49 research outputs found

    Employing Psychoacoustic Model for Digital Audio Watermarking

    Get PDF
    This thesis discusses about digital audio watermarking by employing psychoacoustic model to make the watermarked signal inaudible to the audience. Due to the digital media data able to distribute easily without losing of data information, thus the intellectual property of musical creators and distributor may affected by this kind of circumstance . To prevent this, we propose the usage of spread spectrum technique and psychoacoustic model for embedding process, zero-forcing equalization and detection and wiener filtering for extracting process. Three samples of audio signal have been chosen for this experiment which are categorized as quiet, moderate, and noise state signal. The findings shows that our watermarking scheme achieved the intended purposes which are to test digital audio watermarking by employing psychoacoustic model, to embed different length of messages to test on accuracy of extracted data and to study the suitability on using hash function for verification of modification attacks

    EFFECTIVE ROBUST PATCHWORK METHOD TO THE VULNERABLE ATTACK FOR DIGITAL AUDIO WATERMARKING

    Get PDF
    This paper presents patchwork based digital audio watermarking. The advanced growth in transmission of digital data has resulted in a corresponding elevation in the need for copyright protection of signal. Cryptography and steganography are used for the content protection but do not completely solve the copyright issue. Watermarking is a method to protect and identify the digital data while maintaining the quality of the host media, it permits various types of watermarks to be hidden in audio signal e.g. image, audio and video. This paper limits on image embedding technique using patchwork-based method. In patchwork based method average of all segments of approximate coefficients is calculated for embedding watermark into sound signal. The experimental results shows that proposed method achieves imperceptibility for audio signal as watermarked audio signal is inaudible after embedding watermark and robustness of watermark against different signal processing attacks with higher PSNR. The resulting audio is robust to attacks and exhibits good quality in term of peak signal to noise ratio. The simulation results show the effectiveness of the proposed system

    Spread Spectrum Based High Embedding Capacity Watermarking Method for Audio Signals

    Get PDF
    Audio watermarking is a promising technology for copyright protection of audio data. Built upon the concept of spread spectrum (SS), many SS-based audio watermarking methods have been developed, where a pseudonoise (PN) sequence is usually used to introduce security. A major drawback of the existing SS-based audio watermarking methods is their low embedding capacity. In this paper, we propose a new SS-based audio watermarking method which possesses much higher embedding capacity while ensuring satisfactory imperceptibility and robustness. The high embedding capacity is achieved through a set of mechanisms: embedding multiple watermark bits in one audio segment, reducing host signal interference on watermark extraction, and adaptively adjusting PN sequence amplitude in watermark embedding based on the property of audio segments. The effectiveness of the proposed audio watermarking method is demonstrated by simulation examples

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal

    Get PDF
    This paper presents a blind audio watermarking algorithm based on the reduced singular value decomposition(RSVD). A new observation on one of the resulting unitary matrices is uncovered. The proposed scheme manipulates coefficients based on this observation in order to embed watermark bits. To preserve audio fidelity a threshold- based distortion control technique is applied and this is further supplemented by distortion suppression utilizing psychoacoustic principles. Test results on real music signals show that this watermarking scheme is in the range of imperceptibility for human hearing, is accurate and also robust against MP3 compression at various bit rates as well as other selected attacks. The data payload is comparatively high compared to existing audio watermarking schemes

    A Comprehensive Review on Digital Image Watermarking

    Full text link
    The advent of the Internet led to the easy availability of digital data like images, audio, and video. Easy access to multimedia gives rise to the issues such as content authentication, security, copyright protection, and ownership identification. Here, we discuss the concept of digital image watermarking with a focus on the technique used in image watermark embedding and extraction of the watermark. The detailed classification along with the basic characteristics, namely visual imperceptibility, robustness, capacity, security of digital watermarking is also presented in this work. Further, we have also discussed the recent application areas of digital watermarking such as healthcare, remote education, electronic voting systems, and the military. The robustness is evaluated by examining the effect of image processing attacks on the signed content and the watermark recoverability. The authors believe that the comprehensive survey presented in this paper will help the new researchers to gather knowledge in this domain. Further, the comparative analysis can enkindle ideas to improve upon the already mentioned techniques

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    Robust digital image watermarking

    Full text link
    This research presents a novel rank based image watermarking method and improved moment based and histogram based image watermarking methods. A high-frequency component modification step is also proposed to compensate the side effect of commonly used Gaussian pre-filtering. The proposed methods outperform the latest image watermarking methods

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen
    corecore