269 research outputs found

    Word Searching in Scene Image and Video Frame in Multi-Script Scenario using Dynamic Shape Coding

    Full text link
    Retrieval of text information from natural scene images and video frames is a challenging task due to its inherent problems like complex character shapes, low resolution, background noise, etc. Available OCR systems often fail to retrieve such information in scene/video frames. Keyword spotting, an alternative way to retrieve information, performs efficient text searching in such scenarios. However, current word spotting techniques in scene/video images are script-specific and they are mainly developed for Latin script. This paper presents a novel word spotting framework using dynamic shape coding for text retrieval in natural scene image and video frames. The framework is designed to search query keyword from multiple scripts with the help of on-the-fly script-wise keyword generation for the corresponding script. We have used a two-stage word spotting approach using Hidden Markov Model (HMM) to detect the translated keyword in a given text line by identifying the script of the line. A novel unsupervised dynamic shape coding based scheme has been used to group similar shape characters to avoid confusion and to improve text alignment. Next, the hypotheses locations are verified to improve retrieval performance. To evaluate the proposed system for searching keyword from natural scene image and video frames, we have considered two popular Indic scripts such as Bangla (Bengali) and Devanagari along with English. Inspired by the zone-wise recognition approach in Indic scripts[1], zone-wise text information has been used to improve the traditional word spotting performance in Indic scripts. For our experiment, a dataset consisting of images of different scenes and video frames of English, Bangla and Devanagari scripts were considered. The results obtained showed the effectiveness of our proposed word spotting approach.Comment: Multimedia Tools and Applications, Springe

    A Framework for Devanagari Script-based Captcha

    Full text link
    Human Interactive Proofs (HIPs) are automatic reverse Turing tests designed to distinguish between various groups of users. Completely Automatic Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a HIP system that distinguish between humans and malicious computer programs. Many CAPTCHAs have been proposed in the literature that text-graphical based, audio-based, puzzle-based and mathematical questions-based. The design and implementation of CAPTCHAs fall in the realm of Artificial Intelligence. We aim to utilize CAPTCHAs as a tool to improve the security of Internet based applications. In this paper we present a framework for a text-based CAPTCHA based on Devanagari script which can exploit the difference in the reading proficiency between humans and computer programs. Our selection of Devanagari script-based CAPTCHA is based on the fact that it is used by a large number of Indian languages including Hindi which is the third most spoken language. There is potential for an exponential rise in the applications that are likely to be developed in that script thereby making it easy to secure Indian language based applications.Comment: 10 pages, 8 Figures, CCSEA 2011 - First International Conference, Chennai, July 15-17, 201

    Handwritten Devanagari Text Recognition using Single Classifier Approach with VSPCA Scheme

    Get PDF
    In this research paper we used individual classifier approach for Handwritten Devanagari text recognition. We experimented different categorical classifiers namely   Random Forest Classifier (RFC), Support Vector Machine (SVM), K Nearest Neighbor Classifier (KNN), Logistic Regression Classifier (LogRegr), Decision Tree Classifier (DTree). Seven different feature sets are used namely Eccentricity, Euler Number, Horizontal Histogram, Vertical Histogram, HOG Features, LBP Features, and Statistical Features. The experimentation is carried out on 9434 different characters whose features are extracted from 220 handwritten image documents from PHDIndic_11 dataset. We deduced and implemented a unique scheme namely VSPCA scheme. VSPCA is Vectorization, Scaling, and Principal Component Analysis carried out on all feature sets before being given for model training. We obtained varied accuracies using all these five classifiers on all these six feature sets in which 99.52% highest accuracy is observed

    Spectral Graph-based Features for Recognition of Handwritten Characters: A Case Study on Handwritten Devanagari Numerals

    Full text link
    Interpretation of different writing styles, unconstrained cursiveness and relationship between different primitive parts is an essential and challenging task for recognition of handwritten characters. As feature representation is inadequate, appropriate interpretation/description of handwritten characters seems to be a challenging task. Although existing research in handwritten characters is extensive, it still remains a challenge to get the effective representation of characters in feature space. In this paper, we make an attempt to circumvent these problems by proposing an approach that exploits the robust graph representation and spectral graph embedding concept to characterise and effectively represent handwritten characters, taking into account writing styles, cursiveness and relationships. For corroboration of the efficacy of the proposed method, extensive experiments were carried out on the standard handwritten numeral Computer Vision Pattern Recognition, Unit of Indian Statistical Institute Kolkata dataset. The experimental results demonstrate promising findings, which can be used in future studies.Comment: 16 pages, 8 figure

    Deep Learning Based Real Time Devanagari Character Recognition

    Get PDF
    The revolutionization of the technology behind optical character recognition (OCR) has helped it to become one of those technologies that have found plenty of uses in the entire industrial space. Today, the OCR is available for several languages and have the capability to recognize the characters in real time, but there are some languages for which this technology has not developed much. All these advancements have been possible because of the introduction of concepts like artificial intelligence and deep learning. Deep Neural Networks have proven to be the best choice when it comes to a task involving recognition. There are many algorithms and models that can be used for this purpose. This project tries to implement and optimize a deep learning-based model which will be able to recognize Devanagari script’s characters in real time by analyzing the hand movements

    Offline MODI Character Recognition Using Complex Moments

    Get PDF
    AbstractThe varying writing style and critical representation of characters in Indian script makes Handwritten Optical Character (HOCR) challenging and has attracted researchers to contribute in this domain. ‘MODI’ Script had cursive type of writings in Devanagari, Marathi where large amount of historical documents were available and need to be digitally explored. The principal objective of this research work is to describe efficiency of Zernike Complex moments and Zernike moments with different Zoning patterns for offline recognition of handwritten ‘MODI’ characters. Every character was divided in six zoning patterns with 37 zones. Geometrical shapes were used to create zoning patterns. The work was resulted in 94.92% correct recognition rate was achieved by using Zernike moments and 94.78% by using Zernike complex moments with integrated approach for heterogeneous zones
    corecore