11 research outputs found

    SCALE INVARIANT FEATURE TRANSFORM PLUS HUE FEATURE

    Get PDF

    Automatic Identification of Morphometric Landmarks in Digital Images

    Full text link
    We present an automated system for the analysis of edge based structure for use in morphomet-ric studies. The current work takes a grey level image of a Drosophila wing as input and extracts the coordinates of 15 landmarks. The proposed method extracts the ridges (linear features such as wing veins) using the knowledge of their known grey level profile and the noise character

    On bending invariant signatures for surfaces

    Full text link

    Robust Recognition of Scaled Shapes using Pairwise Geometric Histograms.

    No full text

    A performance evaluation of local descriptors

    Full text link

    Data mining based learning algorithms for semi-supervised object identification and tracking

    Get PDF
    Sensor exploitation (SE) is the crucial step in surveillance applications such as airport security and search and rescue operations. It allows localization and identification of movement in urban settings and can significantly boost knowledge gathering, interpretation and action. Data mining techniques offer the promise of precise and accurate knowledge acquisition techniques in high-dimensional data domains (and diminishing the “curse of dimensionality” prevalent in such datasets), coupled by algorithmic design in feature extraction, discriminative ranking, feature fusion and supervised learning (classification). Consequently, data mining techniques and algorithms can be used to refine and process captured data and to detect, recognize, classify, and track objects with predictable high degrees of specificity and sensitivity. Automatic object detection and tracking algorithms face several obstacles, such as large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability, lack of compactness, angular regions, partial occlusions, environmental variables, and unknown potential object classes, which work against their ability to achieve accurate real-time results. Methods must produce fast and accurate results by streamlining image processing, data compression and reduction, feature extraction, classification, and tracking algorithms. Data mining techniques can sufficiently address these challenges by implementing efficient and accurate dimensionality reduction with feature extraction to refine incomplete (ill-partitioning) data-space and addressing challenges related to object classification, intra-class variability, and inter-class dependencies. A series of methods have been developed to combat many of the challenges for the purpose of creating a sensor exploitation and tracking framework for real time image sensor inputs. The framework has been broken down into a series of sub-routines, which work in both series and parallel to accomplish tasks such as image pre-processing, data reduction, segmentation, object detection, tracking, and classification. These methods can be implemented either independently or together to form a synergistic solution to object detection and tracking. The main contributions to the SE field include novel feature extraction methods for highly discriminative object detection, classification, and tracking. Also, a new supervised classification scheme is presented for detecting objects in urban environments. This scheme incorporates both novel features and non-maximal suppression to reduce false alarms, which can be abundant in cluttered environments such as cities. Lastly, a performance evaluation of Graphical Processing Unit (GPU) implementations of the subtask algorithms is presented, which provides insight into speed-up gains throughout the SE framework to improve design for real time applications. The overall framework provides a comprehensive SE system, which can be tailored for integration into a layered sensing scheme to provide the war fighter with automated assistance and support. As more sensor technology and integration continues to advance, this SE framework can provide faster and more accurate decision support for both intelligence and civilian applications

    Object recognition using multi-view imaging

    No full text
    Single view imaging data has been used in most previous research in computer vision and image understanding and lots of techniques have been developed. Recently with the fast development and dropping cost of multiple cameras, it has become possible to have many more views to achieve image processing tasks. This thesis will consider how to use the obtained multiple images in the application of target object recognition. In this context, we present two algorithms for object recognition based on scale- invariant feature points. The first is single view object recognition method (SOR), which operates on single images and uses a chirality constraint to reduce the recognition errors that arise when only a small number of feature points are matched. The procedure is extended in the second multi-view object recognition algorithm (MOR) which operates on a multi-view image sequence and, by tracking feature points using a dynamic programming method in the plenoptic domain subject to the epipolar constraint, is able to fuse feature point matches from all the available images, resulting in more robust recognition. We evaluated these algorithms using a number of data sets of real images capturing both indoor and outdoor scenes. We demonstrate that MOR is better than SOR particularly for noisy and low resolution images, and it is also able to recognize objects that are partially occluded by combining it with some segmentation techniques

    Geometric uncertainty models for correspondence problems in digital image processing

    Get PDF
    Many recent advances in technology rely heavily on the correct interpretation of an enormous amount of visual information. All available sources of visual data (e.g. cameras in surveillance networks, smartphones, game consoles) must be adequately processed to retrieve the most interesting user information. Therefore, computer vision and image processing techniques gain significant interest at the moment, and will do so in the near future. Most commonly applied image processing algorithms require a reliable solution for correspondence problems. The solution involves, first, the localization of corresponding points -visualizing the same 3D point in the observed scene- in the different images of distinct sources, and second, the computation of consistent geometric transformations relating correspondences on scene objects. This PhD presents a theoretical framework for solving correspondence problems with geometric features (such as points and straight lines) representing rigid objects in image sequences of complex scenes with static and dynamic cameras. The research focuses on localization uncertainty due to errors in feature detection and measurement, and its effect on each step in the solution of a correspondence problem. Whereas most other recent methods apply statistical-based models for spatial localization uncertainty, this work considers a novel geometric approach. Localization uncertainty is modeled as a convex polygonal region in the image space. This model can be efficiently propagated throughout the correspondence finding procedure. It allows for an easy extension toward transformation uncertainty models, and to infer confidence measures to verify the reliability of the outcome in the correspondence framework. Our procedure aims at finding reliable consistent transformations in sets of few and ill-localized features, possibly containing a large fraction of false candidate correspondences. The evaluation of the proposed procedure in practical correspondence problems shows that correct consistent correspondence sets are returned in over 95% of the experiments for small sets of 10-40 features contaminated with up to 400% of false positives and 40% of false negatives. The presented techniques prove to be beneficial in typical image processing applications, such as image registration and rigid object tracking
    corecore