt
t = −pt and xt · wyt − xt · wst ≥ γt,w, where γt,w

is used to denote the margin of instance xt with regard to the classifier w (since we used γt
to denote the margin of xt with regards to wt ).

According to the definition of hinge loss, we have �t (w) ≥ 1 − γt,w and thus γt,w ≥
1 − �t (w). Combining the above facts with (13) yields to

k∑

r=1

(‖wr
t − αwr‖2 − ‖wr

t+1 − αwr‖2) ≥ −2τ 2t ||xt ||2 − 2τt pt + 2ατt (1 − �t (w))

= −2τ 2t ||xt ||2 + 2τt (α − pt ) − 2ατt�(w).

We write the above formula as:

2τt (α − pt ) ≤
k∑

r=1

(‖wr
t − αwr‖2 − ‖wr

t+1 − αwr‖2) + 2τ 2t ||xt ||2 + 2ατt�t (w).

Second, when Mt = 1, i.e. incorrect prediction, st = ŷt and thus

xt · wst
t − xt · wyt

t ≥ pt .
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Combining this fact and (13), we get

2τt (α + pt ) ≤
k∑

r=1

(‖wr
t − αwr‖2 − ‖wr

t+1 − αwr‖2) + 2τ 2t ||xt ||2 + 2ατt�t (w).

Considering all cases, we can finally prove (12) is correct. This proof is finished by summing
(12) over all iterations t = 1, . . . , T . 
�

Appendix 3: Proof of Theorem 5

Proof Since �t (w) = 0, ∀t ∈ [T ], according to Lemma 2, we have

α2
k∑

r=1

‖wr‖2 ≥
T∑

t=1

Zt2τt
[
Lt (α − pt ) + Mt (α + pt )

] −
T∑

t=1

2τ 2t ‖xt‖2

=
T∑

t=1

Zt2τt
[
Lt (α − pt − τt‖xt‖2) + Mt (α + pt − τt‖xt‖2)

]

=
T∑

t=1

Zt2τt
[
Lt (α − pt − �t (wt )

2
) + Mt (α + pt − �t (wt )

2
)
]

=
T∑

t=1

Lt Zt2τt

(

α − 1 + pt
2

)

+
T∑

t=1

Mt Zt2τt

(

α − 1 − pt
2

)

.

Plugging α = δ+1
2 , δ ≥ 1 into the above inequality results in

(
1 + δ

2

)2 k∑

r=1

‖wr‖2 ≥
T∑

t=1

Mt Ztτt (δ + pt ),

In addition, combining the fact τt = �t (wt )/2‖xt‖2 ≥ �t (wt )/2R2 with the above inequality
concludes:

(
1 + δ

2

)2 k∑

r=1

‖wr‖2 ≥ 1

2R2

T∑

t=1

Mt Zt�t (wt )(δ + pt ).

Taking expectation with the above inequality results in

E

[
1

2R2

T∑

t=1

Mt�t (wt )Zt (δ + pt )

]

= 1

2R2E

[

δ

T∑

t=1

Mt�t (wt )

]

≤
(
1 + δ

2

)2 k∑

r=1

‖wr‖2.


�
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Appendix 4: Proof of Proposition 1

Proof First of all, by analyzing the weighted sum in (6), we can derive:

sum = ηp
Tp − Mp

Tp
+ ηn

Tn − Mn

Tn

= 1 − ηn

Tn

[ηpTn
ηnTp

∑

yt=+1

I(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0)

]
.

Thus, maximizing sum is equivalent to minimizing

ηpTn
ηnTp

∑

yt=+1

I(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0).

Second, by analyzing the weighted cost in (7), we can also derive:

cost = cpMp + cnMn = cn
[cp
cn

∑

yt=+1

I(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0)

]
.

Thus, minimizing cost is equivalent to minimizing

cp
cn

∑

yt=+1

I(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0).

Thus, the proposition holds by setting ρ = ηpTn
ηnTp

for sum, and ρ = cp
cn

for cost. 
�

Appendix 5: Proof of Theorem 6

Proof As proven in Theorem 2,

α2‖w‖2 +
T∑

t=1

2ατt�t (w)

≥
T∑

t=1

Lt Zt2τt

(

α − 1 + |pt |
2

)

+
T∑

t=1

Mt Zt2τt

(

α − 1 − |pt |
2

)

.

Plugging α = 1+δ
2 , δ ≥ 1 into the above inequality results in

(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)τt�t (w) ≥
T∑

t=1

Mt Ztτt (δ + |pt |),

since when Lt = 1, |pt | ∈ [0, 1), (α − 1+|pt |
2 ) = δ−|pt |

2 > 0, and (α − 1−|pt |
2 ) = δ+|pt |

2 .

Furthermore, because when Mt = 1, τt = min{C,
�t (wt )

‖xt‖2 } ≥ min{C, ρt } = ρt , and τt ≤ C ,
the above inequality implies:

(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w) ≥
T∑

t=1

ρt Mt Zt (δ + |pt |),
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Taking expectation with the above equality and re-arranging the result conclude the theorem,
since

E

T∑

t=1

ρt Mt Zt (δ + |pt |) = E

T∑

t=1

ρt Mt (δ + |pt |)Et Zt = δE

T∑

t=1

ρt Mt .


�

Appendix 6: Proof of Theorem 7

Proof Following the condition that ρ = ηpTn
ηnTp

≥ 1 and the result of Theorem 6, we have

1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

≥ (
ρEMp + EMn

)

=
[(

ηpTn
ηnTp

)

EMp + EMn

]

= Tn
ηn

[

ηp

(
EMp

Tp

)

+ ηn
EMn

Tn

]

= Tn
ηn

(
ηp(1 − Esen) + ηn(1 − Espe)

) = Tn
ηn

(1 − E[sum]).
Rearranging the above inequality leads to the conclusion:

E[sum] ≥ 1 − ηn

Tn

1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

.


�

Appendix 7: Proof of Theorem 8

Proof Following the result of Theorem 6, we have

1

δ

{(
1 + δ

2

)2

‖w‖2 +
T∑

t=1

(1 + δ)C�t (w)

}

≥ (EMp(ρ) + EMn)

=
(

EMp

(
cp
cn

)

+ EMn

)

= 1

cn
E[cost].

Rearranging the above inequality concludes the theorem. 
�
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