2,798 research outputs found

    Variable step closed-loop power control with space diversity for low elevation angle High Altitude Platforms communication channel [Langkah variabel kontrol daya tertutup dengan keragaman ruang untuk sudut elevasi rendah pada kanal komunikasi HAPs]

    Get PDF
    This paper proposes variable step closed loop power control algorithm combined with space diversity to improve the performance of High Altitude Platforms (HAPs) communication at low elevation angle using Code Division Multiple Access (CDMA). In this contribution, we first develop HAPs channel model which is derived from experimental measurement. From our experiment, we found HAPs channel characteristic can be modeled as a Ricean distribution because the presence of line of sight path. Different elevation angle resulting different K factor value.  This value is then used in Signal to Interference Ratio (SIR) based closed loop power control evaluation. The variable step algorithm is simulated under various elevation angles with different speed of mobile user. The performance is presented in terms of user elevation angle, user speed, step size and space diversity order. We found that the performance of variable step closed-loop power control less effective at low elevation angle. However our simulation shows that space diversity is able to improve the performance of closed loop power control for HAPs channel at low elevation angle.*****Kajian ini mengusulkan suatu algoritma kontrol daya langkah variabel loop tertutup dikombinasikan dengan keragaman ruang untuk meningkatkan kinerja komunikasi High Altitude Platforms(HAPs) pada sudut elevasi rendah menggunakan Code Division Multiple Access (CDMA). Kami berkontribusi untuk mengembangkan model kanal HAPs yang berasal dari pengukuran eksperimental sebelumnya. Dari percobaan tersebut, kami menemukan karakteristik kanal HAPs yang dapat dimodelkan sebagai distribusi Ricean karena kehadiran jalur tanpa penghalang. Eksperimen menunjukkan bahwa perbedaan sudut elevasi menghasilkan perbedaan nilai factor K. Nilai ini kemudian digunakan dalam Signal to Interference Ratio (SIR) berbasiskan evaluasi kontrol daya loop tertutup. Algoritma langkah variabel disimulasikan dibawah sudut elevasi yang berbeda dengan kecepatan yang berbeda dari pengguna vobile. Kinerja tersebut disajikan dalam hal sudut elevasi pengguna, kecepatan pengguna, ukuran langkah dan ketertiban ruang keanekaragaman. Kami menemukan bahwa kinerja langkah variabel kontrol daya loop tertutup kurang efektif pada sudut elevasi rendah. Namun simulasi kami menunjukkan bahwa ruang keragaman mampu meningkatkan kinerja kontrol daya loop tertutup untuk kanal HAPs di sudut elevasi rendah.

    Variable Step Closed Loop Power Control with Space Diversity for Low Elevation Angle High Altitude Platforms Communication Channel [Langkah Variabel Kontrol Daya Loop Tertutup Dengan Keragaman Ruang Untuk Sudut Elevasi Rendah Pada Kanal Komunikasi HAPs]

    Full text link
    This paper proposes variable step closed loop power control algorithm combined with space diversity to improve the performance of High Altitude Platforms (HAPs) communication at low elevation angle using Code Division Multiple Access (CDMA). In this contribution, we first develop HAPs channel model which is derived from experimental measurement. From our experiment, we found HAPs channel characteristic can be modeled as a Ricean distribution because the presence of line of sight path. Different elevation angle resulting different K factor value. This value is then used in Signal to Interference Ratio (SIR) based closed loop power control evaluation. The variable step algorithm is simulated under various elevation angles with different speed of mobile user. The performance is presented in terms of user elevation angle, user speed, step size and space diversity order. We found that the performance of variable step closed-loop power control less effective at low elevation angle. However our simulation shows that space diversity is able to improve the performance of closed loop power control for HAPs channel at low elevation angle.*****Kajian ini mengusulkan suatu algoritma kontrol daya langkah variabel loop tertutup dikombinasikan dengan keragaman ruang untuk meningkatkan kinerja komunikasi High Altitude Platforms(HAPs) pada sudut elevasi rendah menggunakan Code Division Multiple Access (CDMA). Kami berkontribusi untuk mengembangkan model kanal HAPs yang berasal dari pengukuran eksperimental sebelumnya. Dari percobaan tersebut, kami menemukan karakteristik kanal HAPs yang dapat dimodelkan sebagai distribusi Ricean karena kehadiran jalur tanpa penghalang. Eksperimen menunjukkan bahwa perbedaan sudut elevasi menghasilkan perbedaan nilai factor K. Nilai ini kemudian digunakan dalam Signal to Interference Ratio (SIR) berbasiskan evaluasi kontrol daya loop tertutup. Algoritma langkah variabel disimulasikan dibawah sudut elevasi yang berbeda dengan kecepatan yang berbeda dari pengguna vobile. Kinerja tersebut disajikan dalam hal sudut elevasi pengguna, kecepatan pengguna, ukuran langkah dan ketertiban ruang keanekaragaman. Kami menemukan bahwa kinerja langkah variabel kontrol daya loop tertutup kurang efektif pada sudut elevasi rendah. Namun simulasi kami menunjukkan bahwa ruang keragaman mampu meningkatkan kinerja kontrol daya loop tertutup untuk kanal HAPs di sudut elevasi rendah

    Adaptive Beamforming and Adaptive Modulation-Assisted Network Performance of Multiuser Detection-Aided FDD and TDD CDMA Systems

    No full text
    The network performance of a frequency division duplex and time division duplex (TDD) code division multiple access (CDMA)-based system is investigated using system parameters similar to those of the Universal Mobile Telecommunication System. The new call blocking and call dropping probabilities, the probability of low-quality access, and the required average transmit power are quantified both with and without adaptive antenna arrays (AAAs), as well as when subjected to shadow fading. In some of the scenarios investigated, the system’s user capacity is doubled with the advent of adaptive antennas. The employment of adaptive modulation techniques in conjunction with AAAs resulted in further significant network capacity gains. This is particularly so in the context of TDD CDMA, where the system’s capacity becomes poor without adaptive antennas and adaptive modulation owing to the high base station (BS) to BS interference inflicted as a consequence of potentially using all time slots in both the uplink and downlink of the emerging wireless Internet. Index Terms—Adaptive beamforming, adaptive modulation, code division multiple access (CDMA) systems, Universal Mobile Telecommunication System Terrestrial Radio Access (UTRA), wireless network performance

    Adaptive power control in CDMA cellular communication systems

    Get PDF
    Power control is an essential radio resource management method in CDMA cellular communication systems, where co-channel interference is the primary capacity-limiting factor. Power control aims to control the transmission power levels in such a way that acceptable quality of service for the users is guaranteed with lowest possible transmission powers. All users benefit from the minimized interference and the preserved signal qualities. In this thesis new closed loop power control algorithms for CDMA cellular communication systems are proposed. To cope with the random changes of the radio channel and interference, adaptive algorithms are considered that utilize ideas from self-tuning control systems. The inherent loop delay associated with closed loop power control can be included in the design process, and thus alleviated with the proposed methods. Another problem in closed-loop power control is that extensive control signaling consumes radio resources, and thus the control feedback bandwidth must be limited. A new approach to enhance the performance of closed-loop power control in limited-feedback-case is presented, and power control algorithms based on the new approach are proposed. The performances of the proposed algorithms are evaluated through both analysis and computer simulations, and compared with well-known algorithms from the literature. The results indicate that significant performance improvements are achievable with the proposed algorithms.reviewe

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Energy efficient wireless sensor network protocols for monitoring and prognostics of large scale systems

    Get PDF
    In this work, energy-efficient protocols for wireless sensor networks (WSN) with applications to prognostics are investigated. Both analytical methods and verification are shown for the proposed methods via either hardware experiments or simulation. This work is presented in five papers. Energy-efficiency methods for WSN include distributed algorithms for i) optimal routing, ii) adaptive scheduling, iii) adaptive transmission power and data-rate control --Abstract, page iv

    Power control for WCDMA

    Get PDF
    This project tries to introduce itself in the physical implementations that make possible the denominated third generation mobile technology. As well as to know the technology kind that makes possible, for example, a video-call in real time. During this project, the different phases passed from the election of WCDMA like the access method for UMTS will appear. Its coexistence with previous network GSM will be analyzed, where the compatibility between systems has been one of the most important aspects in the development of WCDMA, the involved standardization organisms in the process, as well as the different protocols that make the mobile communications within a network UTRAN possible. Special emphasis during the study of the great contribution that has offered WCDMA with respect to the control of power of the existing signals will be made. The future lines that are considered in the present, and other comment that already are in their last phase of development in the field of the mobile technology. UMTS through WCDMA can be summarized like a revolution of the air interface accompanied by a revolution in the network of their architecture
    • 

    corecore