925 research outputs found

    The Galactic Isotropic γ\gamma-ray Background and Implications for Dark Matter

    Full text link
    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ\gamma-ray flux--the statistically uniform flux in circular annuli about the Galactic center. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistic method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0\pi^0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modeling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ\gamma-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.Comment: 20 pages, 15 figures, references adde

    The Galactic Isotropic γ\gamma-ray Background and Implications for Dark Matter

    Full text link
    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ\gamma-ray flux--the statistically uniform flux in circular annuli about the Galactic center. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistic method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0\pi^0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modeling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ\gamma-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.Comment: 20 pages, 15 figures, references adde

    EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis

    Get PDF
    Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.Comment: 14 pages, 4 figures, 4 table

    Robust 1-Bit Compressed Sensing via Hinge Loss Minimization

    Full text link
    This work theoretically studies the problem of estimating a structured high-dimensional signal x0∈Rnx_0 \in \mathbb{R}^n from noisy 11-bit Gaussian measurements. Our recovery approach is based on a simple convex program which uses the hinge loss function as data fidelity term. While such a risk minimization strategy is very natural to learn binary output models, such as in classification, its capacity to estimate a specific signal vector is largely unexplored. A major difficulty is that the hinge loss is just piecewise linear, so that its "curvature energy" is concentrated in a single point. This is substantially different from other popular loss functions considered in signal estimation, e.g., the square or logistic loss, which are at least locally strongly convex. It is therefore somewhat unexpected that we can still prove very similar types of recovery guarantees for the hinge loss estimator, even in the presence of strong noise. More specifically, our non-asymptotic error bounds show that stable and robust reconstruction of x0x_0 can be achieved with the optimal oversampling rate O(m−1/2)O(m^{-1/2}) in terms of the number of measurements mm. Moreover, we permit a wide class of structural assumptions on the ground truth signal, in the sense that x0x_0 can belong to an arbitrary bounded convex set K⊂RnK \subset \mathbb{R}^n. The proofs of our main results rely on some recent advances in statistical learning theory due to Mendelson. In particular, we invoke an adapted version of Mendelson's small ball method that allows us to establish a quadratic lower bound on the error of the first order Taylor approximation of the empirical hinge loss function

    Advanced Denoising for X-ray Ptychography

    Get PDF
    The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.Comment: 24 pages, 9 figure
    • …
    corecore