18 research outputs found

    Dynamic Sparse State Estimation Using ℓ1-ℓ1 Minimization: Adaptive-rate Measurement Bounds, Algorithms and Applications

    Get PDF
    We propose a recursive algorithm for estimating time-varying signals from a few linear measurements. The signals are assumed sparse, with unknown support, and are described by a dynamical model. In each iteration, the algorithm solves an ℓ1-ℓ1 minimization problem and estimates the number of measurements that it has to take at the next iteration. These estimates are computed based on recent theoretical results for ℓ1-ℓ1 minimization. We also provide sufficient conditions for perfect signal reconstruction at each time instant as a function of an algorithm parameter. The algorithm exhibits high performance in compressive tracking on a real video sequence, as shown in our experimental results. Index Terms— State estimation, sparsity, background subtraction, motion estimation, online algorithm

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201
    corecore