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ABSTRACT

Online Robust Principle Component Analysis (RPCA) arises natu-
rally in time-varying signal decomposition problems such as video
foreground-background separation. We propose a compressive on-
line RPCA algorithm that decomposes recursively a sequence of data
vectors (e.g., frames) into sparse and low-rank components. Unlike
conventional batch RPCA, which processes all the data directly, our
method considers a small set of measurements taken per data vector
(frame). Moreover, our method incorporates multiple prior informa-
tion signals, namely previous reconstructed frames, to improve the
separation and thereafter, update the prior information for the next
frame. Using experiments on synthetic data, we evaluate the separa-
tion performance of the proposed algorithm. In addition, we apply
the proposed algorithm to online video foreground and background
separation from compressive measurements. The results show that
the proposed method outperforms the existing methods.

Index Terms— Prior information, robust PCA, n-`1 minimiza-
tion, compressive measurements, source separation.

1. INTRODUCTION

Robust Principle Component Analysis (RPCA) [1, 2] decomposes a
data matrix M into the sum of unknown sparse S and low-rank L
components by solving the Principal Component Pursuit (PCP) [1]
problem:

min
L,S
‖L‖∗ + λ‖S‖1 subject toM = L+ S, (1)

where ‖ · ‖∗ is the matrix nuclear norm (sum of singular values)
and ‖ · ‖1 is the `1-norm. RPCA has found many applications in
computer vision, web data analysis, and recommender systems; for
example, in video separation, a video sequence is separated into the
slowly-changing background (modeled by L) and the sparse fore-
ground S. However, batch RPCA [1, 2] processes all data samples,
e.g., all frames in a video, which involves high computational and
memory requirements.

Problem. We consider an online RPCA algorithm that recur-
sively processes a sequence of signals (a.k.a., the column-vectors
in M ) per time instance. Our method recovers the signal from
a small set of measurements by leveraging information from a set
of previously recovered signals. Formally, at time instance t, we
wish to decompose M t = Lt+St into St = [x1 x1 ... xt] and
Lt = [v1 v2 ... vt], where [·] denotes a matrix and xt,vt ∈ Rn
are column-vectors in St and Lt, respectively. We assume that
Lt−1 and St−1 have been recovered at time instance t− 1 and that
at time instance t we have access to compressive measurements of
the vector xt + vt, that is, we observe yt = Φ(xt + vt), where
Φ∈Rm×n (m<n) is a random projection [3]. The recovery prob-
lem at time instance t is thus written as

min
xt,vt

‖[Lt−1 vt]‖∗+λ‖xt‖1 subject to yt=Φ(xt + vt), (2)

whereLt−1=[v1 v2 ... vt−1],St−1=[x1 x1 ... xt−1], Φ are given.
Related Work. Incremental PCP [4] processes each column-

vector in M at a time, assuming access to the complete data (e.g.,
full frames) rather than compressive measurements. Compressive
PCP [5], on the other hand, is the counterpart of batch RPCA that
operates on compressive measurements. Other related studies [6–9]
addressed the problem of online estimation of low-dimensional sub-
spaces from randomly subsampled data. In [10], an algorithm was
proposed to recover the sparse component xt in (2) by solving the
problem minxt ‖xt‖1 subject to yt=Φt(Axt+Bvt), where Φt∈
Rm×m and A,B ∈Rm×n. However, the low-rank component vt
in (2) was not recovered per time instance. Alternatively, the stud-
ies in [11], [12] assumed the low-rank vector vt not-varying and
proposed a method to estimate the number of compressive measure-
ments required to recover xt per time instance.

The problem of reconstructing a sequence of time-varying
sparse signals using prior information is also playing an impor-
tant role in the context of online RPCA [10, 13, 14]. There were
several studies on sparse signal recovery from low-dimensional
measurements that proposed to leverage some form of prior infor-
mation [10, 11, 13, 15]. The study in [15] provided a comprehensive
overview of the domain, reviewing a class of recursive algorithms.
The studies in [10, 13] used modified-CS [16] to leverage prior
knowledge under the condition of slowly varying support and signal
values. Recently, the study in [17] presented an online compressive
RPCA method that is supported by performance guarantees. How-
ever, this method as well as the methods in [6, 7, 9] do not explore
the correlation across adjacent sparse components from multiple
previously recovered frames.

Contributions. We propose a compressive online RPCA with
multiple prior information (CORPCA) algorithm, which leverages
information from previously recovered sparse components by utiliz-
ing RAMSIA—our previously-proposed algorithm for sparse signal
recovery with multiple prior information signals [18]—and exploits
the slowly-changing characteristics of low-rank components via an
incremental SVD [19] method. We solve the compressive decom-
position problem in (2) in an online manner by minimizing, (i) an
n-`1-norm cost function [18] for the sparse part; and (ii) the rank of
a matrix for the low-rank part.

2. PROBLEM FORMULATION AND ALGORITHM

2.1. Problem Formulation

The proposed CORPCA algorithm is based on RAMSIA [18], our
algorithm that uses n-`1 minimization with adaptive weights to re-
cover a sparse signalx from low-dimensional random measurements
y = Φx with the aid of multiple side information signals zj , j ∈



{0, 1, . . . , J}, with z0 = 0. The objective function of RAMSIA
[18] is given by

min
x

{
H(x)=

1

2
‖Φx− y‖22 + λ

J∑

j=0

βj‖Wj(x− zj)‖1
}
, (3)

where λ > 0 and βj > 0 are weights across the side infor-
mation signals, and Wj is a diagonal matrix with weights for
each element in the side information signal zj ; namely, Wj =
diag(wj1, wj2, ..., wjn) with wji> 0 being the weight for the i-th
element in the zj vector.

The proposed CORPCA method aims at processing one data
vector per time instance by leveraging prior information for both
its sparse and low-rank components. At time instance t, we observe
yt = Φ(xt + vt) with yt ∈ Rm. Let Zt−1 := {z1, ..., zJ}, a
set of zj ∈ Rn, and Bt−1 ∈ Rn×d denote prior information for
xt and vt, respectively. As discussed in Sec. 2.2, we form the prior
information Zt−1 and Bt−1 using the already reconstructed set of
vectors {x̂1, ..., x̂t−1} and {v̂1, ..., v̂t−1}.

To solve the problem in (2), we formulate the objective function
of CORPCA as

min
xt,vt

{
H(xt,vt|yt,Zt−1,Bt−1)=

1

2
‖Φ(xt + vt)− yt‖22

+ λµ

J∑

j=0

βj‖Wj(xt − zj)‖1 + µ
∥∥∥[Bt−1 vt]

∥∥∥
∗

}
, (4)

where µ > 0. It can be seen that when vt is static (not chang-
ing), Problem (4) would become Problem (3). Furthermore, when
xt and vt are batch variables and we do not take the prior informa-
tion, Zt−1 and Bt−1, and the projection Φ into account, Problem
(4) becomes Problem (1).

2.2. CORPCA Algorithm
The proposed algorithm operates in two steps: Firstly, we solve
Problem (4) given thatZt−1 andBt−1 are known (they are obtained
from the time instance or recursion). Thereafter, we update Zt and
Bt, which are used in the following time instance.

Solution of Problem (4). Let us denote f(vt,xt) =

(1/2)‖Φ(xt+vt)−yt‖22, g(xt) = λ
∑J
j=0βj‖Wj(xt−zj)‖1, and

h(vt) = ‖[Bt−1 vt]‖∗. The solution of (4) is obtained by the pro-
posed CORPCA algorithm in Algorithm 1 (the code is online [20])
using proximal gradient methods [2, 21]. Specifically, as shown in
Lines 3-9 in Algorithm 1, we iteratively compute x(k+1)

t and v(k+1)
t

at iteration k + 1 via the soft thresholding operator [21] for xt and
the single value thresholding operator [22] for vt:

v
(k+1)
t = arg min

vt

{
µh(vt)+

∥∥∥vt−
(
v
(k)
t −

1

2
∇vtf(v

(k)
t ,x

(k)
t )
)∥∥∥

2

2

}
, (5)

x
(k+1)
t = arg min

xt

{
µg(xt)+

∥∥∥xt−
(
x

(k)
t −

1

2
∇xtf(v

(k)
t ,x

(k)
t )
)∥∥∥

2

2

}
. (6)

The proximal operator Γτg1(·) in Line 7 of Algorithm 1 is defined
as

Γτg1(X) = arg min
V

{
τg1(V ) +

1

2
||V −X||22

}
, (7)

where g1(·) = ‖ · ‖1. The weights Wj and βj are updated
per iteration of the algorithm (see Lines 10-11). As suggested
in [2], the convergence of Algorithm 1 in Line 2 is determined
by evaluating the criterion ‖∂H(xt,vt)|x(k+1)

t ,v
(k+1)
t

‖22 < 2 ∗
10−7‖(x(k+1)

t ,v
(k+1)
t )‖22. Finally, we update the prior information

for the next instance, Zt andBt, in Lines 15-16.
Prior Information Update. The update of Zt and Bt is car-

ried out after each time instance (see Lines 15-16, Algorithm 1).
Due to the correlation between subsequent signals (e.g., frames),

Algorithm 1: The proposed CORPCA algorithm.
Input: yt, Φ, Zt−1, Bt−1;
Output: x̂t, v̂t, Zt, Bt;
// Initialize variables and parameters.

1 x
(−1)
t =x

(0)
t =0; v(−1)

t =v
(0)
t =0; ξ−1= ξ0=1; µ0=0;

µ̄>0; λ > 0; 0<ε<1; k=0; g1(·)=‖ · ‖1;
2 while not converged do

// Solve Problem (4).
3 ṽt

(k)= v
(k)
t +

ξk−1−1

ξk
(v

(k)
t −v(k−1)

t );

4 x̃t
(k)= x

(k)
t +

ξk−1−1

ξk
(x

(k)
t −x(k−1)

t );

5 ∇vtf(ṽt
(k), x̃t

(k)) = ∇xtf(ṽt
(k), x̃t

(k)) =

ΦT
(
Φ(ṽt

(k) + x̃t
(k))− yt

)
;

6 (U t,Σt,V t) =

incSVD
([
Bt−1

(
ṽt

(k)− 1
2
∇vtf(ṽt

(k), x̃t
(k))
)])

;

7 Θt=U tΓµk
2
g1

(Σt)V
T
t ;

8 v
(k+1)
t = Θt(:, end);

9 x
(k+1)
t =Γµk

2
g

(
x̃t

(k) − 1
2
∇xtf(ṽt

(k), x̃t
(k))
)

; where

Γµk
2
g(·) is given as in RAMSIA [18];

// Compute the updated weights [18].

10 wji=
n(|x(k+1)

ti −zji|+ε)−1

n∑
l=1

(|x(k+1)
tl −zjl|+ε)−1

;

11 βj=

(
||Wj(x

(k+1)
t −zj)||1+ε

)−1

J∑
l=0

(
||Wl(x

(k+1)
t −zl)||1+ε

)−1
;

12 ξk+1 = (1 +
√

1 + 4ξ2k)/2; µk+1 = max(εµk, µ̄);
13 k = k + 1;
14 end

// Update prior information.

15 Zt := {zj = x
(k+1)
t−J+j}Jj=1;

16 Bt = U t(:, 1 : d)Γµk
2
g1

(Σt)(1 : d, 1 : d)V t(:, 1 : d)T;

17 return x̂t = x
(k+1)
t , v̂t = v

(k+1)
t , Zt, Bt;

we update the prior information Zt by using the J latest recov-
ered sparse components, that is, Zt := {zj = xt−J+j}Jj=1. For
Bt ∈ Rn×d, we consider an adaptive update, which operates on
a fixed or constant number d of the columns of Bt. To this end,
we use the incremental singular decomposition SVD [19] method
(incSVD(·) in Line 6, Algorithm 1). It is worth noting that the
update Bt = U tΓµk

2
g1

(Σt)V
T
t , causes the dimension of Bt to

increase as Bt ∈ Rn×(d+1) after each instance. However, in order
to maintain a reasonable number of d, we take
Bt = U t(:, 1 : d)Γµk

2
g1

(Σt)(1 : d, 1 : d)V t(:, 1 : d)T. The com-
putational cost of incSVD(·) is lower than conventional SVD [4,19]
since we only compute the full SVD of the middle matrix with size
(d+ 1)× (d+ 1), where d� n, instead of n× (d+ 1).

The computation of incSVD(·) is presented in the following:
The goal is to compute incSVD[Bt−1 vt], i.e., [Bt−1 vt] =
U tΣtV

T
t . By taking the SVD of Bt−1 ∈ Rn×d we obtain

Bt−1 = U t−1Σt−1V
T
t−1. Therefore, we can derive (U t,Σt,V t)

via (U t−1,Σt−1,V t−1) and vt. We write the matrix [Bt−1 vt] as

[Bt−1 vt]=
[
U t−1

δt
‖δt‖2

]
·
[

Σt−1 et
0T ‖δt‖2

]
·
[
V T
t−1 0

0T 1

]
, (8)

where et = UT
t−1vt and δt = vt − U t−1et. By taking the



Table 1. Summary of recovery characteristics

CORPCA RPCA GRASTA ReProCS
[1] [6] [10]

Online X X X

Full data X X X X

Compressed
Foreground X X

Background X X

SVD of the matrix in between the right side of (8), we obtain[
Σt−1 et

0T ‖δt‖2

]
= ŨΣ̃Ṽ

T
. Eventually, we obtain U t =

[
U t−1

δt
‖δt‖2

]
· Ũ , Σt=Σ̃, and V t =

[
V T
t−1 0

0T 1

]
· Ṽ .

3. EXPERIMENTAL RESULTS

We evaluate the performance of our Algorithm 1 employing the pro-
posed method, the existing `1 minimization [21], and the existing
`1-`1 [23, 24] minimization methods, denoted as CORPCA-n-`1,
CORPCA-`1, and CORPCA-`1-`1, respectively. We also compare
CORPCA against RPCA [1], GRASTA [6], and ReProCS [10],
the characteristics of which are summarized in Table 1. RPCA [1]
is a batch-based method assuming full access to the data, while
GRASTA [6] and ReProCS [10] are online methods that can recover
either the low-rank component (GRASTA) or the sparse component
(ReProCS) from compressive measurements.

3.1. Experiments with Synthetic Data
We generate our data as follows. We generate the low-rank com-
ponent as L = UV T, where U ∈ Rn×r and V ∈ R(d+q)×r are
random matrices whose entries are drawn from the standard normal
distribution. We set n = 500, r = 5 (rank of L), and d = 100
the number of vectors for training and q = 100 the number of test-
ing vectors. This yields L = [v1 ... vd+q]. We generate S =
[x1 ... xd+q], where at time instance t= 1, x1 ∈ Rn is generated
from the standard normal distribution with s0 nonzero elements, de-
noted by ‖x1‖0 = s0. Our purpose is to consider a sequence of
correlated sparse vectors xt with t> 1. Therefore, we generate xt
satisfying ‖xt − xt−1‖0=s0/2. This could lead to ‖xt‖0>s0. To
avoid a large increase of ‖xt‖0, we constrain ‖xt‖0 ∈ [s0, s0+15],
whenever ‖xt‖0>s0+15, xt is randomly reset to ‖xt‖0=s0 by set-
ting ‖xt‖0 − s0 positions that are randomly selected to zero. Here,
we test our algorithms for s0 = 10 to 90.

The prior information is initialized as follows. To address real
scenarios, where we do not know the sparse and low-rank compo-
nents, we use the batch-based RPCA [1] to separate the training set
M0 = [x1 + v1 ... xd + vd] so as to obtain B0 = [v1 ... vd]. In
this experiment, we use three (J = 3) sparse components as prior
information and we set Z0 := {0,0,0}. We run CORPCA (Sec.
2.2) on the test setM = [xd+1 + vd+1 ... xd+q + vd+q].

We assess the accuracy of recovering x̂t, v̂t versus xt,vt in
terms of the success probability, denoted as Pr(success), versus the
number of measurements m, which is the dimensionality of vector
yt. For instance, for x̂t given a fixed m, Pr(success) is the number
of times, in which the source xt is recovered as x̂t with an error
‖x̂t − xt‖2/‖xt‖2 ≤ 10−2, divided by the total 50 Monte Carlo
simulations and where we have set ε= 0.8, λ= 1/

√
n.

The results in Fig. 1 demonstrate the efficiency of the proposed
CORPCA employing n-`1 minimization. At specific sparsity lev-
els, we can recover the 500-dimensional data from measurements of
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Fig. 1. Average success probabilities and bounds for the proposed CORPCA algorithm deploying the different minimizations (a)-(c), to
recover xt,vt ∈ R500. The scale (d) is proportional to Pr(success)[%] from black to white.

min
x

{
H(x)=

1
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‖Φx− y‖22 + λ
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j=0

βj‖Wj(x− zj)‖1
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where λ > 0, βj>0 are weights across the side information signals,
and Wj is a diagonal matrix with weights for each element in the
side information signal zj ; namely, Wj = diag(wj1, wj2, ..., wjn)
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(b) CORPCA-`1-`1
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min
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1
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where λ > 0, βj>0 are weights across the side information signals,
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(c) CORPCA-`1
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(d) ReProCS
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Fig. 1. Average success probabilities for CORPCA (for xt,vt), Re-
ProCS (for xt), and GRASTA (for vt). The scale (f) is proportional
to Pr(success)[%] from black to white.
much lower dimensions [m = 150 to 300, see the white areas in
Fig. 1(a)]. It is also clear that the `1 and `1-`1 minimization meth-
ods [see Figs. 1(b), 1(c)] lead to a higher number of measurements,
thereby illustrating the benefit of incorporating multiple side infor-
mation into the problem. As mentioned in Table 1, ReProCS and
GRASTA can only recover the foreground and background from
compressive measurements. Fig. 1(d) shows that the efficiency of
ReProCS is worse than that of CORPCA-n-`1 [see Fig. 1(a)]. Fur-
thermore, Fig. 1(e) shows that GRASTA delivers poor background
recovery. For further results on the measurement bounds of COR-
PCA, we refer to our work in [25].

3.2. Compressive Video Foreground-Background Separation
We assess our CORPCA method in the application of compressive
video separation and compare it against the existing methods. We
run all methods listed in Table 1 on typical test video content [26].
In this experiment, we use d = 100 frames as training vectors for the
proposed CORPCA as well as for GRASTA [6] and ReProCS [10],
and three latest previous foregrounds as prior sparse information.

3.2.1. Visual Evaluation

We consider two videos [26], Bootstrap (60×80 pixels) and
Curtain (64×80 pixels) [c.f., Fig. 2], having a static and a
dynamic background, respectively. We first consider background-
foreground video separation with full access to the video data (the
data setM ); the visual results of the various methods are illustrated
in Fig. 2. It is evident that, for both the video sequences, CORPCA
delivers superior visual results than the other methods, which suffer
from less-details in the foreground and noisy background images.

Fig. 3 presents the results of CORPCA under various rates on
the number of measurementsm over the dimension n of the data (the
size of the vectorized frame). The results show that we can recover
the foreground and background even by accessing a small number of
measurements; for instance, we can obtain good-quality reconstruc-
tions with only m/n = 0.6 and m/n = 0.4 for Bootstrap [see
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Fig. 2. Background and foreground separation for the different separation methods with full data of frames Bootstrap#2210 and Curtain#2866.

defined as in [?].
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CORPCA with different measurement rates as shown in Fig. 6. The
ROC results for ReProCS are quickly degradated for the compressive
measurements even with a high rate m/n = 0.8.
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Fig. 2. Background and foreground separation for the different
separation methods with full data access Bootstrap#2213 and
Curtain#2866.
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Fig. 3. Compressive background and foreground separation of COR-
PCA with different measurement rates m/n.
Fig. 3(a)] and Curtain [see Fig. 3(b)], respectively. Bootstrap
requires more measurements than Curtain due to the more com-
plex foreground information. For comparison, we illustrate the vi-
sual results obtained with ReProCS—which, however, can only re-
cover the foreground using compressive measurements—in Fig. 4.
It is clear that the reconstructed foreground images have a poorer vi-
sual quality compared to CORPCA even at a high rate m/n = 0.81.

3.2.2. Quantitative Results

We evaluate quantitatively the separation performance via the re-
ceiver operating curve (ROC) metric [27]. The metrics True pos-
itives and False positives are defined as in [27]. Fig. 5 illustrates
the ROC results when assuming full data access, i.e., m/n = 1, of

1The original test videos and the reconstructed separated sequences are
available online [20].
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(b) Curtain

Fig. 4. Compressive foreground separation of ReProCS with differ-
ent measurement rates m/n.
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Fig. 5. ROC for the different separation methods with full data.
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Fig. 6. ROC for CORPCA and ReProCS with compressive measure-
ments.
CORPCA, RPCA, GRASTA, and ReProCS. The results show that
CORPCA delivers higher performance than the other methods, es-
pecially for the Curtain video sequence [c.f., Fig. 5(b)]. Further-
more, we compare the foreground recovery performance of COR-
PCA against ReProCS for different compressive measurement rates:
m/n = {0.8; 0.6; 0.4; 0.2}. The ROC results in Fig. 6 show that
CORPCA achieves a relatively high performance with small num-
ber of measurements: for Bootstrap until m/n = 0.6 [see Fig.
6(a)] and for Curtain until m/n = 0.4 [see Fig. 6(b)]. The ROC
results for ReProCS are quickly degrading even with a high com-
pressive measurement rate m/n = 0.8.

4. CONCLUSION
This paper proposed a compressive online robust PCA algorithm
(CORPCA) that can process a data vector per time instance using
compressive measurements. CORPCA efficiently incorporates mul-
tiple prior information based on the n-`1 minimization problem. We
have tested our method on synthetic data as well as in the compres-
sive video separation application using video data. The results re-
vealed the advantage of incorporating prior information by employ-
ing n-`1 minimization and demonstrated the superior performance
improvement offered by CORPCA compared to existing methods.
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