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Performance Bounds for Sparse Signal
Reconstruction with Multiple Side Information

Huynh Van Luong*, Jürgen Seiler, André Kaup, Søren Forchhammer, and Nikos Deligiannis

Abstract—In the context of compressive sensing (CS), this
paper considers the problem of reconstructing sparse signals
with the aid of other given correlated sources as multiple
side information (SI). To address this problem, we propose a
reconstruction algorithm with multiple SI (RAMSI) that solves a
general weighted n-`1 norm minimization. The proposed RAMSI
algorithm takes advantage of both CS and the n-`1 minimization
by adaptively computing optimal weights among SI signals at
every reconstructed iteration. In addition, we establish theoretical
performance bounds on the number of measurements that are
required to successfully reconstruct the original sparse source us-
ing RAMSI under arbitrary support SI conditions. The analyses
of the established bounds reveal that RAMSI can achieve sharper
bounds and significant performance improvements compared to
classical CS. We evaluate experimentally the proposed algorithm
and the established bounds using synthetic sparse signals as well
as correlated feature histograms, extracted from a multiview
image database for object recognition. The obtained results show
clearly that the proposed RAMSI algorithm outperforms classical
CS and CS with single SI in terms of both the theoretical bounds
and the practical performance.

Index Terms—Sparse signal recovery, compressive sensing,
multiple side information, n-`1 minimization, measurement
bound.

I. INTRODUCTION

COMPRESSIVE sensing (CS) is a recent theory to per-
form sparse signal reconstruction, which has attracted

significant attention [1]–[17] in the past decade. CS enables
sparse signals to be recovered in a computationally tractable
manner from a relative limited number of random measure-
ments. This can be done by solving a basic pursuit problem,
which involves the l1-norm minimization of the sparse signal
subject to the measurements. It has been shown that sparse
signal reconstruction can be even further improved by replac-
ing the l1-norm by a weighted l1-norm [5], [6], [12], [13].
The works in [14], [15] give general conditions for exact and
robust recovery to provide accurate CS bounds required for
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successful reconstruction based on convex optimization prob-
lems. Furthermore, distributed compressive sensing [16], [17]
allows a correlated ensemble of sparse signals to be jointly
recovered by exploiting intra- and inter-signal correlations.

In addition, CS with prior information [13], [18]–[25]
has drawn considerable attention in investigating theoretical
bounds as well as related applications. It was shown that if the
prior information is good enough, a l1-l1 minimization, which
integrates SI into the classical CS, improves the reconstruction
dramatically. The bounds on the number of measurements that
are required to guarantee perfect reconstruction for CS with
prior information are established in [18], [19]. These bounds
demonstrate that CS with prior information requires a smaller
number of measurements than those of classical CS. Moreover,
the works in [13], [22], [23] show efficient reconstructions
with single SI for sparse signals from a limited number of
measurements in compressive foreground extraction and MRI
imaging applications.

Recent emerging applications [26]–[28] such as visual sen-
sor surveillance and mobile augmented reality are following
a distributed sensing scenario where a plethora of tiny het-
erogeneous devices collect information from the environment.
In certain scenarios, we may need to deal with very high
dimensional data where sensing and processing are reasonably
expensive under time-resource constraints. These distributed
sensing challenges can be addressed by casting the problem
into a distributed sparse representation of multiple sources
[28]. The problem in this setup is to represent and reconstruct
the sparse sources along with exploiting the correlation among
them. One of the key questions is how to robustly reconstruct
a compressed source from a small number of measurements
given supported observations, i.e., other available sources as
SI. Recent attempts to address these challenges in [13], [18],
[19], [22], [23] are restricted to considering only one SI and the
SI is typically of good quality. However, we are aiming at ro-
bustly reconstructing the compressed source given multiple SI
signals in the scenarios of the multiple heterogeneous sources
changing in time, i.e., arbitrary SI qualities and unknown
correlations among them. The challenge raises key interesting
questions for solving the distributed sensing problem:
• How can we take advantage of the multiple heterogeneous

SI signals? This implies an optimal strategy able to ef-
fectively exploit the useful information from the multiple
SI signals as well as adaptively eliminate negative effects
of poor SI samples.

• How many measurements are required to successfully
reconstruct the sparse source given multiple SI signals?
This calls for performance bounds on the number of mea-
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surements required to guarantee successful data recovery.
To address the aforementioned challenges, we propose

a multi-hypothesis reconstruction using multiple SI signals
leading to higher signal recovery performance. This paper
contributes in a twofold way. First, an efficient reconstruction
algorithm with multiple SI (RAMSI) is proposed. The second
contribution is to theoretically establish the measurement
bounds of RAMSI under different SI conditions.

The proposed RAMSI algorithm can reconstruct a sparse
source with the aid of multiple SI signals. This is done by
solving a general weighted n-`1 minimization, where correla-
tions among sparse sources are taken into account efficiently.
The algorithm solves the n-`1 problem by adaptively selecting
optimal weights on multiple SI signals per iteration during
the reconstruction process. Contrary to the existing works
[13], [18], [19], [22], [23], which exploit only one SI signal,
the proposed algorithm can leverage the correlations among
multiple heterogenous sources to adapt to on-the-fly changes
of the correlations.

We also establish the performance bounds of the proposed
RAMSI algorithm to guarantee successful reconstruction using
convex optimization tools [14], [15]. The theoretical bounds
depend on the support of the source signal to be recovered and
the correlations between the source signal and the multiple
SI signals. The correlations are expressed via the supports of
differences between the source and SI signals, namely, the
supports of the subtractions of the source and SI signals. We
will show that the RAMSI bounds are sharper compared to
those of classic CS [1]–[3] and recent `1-`1 reconstruction
[18], [19] methods. Furthermore, we show that RAMSI with
higher number of SI signals always provides better measure-
ment bounds compared to the one with smaller number of SI
signals no matter how the SI qualities vary. These theoretical
bounds evidently depict the advantage of RAMSI to deal with
heterogeneous SI signals including possible poor SI signals.

The rest of this paper is organized as follows. Section II
reviews related works on CS and CS with prior information as
well as their corresponding performance bounds. We propose
the RAMSI algorithm in Section III. Our established bounds
and the corresponding bound analysis are presented in Section
IV. We assess the derived bounds and the performance of
RAMSI on different sparse sources in Section V.

II. RELATED WORK

In this section, we review the fundamental problem of signal
recovery from low-dimensional measurements [2]–[6] includ-
ing CS (Sec. II-A1) and CS with prior information [13], [18]–
[20], [22], [24] (Sec. II-A2) as well as their corresponding
known bounds. In addition, we consider the background for
measurement bounds (Sec. II-B).

A. Sparse Signal Recovery

1) Compressive Sensing: Low-dimensional signal recovery
arises in a wide range of applications such as statistical
inference and signal processing. Most signals in such ap-
plications have sparse representations in some domain. Let
x ∈ Rn denote a high-dimensional sparse vector, which is
compressible. The source x can be reduced by sampling via

a linear projection [3] at the encoder. We denote a random
measurement matrix for x by Φ ∈ Rm×n(m < n), whose
elements are sampled from an i.i.d. Gaussian distribution.
Thus, we get a measurement vector y = Φx, consisting of
m elements. At the decoder, the source x can be recovered
[2], [3] by solving the Basic Pursuit problem:

min
x
||x||1 subject to y = Φx, (1)

where ||x||p := (
∑n
i=1 |xi|p)1/p is `p norm of x wherein xi

is an element of x.
Problem (1) becomes an instance of finding a general

solution:
min
x
{H(x) = f(x) + g(x)}, (2)

where f := Rn → R is a smooth convex function and g :=
Rn → R is a continuous convex function possibly non-smooth.
Problem (1) is a special case of (2) with g(x) = λ||x||1 and
f(x) = 1

2 ||Φx− y||22 with Lipschitz L∇f [4]. The results of
using proximal gradient methods [4] give that x(k) at iteration
k can be iteratively computed by:

x(k) = Γ 1
L g

(
x(k−1) − 1

L
∇f(x(k−1))

)
, (3)

where L ≥ L∇f and Γ 1
L g

(x) is a proximal operator that is
defined by:

Γ 1
L g

(x) = arg min
v∈Rn

{ 1

L
g(v) +

1

2
||v − x||22

}
. (4)

The classical `1 minimization of CS [1]–[3] requires m`1

measurements [14], [18], [19] for successful reconstruction
bounded as:

m`1 ≥ 2s0 log
n

s0
+

7

5
s0 + 1, (5)

where s0 := nnz(x) = |i : xi 6= 0| and the |.| denotes the
cardinality of a set and nnz(.) denotes the number of non-
zero elements.

2) CS with Prior Information: CS with prior information or
SI via `1-`1 minimization improves the reconstruction dramati-
cally if the SI has good enough quality [18], [19], [22]. The `1-
`1 minimization considers reconstructing x given a SI, z ∈ Rn
by solving the problem (2) with g(x) = λ(||x||1 + ||x−z||1),
i.e., solving:

min
x

{1

2
||Φx− y||22 + λ(||x||1 + ||x− z||1)

}
. (6)

The `1-`1 minimization problem in (6) has an expression
for the bound on the number of measurements required to
successfully reconstruct x which is a function of the quality
of SI z as given by [18], [19], [22]:

m`1-`1 ≥ 2h log
( n

s0 + ξ/2

)
+

7

5

(
s0 +

ξ

2

)
+ 1, (7)

where

ξ : = |{i : zi 6= xi = 0}| − |{i : zi = xi 6= 0}| (8a)
h̄ : = |{i : xi > 0, xi > zi}| ∪ |{i : xi < 0, xi < zi}|, (8b)

wherein xi, zi are corresponding elements of x, z. The authors
of [18], [19] have shown that Problem (6) improves over
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Problem (1) provided that the SI has good enough quality.
The good quality is expressed by a high number of good
elements zi, which are equal to xi, to lead ξ in (8a) being
small. The method presented in this work, however, leads to a
high recovery performance independent of the quality of the
SI signals.

B. Background for Measurement Bounds

We introduce some key definitions and conditions in convex
optimization as well as linear inverse problems, based on the
concepts in [14], [15], to be used to derive the measurement
bounds for the proposed RAMSI algorithm.

1) Convex Cone: A convex cone C ⊂ Rn is a convex set
that satisfies C = τC, ∀τ ≥ 0 [15]. For the cone C ⊂ Rn, a
polar cone C◦ is the set of outward normals of C, defined by:

C◦ := {u ∈ Rn : uTx ≤ 0, ∀x ∈ C}. (9)

A descent cone (Definition 2.7 [15]) D(g,x) or alias tangent
cone [14] of a convex function g := Rn → R at a point
x ∈ Rn at which g is not increasing is defined:

D(g,x) :=
⋃
τ≥0

{y ∈ Rn : g(x + τy) ≤ g(x)}, (10)

where
⋃

denotes the union operator.
2) Gaussian Width: Before moving to the recovery condi-

tions for linear inverse problems, let us define the Gaussian
width [14] on which the recovery conditions are based. This
width can be considered as a summary parameter for convex
cones. For a convex cone C ⊂ Rn, considering a subset
C ∩ Sn−1 where Sn−1 ⊂ Rn is a unit sphere, the Gaussian
width (Definition 3.1 [14]) is defined as

ω(C) := E[ sup
u∈C∩Sn−1

gTu]. (11)

The Gaussian width is widely used as a summary parameter
to measure the aperture of a convex cone to determine the
recovery conditions [14]. The Gaussian width (Proposition 3.6
[14]) can further be bounded as follows

ω(C) ≤ E
[
dist(g, C◦)], (12)

where the E[.] is an expectation operator and dist(g, C◦)
denotes the Euclidean distance of g to the set C◦ that is defined
as

dist(g, C◦) := inf{||g − u||2 : u ∈ C◦}. (13)

More recently, a new summary parameter called the statisti-
cal dimension δ(C) of cone C [15], is introduced to estimate
the convex cone (Theorem 4.3 [15]). The statistical dimension
δ(C) has an interesting relationship with the Gaussian width
ω(C) which is given in Proposition 10.2 in [15]:

ω2(C) ≤ δ(C) ≤ ω2(C) + 1. (14)

This relationship gives a convenient bound for the Gaussian
width that is to be used in our following computations. The
statistical dimension (Proposition 3.1(4) [15]) can be expressed
in terms of the polar cone C◦ (9) by:

δ(C) := E
[
dist2(g, C◦)]. (15)

3) Measurement condition: An optimality condition
(Proposition 2.1 [14] and Fact 2.8 [15]) for linear inverse
problems states that x0 is the unique solution of (2) if and
only if

D(g,x0) ∩ null(Φ) = {0}, (16)

where null(Φ):={x ∈ Rn :Φx=0} is the null space of Φ.
We consider the number of measurements m required to

successfully reconstruct a given signal x0 ∈ Rn. Corol-
lary 3.3(1) [14] shows that if we have measurement y =
Φx0, x0 is the unique solution of (2) with probability at
least 1−exp(− 1

2 (
√
m−ω(D(g,x0)))2) provided that m ≥

ω2(D(g,x0))+1. Furthermore, combined with the relationship
in (14), we can interpret the successful recovery of x0 in an
equivalent condition:

m ≥ δ(D(g,x0)) + 1. (17)

4) Bound for the measurement condition: The key remain-
ing question is how to calculate the statistical dimension
δ(D(g,x)) of a descent cone D(g,x).

From (15), we can calculate δ(D(g,x)) as

δ(D(g,x)) = E
[
dist2(g,D(g,x)◦)

]
, (18)

where D(g,x)◦ is the polar cone of D(g,x) as defined in
(9). Let us consider the subdifferential ∂g [30] of a convex
function g at a point x ∈ Rn is given by ∂g :={u∈Rn : g(y)≥
g(x)+uT(y−x) for all y∈Rn}. From (18) and Proposition
4.1 in [15], we obtain the upper bound of δ(D(g,x)) by:

δ(D(g,x)) = E
[

inf
τ≥0

dist2(g, τ ·∂g(x))
]

≤ inf
τ≥0

E
[
dist2(g, τ ·∂g(x))

]
.

(19)

In short, we conclude the following proposition.

Proposition II.1 (The measurement bound of the convex norm
function). In order to obtain the measurement bound for the
recovery condition, m ≥ Ug + 1, we need to calculate the
quantity Ug given a convex norm function g :=Rn→R by:

Ug = inf
τ≥0

E
[
dist2(g, τ ·∂g(x))

]
(20)

where g is a standard normal vector in Rn.

III. RECONSTRUCTION WITH MULTIPLE SI SIGNALS

A. Problem Statement

We consider the problem of efficiently reconstructing a
sparse source from low-dimensional random measurements
given multiple correlated SI signals. When trying to recon-
struct a signal, it is possible to have access to correlated
signals, called SI signals, which have spatial or temporal
similarities with the target signal. Recently, CS with prior
information [13], [18], [19], [22], [23] emerged as an elegant
technique to exploit these similarities. For instance, the work
in [13] exploits the temporal similarity in MRI longitudinal
scans to accelerate MRI acquisition. In the application sce-
nario of video background subtraction [20], [22], [23], prior
information, which is generated from a past frame, is used to
reduce the number of measurements for a subsequent frame.
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(b) 1000-D histogram x of View 1
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(d) 1000-D histogram z1 of View 2

(e) View 3
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(f) 1000-D histogram z2 of View 3

Fig. 1. SIFT-feature histograms of object 60 in the COIL-100 [31].

Existing attempts to incorporate SI in compressed sensing
are typically considering one SI signal. We are aiming at
considering multiple SI signals which may have both spatial
and temporal correlations with the target signal. In the context
of the distributed sensing of sparse sources, this problem
appears in applications, e.g., distributed visual tracking and
recognitions [26]–[28], which involve multiple heterogeneous
sources that operate under resource and time constraints. These
applications are strained by expensive sensing and processing
of very high-dimensional data. The known SI signals can
be some other existing reconstructed sources, where we can
exploit inter-source redundancies for a robust reconstruction
from the reduced sparse source. Therefore, we need an ad-
vanced reconstruction method, able to flexibly adapt to on-the-
fly changes according to the heterogeneous sparse sources. In
this paper, we introduce ”the multi-hypothesis reconstruction
algorithm using multiple SI signals” (RAMSI) to address the
challenge.

Let us consider the scenario of tiny cameras for multiview
object recognition in Fig. 1, where a corresponding feature
histogram acquired from a given camera is considered as a
sparse source x. Figure 1 shows three-view images, View
1, View 2, View 3, of Object 60 in the COIL-100 database
[31] and the corresponding SIFT-feature [32] points that create
sparse feature histogram vectors. The feature histograms are
created by extracting all SIFT [32] features from the image
then propagating down a hierarchical vocabulary tree based
on a hierarchical k-means algorithm [33]. In reality, as we
may need very high-dimensional histograms, it is essential to
reduce the source dimension by CS before further processing.
The idea of CS is reducing the source without prior knowledge
of the source distribution. Thus a reduced y, which is obtained

by compressing 1000 dimensions (D) x, is to be conveyed
to the joint decoder. We use the available compressed y to
reconstruct x with given known SI signals, 1000-D z1 (Fig.
1(d)) and 1000-D z2 (Fig. 1(f)), which are feature histograms
of neighbor views. We observe that x, z1, z2 are naturally
correlated in some degree.

In order to reconstruct x from y given z1, z2, we may
go straight to the `1-`1 minimization solution (6) with only
one input SI either z1 or z2. The number of measurements
of y required to successfully reconstruct x is a function of
the quality of z1 or z2. There may be a chance that the `1-
`1 reconstruction performs worse than the `1 reconstruction,
incurred by a not good enough SI, e.g., z2, thereby exposing
the drawback of the `1-`1 reconstruction. Thus, we propose a
new Reconstruction Algorithm with Multiple Side Information
(RAMSI), which aims at automatically and optimally utilizing
information from the multiple SI signals gleaned from hetero-
geneous sources. RAMSI is built up not only using the advance
of the `1-`1 minimization (6) [18], [19], [22], [23] but robustly
working on multiple SI signals. RAMSI uses the measurement
y, which is compressed by y=Φx, and J known SI signals,
z1, z2, ...,zJ∈Rn as inputs. The objective function of RAMSI
shall be created as an n-`1 minimization based on Problem (2)
with

g(x)= λ

J∑
j=0

||Wj(x−zj)||1, (21)

where z0 = 0 and Wj are diagonal weight matrices, Wj =
diag(wj1, wj2, ..., wjn), wherein wji>0 is the weight in Wj

at index i. We formulate the objective function of the n-`1
minimization problem by:

min
x

{
H(x)=

1

2
||Φx−y||22+λ

J∑
j=0

||Wj(x−zj)||1
}
. (22)

B. The Proposed RAMSI Algorithm

An important question arises when trying to solve the n-
`1 problem in (22): how to determine the weight values to
improve the reconstruction as well as to effectively leverage
the multiple SI signals? This also calls for a method to avoid
recovery performance degradation when the quality of the SI
signals is poor, namely, their correlation with the source signal
of interest decreases. We should distribute relevant weights not
only to one SI but among SI signals. To optimize the objective
function (22) among SI signals, we impose a constraint on all
Wj , by doing so, we will be able to assign weights on multiple
SI signals according to their qualities during the iterative
process. We propose to solve the n-`1 problem (22) based
on the proximal gradient method [4], i.e., at every iteration k
we need to update, on the one hand, the weights Wj and on
the other hand compute x.

Firstly, for intermediately determining the considered
weights {wji} at indices j∈ [0, J ]; i∈ [1, n], we minimize the
objective function H(x) in (22) by considering x fixed. We
may have different strategies to update the weights {wji} de-
pending on our constraint which is defined on multiple SI sig-
nals. In this work, we use the constraint

∑J
j=0 Wj=I, where

I is a unit diagonal matrix (size of n×n), I=diag(1, 1, ..., 1).
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Consequently, we compute {wji} by separately optimizing
Problem (22) at a given index i of Wj by:

arg min
{wji}

{H(x)} = arg min
{wji}

{
λ

J∑
j=0

wji|xi − zji|
}
, (23)

where zji is an element of zj at index i. We achieve the
minimization of (23) (according to Cauchy’s inequality) when
all wji|xi−zji| are equal to a positive parameter ηi, i.e., wji=
ηi/|xi−zji|. To ensure that zero-valued components of |xi−zji|
do not prohibit the iterative computation of wji, we introduce
a small parameter ε>0 that is added to |xi−zji|. As a result,
we obtain

wji =
ηi

|xi − zji|+ ε
, (24)

Additionally, by considering the constraint
∑J
j=0 Wj=I, i.e.,∑J

j=0 wji=1 at an index i of Wj , we can rewrite each weight
component wji as

wji =
1

1 + (|xi − zji|+ ε)(
J∑

l=0,6=j
(|xi − zli|+ ε)−1)

. (25)

Given Wj , RAMSI subsequently computes x(k) at iteration
k to minimize Problem (22) from (3), where the proximal
operator Γ1

L g
(xi), which is introduced in (4), is computed by

the following proposition (the proof is given in Appendix A).

Proposition III.1 (The proximal operator for multiple SI). The
proximal operator Γ1

L g
(x) in (4) with g(x)=λ

∑J
j=0 ||Wj(x−

zj)||1 is given by:

Γ1
L g

(xi)=

xi− λ
L

J∑
j=0

wji(−1)b(l<j) if (27a);

zli if (27b);
(26)

zli+
λ

L

J∑
j=0

wji(−1)b(l<j)<xi<zl+1i+
λ

L

J∑
j=0

wji(−1)b(l<j); (27a)

zli+
λ

L

J∑
j=0

wji(−1)b(l−1<j)≤xi≤zli+
λ

L

J∑
j=0

wji(−1)b(l<j), (27b)

in which we have assumed that, without loss of generality,
−∞= z−1i≤ z0i≤ z1i≤ ...≤ zJi≤ zJ+1i =∞, and we have
defined a boolean function b(li < j) = 1 if li < j, otherwise
b(li<j)=0, here −1≤li≤J .

Finally, we sum up the proposed RAMSI in Algorithm 1,
which is based on a fast iterative FISTA algorithm [4]. It can
be noted that the Stopping criterion in Algorithm 1 can be
either a maximum iteration number kmax, a relative variation
of the objective function H(x) in (22), or a change of the
number of nonzero components of the estimate x(k). In this
work, the relative variation of H(x) is chosen.

IV. MEASUREMENT BOUNDS FOR RAMSI

We will theoretically establish the bounds of the RAMSI
algorithm (Sec. III-B) and then analyze the bounds in relation
to the bounds of classical CS in (5) and the `1−̀ 1 minimization
method in (7).

Algorithm 1: The proposed RAMSI algorithm.
Input: y,Φ, z1, z2, ...,zJ ;
Output: x̂;
// Initialization of variables and

constants.

W
(1)
0 =I; W

(1)
j =0 (1≤j≤J); u(1)=x(0)=0; L=L∇f ;

λ, ε>0; t1=1; k=0;
while Stopping criterion is false do

k = k + 1;
// Solving the solution given the

weights.
∇f(u(k)) = ΦT(Φu(k) − y);
x(k) = Γ 1

L g

(
u(k) − 1

L∇f(u(k))
)

; Γ 1
L g

(.) is given
by (26);
// Computing the updated weights.

w
(k+1)
ji = 1

1+(|x(k)
i −zji|+ε)(

J∑
l=0, 6=j

(|x(k)
i −zli|+ε)−1)

;

// Updating new values for the next
iteration.

tk+1 = (1 +
√

1 + 4t2k)/2;
u(k+1) = x(k) + tk−1

tk+1
(x(k) − x(k−1));

end
return x(k);

A. Bound for the RAMSI

In this section, we theoretically compute the measurement
bound Ugn-`1

(20), which corresponds to the number of
measurements required for successful signal recovery, for the
RAMSI algorithm. Let us recall from the RAMSI setup (Sec.
III) that the regularization function in Problem (22) is g(x) =∑J
j=0 ||Wj(x − zj)||1. First, we take the characteristics of

the considered signals into account.

1) Signal Setups: We begin with some definitions regarding
the source x and the SI signals zj .

Definition IV.1. The original sparse signal x has s0 nonzero
elements and each difference vector x−zj has sj nonzero
elements for a given SI zj , in other words, nnz(x−zj)=sj ,
where j∈[0, J ].

In addition, without loss of generality, we assume that

Definition IV.2. There are p indices i∈[1, p] where all {xi−
zji}Jj=0 values are not equal to zero, meanwhile there are n−q
indices i∈ [q+1, n] for which all {xi−zji}Jj=0 are equal to
zero. As a consequence, p≤inf{sj} and q≥sup{sj}.

By Definition IV.2, we represent the difference vectors in
terms of forms as

x−z0=(x1 , ..., xp , xp+1 , ..., xq , 0, ..., 0)
x−z1=(x1−z11, ..., xp−z1p, xp+1−z1p+1, ..., xq−z1q, 0, ..., 0)
· · ·
x−zJ=(x1−zJ1, ..., xp−zJp, xp+1−zJp+1, ..., xq−zJq, 0, ..., 0).

(28)
As another consequence from Definition IV.2, without loss of
generality, we assume that
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Definition IV.3. At a given index i ∈ [p+1, q], J values of
{xi−zji}Jj=0 have di∈[1, J ] values that are zeros, i.e., {xi−
zji}li+dij=li+1 = 0, where the subtractions of xi and a SI from
zli+1i to zli+dii are zeros.

By Definitions IV.1, IV.2, IV.3, we can consequently express
the total number of zero elements in (28) with the following
equality

q∑
i=p+1

di+(J+1)(n−q)=(J+1)n−
J∑
j=0

sj . (29)

From Definitions IV.2, IV.3, and wji in (24), we derive

wji=

{
ηi
ε ,

{
i∈[p+1, q], j∈[li+1, li+di]

}
,
{
i∈[q+1, n],∀j

}
ηi

|xi−zji|+ε , otherwise.
(30)

From the constraint
∑J
j=1 wji=1, we can derive:

ηi =
( J∑
j=0

1

|xi − zji|+ ε

)−1
. (31)

Definition IV.4. Focusing on a given index i of the source
x and J SI signals zj , without loss of generality regarding
the values of {zji}Jj=0, we assume that −∞≤z0i≤z1i≤ ...≤
zJi≤∞. For convenience, let z−1i and zJ+1i denote −∞ and
∞, respectively. We assume xi∈(zlii, zli+1i] with −1≤li≤J .
Let b(.) denote a boolean function, i.e., b(li<j)=1 if li<j,
otherwise b(li<j)=0, and let sign(.) denote a sign function.
Consequently, sign(xi−zji)=(−1)b(li<j).

2) The Measurement Bound: We derive a useful bound
to determine the number of measurements for the successful
reconstruction of RAMSI. A general bound is obtained by
Theorem IV.5. For convenience, the bound could also be
approximately computed via a simpler bound given in (58).

Theorem IV.5 (The measurement bound for multiple SI).
RAMSI requires mn-`1 measurements to successfully recon-
struct the source x given J SI signals zj:

mn-`1 ≥ 2ān-`1 log
n

s̄n-`1
+

7

5
s̄n-`1 + 1 + δn-`1 , (32)

where ān-`1 , s̄n-`1 , and δn-`1 are defined in (43a), (43c), and
(47), respectively.

Proof: We drive the bound based on Proposition II.1
by firstly computing the subdifferential ∂g(x) and then the
distance between the standard normal vector g to the ∂g(x).
With the conditions in Definitions IV.2, IV.3, IV.4 and the
weights in (30), the u∈∂g(x) of g(x) is derived by

u=


ui = ai, i = 1, ..., p
ui ∈ [bi − ci, bi + ci], i=p+1, ..., q

ui ∈
[
−
J∑
j=0

wji,
J∑
j=0

wji
]
=[−1, 1], i=q+1, ..., n,

(33)

where

ai =

J∑
j=0

wji(−1)b(li<j), i ∈ [1, p] (34a)

bi =
∑

j /∈[li+1,li+di]

wji(−1)b(li<j), i ∈ [p+ 1, q] (34b)

ci =

li+di∑
j=li+1

wji = di
ηi
ε
, i ∈ [p+ 1, q]. (34c)

We can compute the distance from the standard normal
vector g to the subdifferential ∂g(x) based on (13) and (33)
as

dist2(g, τ ·∂g(x))=

p∑
i=1

(gi − τai)2

+

q∑
i=p+1

(
P2(gi−τ(bi+ci))+P2(−gi+τ(bi−ci))

)
+

n∑
i=q+1

P2(|gi| − τ),

(35)

where P(a):=max{a, 0} returns the maximum value between
a∈R and 0. Taking the expectation of (35) delivers

E[dist2(g, τ ·∂g(x))]= p+ τ2
p∑
i=1

a2i

+
1√
2π

q∑
i=p+1

∫ ∞
τ(bi+ci)

(v − τ(bi +ci))
2e−v

2/2dv

+
1√
2π

q∑
i=p+1

∫ τ(bi−ci)

−∞
(v − τ(bi−ci))2e−v

2/2dv

+

√
2

π

n∑
i=q+1

∫ ∞
τ

(v − τ)2e−v
2/2dv.

(36)

Replacing the formulations from (76a), (76b) (Appendix B) in
(36) gives

E[dist2(g, τ ·∂g(x))]=p+ τ2
p∑
i=1

a2i +

q∑
i=p+1

A(τ(bi+ ci))

+

q∑
i=p+1

B(τ(bi− ci)) + 2

n∑
i=q+1

A(τ),

(37)

where

A(x) :=
1√
2π

∫ ∞
x

(v − x)2e−v
2/2dv (38a)

B(x) :=
1√
2π

∫ x

−∞
(v − x)2e−v

2/2dv. (38b)

We may emphasize the advantage of the adaptive weights
in (30), which take higher value when the SI signals’ values
are closer to the target values. Let us focus on a given index
i∈[p+1, q], that is, we can observe the weight distributions in
the expressions of bi (34b), ci (34c). Obviously, the weights
wji taking part in ci are considerably higher than those of in bi
since their SI signals zji are equal to source xi. Moreover, we
recall that the small positive parameter ε is introduced aiming
at the zero values of xi−zji which do not prohibit the iterative
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computations. This reasonably small ε can ensure that ci (34c)
is always greater than |bi| (34b). Consequently, we have bi+ci>
0 and bi−ci < 0. Using the inequality (78a) (Appendix B)
with x > 0 for the formulations A and the inequality (78b)
(Appendix B) with x<0 for the formulation B in (37) is to
reach the bound in (20) as follows

Ugn-`1
≤ inf
τ≥0

{
p+τ2

p∑
i=1

a2i+

q∑
i=p+1

(ψ(τ(bi+ ci))

τ(bi+ ci)
+
ψ(τ(ci− bi))
τ(ci− bi)

)
+ 2

n∑
i=q+1

ψ(τ)

τ

}
.

(39)

Applying the inequality (79) (Appendix B) on the second
sum in (39) delivers

Ugn-`1
≤ inf
τ≥0

{
p+τ2

p∑
i=1

a2i+

q∑
i=p+1

( 1√
2π

1− (bi+ ci)
2

τ(bi+ ci)

+
1√
2π

1−(ci− bi)2

τ(ci− bi)
+ci

2ψ(τ)

τ

)
+2(n− q)ψ(τ)

τ

}
.

⇔ Ugn-`1
≤ inf
τ≥0

{
p+τ2

p∑
i=1

a2i+

q∑
i=p+1

1√
2π

2ci
τ

( 1

c2i − b2i
− 1
)

+
( q∑
i=p+1

ci + (n− q)
)

2
ψ(τ)

τ

}
.

(40)

From the definitions of bi (34b) and ci (34c), we have

bi ≤
∑

j /∈[li+1,li+di]

wji = 1− ci, (41)

due to the constraint
∑J
j=0 wji = 1. Thus the second sum in

(40) gives
q∑

i=p+1

1√
2π

2ci
τ

( 1

c2i − b2i
− 1
)
≤

q∑
i=p+1

4√
2πτ

ci
2ci − 1

(1− ci)

≤ 4 inf{ci}√
2πτ(2 inf{ci} − 1)

q∑
i=p+1

(1− ci).

(42)

For simplicity, let us denote

ān-`1 =

p∑
i=1

a2i (43a)

κn-`1 =
4 inf{ci}√

2πτ(2 inf{ci} − 1)
(43b)

s̄n-`1 = q −
q∑

i=p+1

ci = p+

q∑
i=p+1

(1− ci). (43c)

Substituting the quantities of (43a), (43b), (43c), and inequality
(42) in formula (40) delivers

Ugn-`1
≤ inf
τ≥0

{̄
an-`1τ

2+(n−s̄n-`1)
2ψ(τ)

τ
+p+κn-`1(s̄n-`1−p)

}
.

(44)

Furthermore, we have

Ugn-`1
≤ inf
τ≥0

{
ān-`1τ

2+(n−s̄n-`1)
2√
2π

e−
τ2

2

τ

+s̄n-`1+(κn-`1−1)(s̄n-`1−p)
}
.

(45)

To give a bound as a function of the given x and other
related parameters, we can select a parameter τ > 0 to obtain
an useful bound in (45). Setting τ =

√
2 log(n/s̄n-`1) gives

Ugn-`1
≤2ān-`1 log

n

s̄n-`1
+
s̄n-`1(1−s̄n-`1/n)√
π log(n/s̄n-`1)

+s̄n-`1+δn-`1 ,

(46)

where
δn-`1 = (κn-`1 − 1)(s̄n-`1−p). (47)

Eventually, applying inequality (75) (Appendix B) to the
second term on the right side of inequality (46) gives

Ugn-`1
≤ 2ān-`1 log

n

s̄n-`1
+

7

5
s̄n-`1 + δn-`1 . (48)

As a result, the RAMSI bound requiring mn-`1 measurements
in (32) is obtained.

B. The Bound Analysis
We analyze the relations as well as compare the character-

istics of the bounds mn-`1 (32) with the classical CS bound
(5) and the `1-`1 bound (7).

1) Bound Relations: We can establish the following conse-
quent relations to the known bounds in Sec. II-A.

Corollary IV.5.1 (Bound relations). There are two consequent
relations, the relation to the `1 bound and the relation to the
`1-`1 bound.
(a) The RAMSI bound mn-`1 in (32) becomes the `1 bound

m`1 in (5) when W0=I and Wj=0 for j≥1, i.e,

mn-`1≡m`1≥2s0 log
n

s0
+

7

5
s0 + 1, (49)

where s0=nnz(x).
(b) The RAMSI bound mn-`1 in (32) is computed to become

the equal-weight bound m`1-`1 in (7) when W0 = W1 =
I/2 and Wj = 0 for j ≥ 2, here we use I/2 to ensure
that W0+W1=I, i.e.,

mn-`1≡m`1-`1≥2h̄ log
n

s̄`1-`1
+

7

5
s̄`1-`1 + 1, (50)

where h̄ is given by (8b) and s̄`1-`1 =(s0 + s1)/2.

Proof: To obtain Relation (a) under the condition that
W0 = I and Wj = 0 for j ≥ 1, we have s̄n-`1 = p = s0
and ān-`1 = p = s0 based on the definitions in (43a), (43c).
Consequently, from (47), δn-`1 = 0 due to s̄n-`1 = p. Using
these ān-`1 , s̄n-`1 , δn-`1 for inequality (32) in Theorem IV.5
gives mn-`1≥2s0 log(n/s0)+(7/5)s0+1, which is the `1 bound
m`1 in (5).

To reach Relation (b) given that W0=W1=I/2 and Wj=
0 for j ≥ 2, let us first denote two subsets, I1 and I2, as

I1 := {i ∈ [p+1, q] : bi+ci=1, bi−ci=0} (51a)
I2 := {i ∈ [p+1, q] : bi+ci=0, bi−ci=−1}. (51b)
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From the definitions of bi in (34b) and ci in (34c) with i∈
[p+1, q], we observe that i is in either I1 or I2.

Replacing the above conditions in (37) leads to

E[dist2(g, τ ·∂g(x))]= p+ τ2
p∑
i=1

a2i +
∑
i∈I1

A(τ)

+
∑
i∈I1

B(0) +
∑
i∈I2

A(0) +
∑
i∈I2

B(−τ) + 2

n∑
i=q+1

A(τ).

(52)

Applying the equalities (77) and the inequalities (78a),(78b)
from Appendix B on the inequality (52) gives

U`1-`1≤ inf
τ≥0

{
p+ τ2

p∑
i=1

a2i+

q∑
i=p+1

1

2
+

q∑
i=p+1

ψ(τ)

τ
+ 2

n∑
i=q+1

ψ(τ)

τ

}
,

(53)

which can be further elaborated to

U`1-`1≤ inf
τ≥0

{
τ2

p∑
i=1

a2i+
1

2
(p+q)+(2n−(p+q))

e
−τ2
2

√
2πτ

}
. (54)

We are considering this case with one SI and equal weights,
i.e., di=1, J=1, in (29), we thus derive p+ q = s0 +s1 and
combining with the definition (8b) gives

∑p
i=1a

2
i = h̄. Let us

denote s̄`1-`1 = (s0+s1)/2 and set τ =
√

2log(n/s̄`1-`1), we
have

U`1-`1≤2h̄ log
n

s̄`1-`1
+s̄`1-`1+

s̄`1-`1(1−s̄`1-`1/n)√
2π log(n/s̄`1-`1)

. (55)

Applying (75) to the third term on the right side of (55) gives

U`1-`1≤2h̄ log
n

s̄`1-`1
+

7

5
s̄`1-`1 . (56)

Finally, we obtain the required measurement m`1-`1

m`1-`1≥2h̄ log
n

s̄`1-`1
+

7

5
s̄`1-`1 + 1. (57)

It can be noted that s̄`1-`1 = s0+ξ/2 due to the definition of ξ
(8a), i.e., the bounds m`1-`1 in both (57) and (7) are identical
as in (50).

2) Bound Comparisons: In this section, we theoretically
evaluate and compare the RAMSI bound mn-`1 in (32) with the
bound m`1-`1 in (57). We first consider the last quantity δn-`1
in bound mn-`1 in (32). By the result of Lemma B.2 (Appendix
B), we observe that δn-`1 is negative. In addition, we derive
a simpler bound m̃n-`1 in (58) for conveniently computing
an approximation for bound mn-`1 (32) (Theory IV.5). For
evaluating the bounds more easily, we introduce two looser
bounds that are independent from the values of x, zj . Using
these bounds, we can theoretically figure out the characteristics
of bound m`1-`1 (57) and bound m̃n-`1 in (58).
(a) The simpler bound. Bound mn-`1 in (32) approximately

becomes

m̃n-`1 ≥ 2ān-`1 log
n

p
+

7

5
p+ 1, (58)

where ān-`1 is defined by (43a).

(b) The looser bounds. Bound m̃n-`1 in (58) and bound
m`1-`1 in (57) have corresponding looser bounds that are
independent from the values of x, zj , denoted by m̂n-`1
and m̂`1-`1 , given by

m̂n-`1 ≥ 2p log
n

p
+

7

5
p+ 1, (59)

m̂`1-`1 ≥ 2ρ log
n

s̄`1-`1
+

7

5
s̄`1-`1 + 1, (60)

where p (≤ inf{sj}) is defined in Definition IV.2, ρ =
min{s0, s1}, and s̄`1-`1 =(s0+s1)/2.

To reach the simpler bound in (58), we consider the quantity
s̄n-`1 (43c) in the bound mn-`1 (32). Let us recall that we
have assumed that parameter ε is small and thus ci≈ 1 (see
Eq. (82) in Lemma B.2). Consequently, from (43c), s̄n-`1 ≈
p as well as δn-`1 ≈ 0 from (47). Thus bound mn-`1 (32)
approximately becomes (58). The simpler bound m̃n-`1 (58)
is conveniently computed rather than the more complex bound
mn-`1 (32) due to the fact that we only need to compute ān-`1
and p. Furthermore, ān-`1 ≤ p≤ inf{sj} based on Eq. (43a)
and Definition IV.2, that is, p in (58) is less than s0 in (5) and
s̄`1-`1 in (57). Consequently, bound m̃n-`1 (58) of RAMSI are
sharper than bound m`1 (5) and bound m`1-`1 (57).

To obtain the two bounds in (59) and (60), we also consider
the worst-case scenarios of both bound m̃n-`1 (58) and bound
m`1-`1 (57), i.e., these looser bounds are independent from
the values of x, zj . We observe that the bounds m̃n-`1 (58)
and m`1-`1 (57) depend on the values of x, zj via quantities
ān-`1 and h̄, respectively. Bound m̃n-`1 (58) and bound m`1-`1
(57) are looser when the quantities, ān-`1 and h̄, take their
maximum value. From the definitions of ān-`1 (43a) and h̄
(8b), we observe that ān-`1 ≤ p and h̄ ≤ min{s0, s1}. As a
result, we derive the looser bounds m̂n-`1 in (59) and m̂`1-`1
in (60).

Considering bounds (59) and (60), they reveal that addi-
tional SI signals taken in RAMSI will reduce m̂n-`1 (59)
due to the fact that p ≤ inf{sj}. Clearly, p ≤ ρ, therefore,
m̂n-`1≤m̂`1-`1 . In particular, for bound m̂`1-`1 (60), if the SI
z1 is not good enough, i.e., s1�s0, bound m̂`1-`1 (60) would
be higher than bound m`1 (5) due to s̄`1-`1�s0. This analysis
theoretically explains the drawback of the `1-`1 minimization
as well as the advantages of RAMSI.

V. EXPERIMENTAL RESULTS

We present numerical experiments that demonstrate the es-
tablished bounds and performance of the RAMSI algorithm on
sparse signals with different characteristics. We also analyze
how the SI qualities have effects on the measurements of
RAMSI. In addition, we test RAMSI on correlated feature
histogram vectors as sparse sources, which are extracted from
a multiview image database [31].

A. Experimental Setup

In this experiment, we consider the reconstruction of a
generated sparse source x given some known SI signals,
z1, z2, z3. We generate x with n = 1000, and support
s0=128, that is, 128 of 1000 elements are nonzeros, which are
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generated from the standard i.i.d. Gaussian distribution. Firstly,
we would like to consider a scenario where the SI signals zj
are well-correlated to the source x leading to a small number
of nonzeros in x−zj . In this scenario, the SI signals, z1,
z2, z3, are generated satisfying sj = nnz(x−zj) = 64.
Moreover, similar to the setup in [18], [19], a parameter is
controlling the number of positions of nonzeros for which
both x and x−zj coincide. Let us denote this number by
rj . For instance, if rj = 51, x has 51 nonzero positions that
coincide with 51 nonzero positions of x−zj . This incurs a
significant error between the source and the SI, which is given
by ||zj−x||2/||x||2≈0.56.

To assess the performance of the algorithm and the bounds
when the quality of SI is poor, we generate SI signals that are
not well-correlated to the source x. Their poor qualities are
expressed via higher values of sj , for example, sj =256 and
sj = 352 are tested in this experiment. Furthermore, we set
rj = 128, namely, 128 nonzero positions of x coincide with
128 nonzero positions out of the total 256 or 352 nonzero
positions of the SI signals, z1, z2, z3. This leads to very high
errors, e.g., ||zj−x||2/||x||2 ≈ 1.12 for sj = 256, and the
supports sj of x−zj are much higher than that of x. It may
be noted that we set all sj equal to avoid numerous scenarios
so that comparisons are carried out under similar SI qualities.

Furthermore, we experimentally conduct the reconstruction
of multiview feature histograms as sparse sources used in
multiview object recognition. Given an image, its feature
histogram is formed as in Sec. III-A. The size of the vocab-
ulary tree [33] depends on the value of k and the number
of hierarchies, for example, if k = 10 and 3 hierarchies,
n=1000 vocabularies as 1000-D. Because of the small number
of features in a single image, the histogram vector x is indeed
sparse and compressible. Therefore, x is first projected into
the compressed vector y which is to be sent to the decoder. At
the joint decoder, we take x to be reconstructed given some
already decoded histograms of neighbor views, e.g., z1, z2,
z3. In this work, we use the COIL-100 data set [31] containing
multiview images of 100 small objects with different angle
degrees. In order to ensure that our experimental setup reflects
a realistic scenario, we randomly select the 4 neighbor views
(3 neighbors as SI signals) of objects 16 (Fig. 4(a)) and 60
(Fig. 4(b)) over 72 views captured through 360 degrees in
the COIL-100 [31] multiview database. Specifically, the four
neighbor views are assigned to z1, x, z2, z3, respectively, of
which the third SI z3 is set to the furthest neighbor of the
source x.

B. Performance Evaluation
1) Synthetic Signal Reconstruction: We evaluate and com-

pare the obtained bounds mn-`1 (32), m`1-`1 (7), and m`1 (5)
along with the reconstruction accuracy of RAMSI. For evaluat-
ing the reconstruction of RAMSI, we introduce a probability
of successful recovery, denoted as Pr(success). For a fixed
dimension or number of measurements m, Pr(success) is the
number of times, in which the source x is recovered as x̂
with an error ||x̂−x||2/||x||2 ≤ 10−2, divided by the total
number of 100 trials (each trial considered different generated
x, z1, z2, z3,Φ).
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Fig. 2. Successful probabilities and measurement bounds and of the original
1000-D x vs. number of measurements m for the RAMSI using 1,2,3 SI
signals.

Let RAMSI-J-`1 denote the RAMSI reconstruction, where
J indicates the number of SI signals, e.g., RAMSI-1-`1,
RAMSI-2-`1, RAMSI-3-`1 are RAMSI using 1 (z1), 2 (z1,
z2), and 3 (z1, z2, z3) SI signals, respectively. Let FISTA-
`1-`1 denote the `1-`1 CS reconstruction with one SI (z1) [18].
The existing FISTA [4] and FISTA-`1-`1 reconstructions [18]
are used for comparison. Let m3-`1 , m2-`1 , m1-`1 (32), m`1-`1
(7), and m`1 (5) denote the corresponding bounds of RAMSI-
3-`1, RAMSI-2-`1, RAMSI-1-`1, FISTA-`1-`1, and FISTA.
The original source 1000-D x is compressed into different
lower-dimensions y. We assess the bounds and the accuracy
of a reconstructed x̂ versus the x via the successful rate versus
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the number of measurements m, which is the dimensionality
of y. RAMSI (in Algorithm 1) thus has n = 1000, m < n,
J=1, 2, 3 and we set ε=10−5, λ=10−5.

Figure 2(a) depicts the bounds as well as successful prob-
abilities of recovering x versus the number of measurements
m, given the SI signals with sj=64. The figure shows clearly
that RAMSI-3-`1 gives the sharpest bound m3-`1 and the
best successful probability. Furthermore, the performance of
RAMSI-2-`1 is higher than those of RAMSI-1-`1 and FISTA-
`1-`1. In particular, FISTA-`1-`1 outperforms RAMSI-1-`1 in
this scenario of the quite good SI quality. We can infer that
in these kinds of sparse sources, the equal weights of FISTA-
`1-`1 gain more than the adaptive weights of RAMSI-1-`1.
This can be explained by looking at bound m1-`1 (32) of
RAMSI-1-`1 and bound m`1-`1 (7) of FISTA-`1-`1. It is clear
that ā1-`1 (43a) is greater than h̄ (8b). Thus, combining with
the small number s1 in case of the good SI z1 resulting in
small s̄`1-`1 , the bound as well as the successful probability
of FISTA-`1-`1 are better than those of RAMSI-1-`1 shown
by magenta and black lines in Fig. 2(a). We can conclude that
exploiting multiple SI signals gives the best performance and
when dealing with only one SI for this kind of scenarios, we
may choose equal weights.

Moreover, Figs. 2(b) and 2(c) present the bounds and the
reconstruction performance versus the number of measure-
ments when the SI signals are less correlated with the signal of
interest, e.g., sj=256 and sj=352. All RAMSI configurations
outperform FISTA and FISTA-`1-`1. The performance of
RAMSI-1-`1 is better than that of FISTA-`1-`1, where the
same SI is exploited. More interestingly, in Fig. 2(c), we
observe that the accuracy of FISTA-`1-`1 is worse than that
of FISTA, i.e., the SI z1 does not help, however, RAMSI-1-
`1 still outperforms FISTA. These results may highlight the
drawback of `1-`1 minimization when the SI quality is not
good enough. Though encountering poor SI signals, all the
RAMSI versions achieve better results due to performing the
proposed adaptive-weighted n-`1 minimization. Specially, we
observe that the performances of RAMSI-2-`1 and RAMSI-3-
`1 are slightly worse than that of RAMSI-1-`1. These small
penalties can be explained by the not so good SI signals which
interfere in the iterative update process. We will see more on
these occurrences in the following analysis on the SI quality.

2) SI Quality-Dependence Analysis: This subsection con-
siders how the SI qualities impact the number of measurements
required to successfully reconstruct the original source. To this
end, we perform the proposed RAMSI algorithm on variations
of SI qualities, z1, z2, z3, through different s1 =s2 =s3 for
reconstructing the source x. For a fixed value of s1=s2=s3,
we measure the number of measurements of RAMSI-3-`1,
RAMSI-2-`1, RAMSI-1-`1, FISTA-`1-`1, FISTA as well as
the corresponding bounds, m3-`1 , m2-`1 , m1-`1 (32), m`1-`1
(7), m`1 (5). In this experiment, we get the number of
measurements once the algorithms achieve Pr(success)≥0.98.
We conduct the experiment for the range of s1=s2=s3 from
20 to 400, where SI qualities with supports greater than 400
are too poor to be considered. We evaluate the performance
on the source x with s0=128, which is generated as in Sec.
V-A.

Number of nonzeros
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Fig. 3. Number of measurements vs. number of nonzeros s1=s2=s3 of SI
signals given the source s0=128 for the RAMSI using 1,2,3 SI signals.

Figure 3 illustrates the number of measurements versus the
number of nonzeros as values of s1 = s2 = s3 of SI signals
representing the quality variations. Evidently, we can observe
that the reconstructions with SI signals significantly reduce
the number of measurements until the quality of SI signals
meets the number of nonzeros s0 of the source x. When sj>
s0, the performance and the measurement bound of FISTA-
`1-`1 are linearly increased according to increasing number
of s1. Specifically, at s1 = 315 in Fig. 3, the FISTA-`1-`1
performance is worse than that of FISTA. This illustration
along with the performance in Fig. 2(c) once again show the
drawback of FISTA-`1-`1.

As shown in Fig. 3, the performance of RAMSI, both in
terms of the theoretical bounds and the practical results, is
robust against poor-quality SI signals. The theoretical bounds
are sharper when the number of SI signals increases and
remains constant when the number of nonzero values sj
increase (indicating increasing-poor SI quality). Considering
the performance of RAMSI, with sj > 300, the number of
measurements of RAMSI-3-`1 and RAMSI-2-`1 are slightly
worse than those of RAMSI-1-`1 and approaching to the
measurements of FISTA as shown in Fig. 3. We can also
see these occurrences in Fig. 2(c), where sj =352 indicating
poor SI signals. To avoid these circumstances, we may find
a solution to adaptively select the best performance among
the RAMSI configurations. For instance, when we have only
one SI, we may use equal weights over the adaptive weights
for the good SI qualities such as the number of nonzeros less
than 210 shown in Fig. 3. It can be re-emphasized that the
advantage of RAMSI is that we can control it via the weights
and parameters to enable RAMSI to deal with such poor SI
signals. Therefore, we ensure that the RAMSI performance is
not worse than FISTA by weighing dominantly on the source
rather than the poor SI signals during the reconstruction.

3) Feature Histogram Reconstruction: In this subsection,
we evaluate the RAMSI configurations and the bounds on
sparse sources extracted from the multiview image database
[31]. Figure 4 presents the performance of RAMSI with 1,
2, 3 SI signals, FISTA [4], FISTA-`1-`1 [18] in terms of
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(c) Reconstruction performance of Object 16
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(d) Reconstruction performance of Object 60

Fig. 4. Successful probabilities and measurement bounds vs. number of
measurements m for objects 16 and 60 in the COIL-100 [31].

the successful probabilities and theoretical bounds versus the
number of measurements. Similar to the generated signals
(Sec. V-B1), RAMSI (in Algorithm 1) has n= 1000, m<n,
J=1, 2, 3 and we set ε=10−5, λ=10−5. Pr(success) is also
the number of times divided by the total number of 100 trials
(each trial considered randomly selecting 4 neighbor views
for objects 16 (Fig. 4(a)) and 60 (Fig. 4(b)). Figure 4(c) and
Figure 4(d) show clearly that RAMSI significantly improves
the reconstruction accuracy for the representative objects 16
(Fig. 4(a)) and 60 (Fig. 4(b)), respectively. Furthermore, the
results using 3 SI signals, RAMSI-3-`1, provide for highest
accuracy and the performance of RAMSI-2-`1 is higher than
that of RAMSI-1-`1. It can be noted that RAMSI-3-`1 gains
not much over RAMSI-2-`1 since we set the third SI as the
furthest neighbor as in Sec. V-A. These results are consistent
with what we have shown in the performances of the generated
sparse signals (Secs. V-B1+V-B2).

VI. CONCLUSION

This paper presented the RAMSI algorithm and theoretically
established its performance bounds. The proposed algorithm

incorporates multiple SI signals in the problem of sparse signal
recovery and iteratively weights the various SI signals so as to
optimize the reconstruction performance. The obtained bounds
confirm the advantage of RAMSI in utilizing multiple SI
signals to significantly reduce the number of measurements
and to deal with variations in the quality of the SI signals.
We experimentally assessed the established bounds and the
performance of RAMSI against state-of-the-art methods using
both synthetic and real-life sparse signals. The results showed
that the measurement bounds of RAMSI are sharper and that
RAMSI outperformed the conventional `1 CS and the recent
`1-`1 minimization reconstruction methods. Moreover, RAMSI
can efficiently incorporate multi-hypothesis SI signals, where
the higher number of SI signals, the higher performance of
the proposed RAMSI algorithm.

APPENDIX A
PROOF OF PROPOSITION III.1

We shall compute the proximal operator Γ1
L g

(x) (4) with
g(x)=λ

∑J
j=0 ||Wj(x−zj)||1. From (4), Γ 1

L g
(x) is expressed

by:

Γ1
L g

(x)=arg min
v∈Rn

{λ
L

J∑
j=0

||Wj(v−zj)||1+
1

2
||v−x||22

}
. (61)

We note that both terms in (61) are separable in v and thus
we can minimize each element vi of v individually as

Γ1
L g

(xi)=arg min
vi∈R

{
h(vi)=

λ

L

J∑
j=0

wji|vi−zji|+
1

2
(vi−xi)2

}
.

(62)
We consider ∂h(vi)/∂vi. Without loss of generality, we

assume −∞≤ z0i≤ z1i≤ ...≤ zJi≤∞. For convenience, let
us denote z−1i = −∞ and zJ+1i =∞. When vi is located
in one of the intervals, we suppose vi ∈ (zli, zl+1i) with
−1 ≤ l ≤ J , where ∂h(vi) exists. Taking the derivative of
h(vi) in (zli, zl+1i) delivers

∂h(vi)

∂vi
=
λ

L

J∑
j=0

wjisign(vi−zji)+(vi−xi), (63)

where sign(.) is a sign function. In addition, let b(.) denote a
boolean function, i.e., b(l<j)=1 if l<j, otherwise b(l<j)=
0. Consequently, sign(vi−zji)=(−1)b(l<j) and from (63), we
rewrite:

∂h(vi)

∂vi
=
λ

L

J∑
j=0

wji(−1)b(l<j)+(vi−xi). (64)

When setting ∂h(vi)/∂vi = 0 to minimize the h(vi), we
derive:

vi=xi−
λ

L

J∑
j=0

wji(−1)b(l<j). (65)

This vi (65) is only valid in (zli, zl+1i), i.e.,

zli+
λ

L

J∑
j=0

wji(−1)b(l<j)<xi<zl+1i+
λ

L

J∑
j=0

wji(−1)b(l<j). (66)

In case of that xi does not belong to alike intervals in (66),
i.e.,

zli+
λ

L

J∑
j=0

wji(−1)b(l−1<j)≤xi≤zli+
λ

L

J∑
j=0

wji(−1)b(l<j). (67)
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We will prove that h(vi) (62) is minimum when vi = zli in
the following Lemma A.1.
Lemma A.1. Given xi belonging to the intervals represented
in (67), the h(vi) in (62) is minimum when vi = zli.

Proof: To prove it, we re-express the h(vi) (62) by:

h(vi)=
λ

L

J∑
j=0

wji|(vi−zli)−(zji−zli)|+
1

2
((vi−zli)−(xi−zli))2. (68)

Applying a simple inequality |a−b| ≥ |a|−|b|, where a, b ∈ R,
to the first term and expanding the second term in (68), we
obtain:

h(vi)≥
λ

L

J∑
j=0

wji|vi−zli|−
λ

L

J∑
j=0

wji|zji−zli|+
1

2
(vi−zli)2−(vi−zli)(xi−zli)+

1

2
(xi−zli)2.

(69)

It can be noted that −(vi−zli)(xi−zli) ≥ −|vi−zli||xi−zli|.
Thus the (69) inequality is equivalent to:

h(vi)≥|vi−zli|
λ

L

J∑
j=0

wji−|vi−zli||xi−zli|+
1

2
(vi−zli)2

− λ

L

J∑
j=0

wji|zji−zli|+
1

2
(xi−zli)2.

(70)

Without difficulty, from the expression (67), we get:

−λ
L

J∑
j=0

wji≤xi−zli≤
λ

L

J∑
j=0

wji⇔|xi−zli|≤
λ

L

J∑
j=0

wji. (71)

Eventually, we observe that the part including vi in the right
hand side of the h(vi) inequality in (70) is

|vi − zli|
(λ
L

J∑
j=0

wji−|xi − zli|
)

+
1

2
(vi−zli)2. (72)

With (71), the expression (72) is minimum when vi = zli.
Therefore, we deduce that h(vi) (62) is minimum when vi=
zli.

In summary, from (65) with conditions in (66), (67) and the
Lemma A.1, we obtain:

Γ1
L g

(xi)=

xi− λ
L

J∑
j=0

wji(−1)b(l<j) if (66);

zli if (67);
(73)

APPENDIX B
USEFUL FUNCTIONS AND INEQUALITIES

Let us consider two functions relating to the normal standard
distribution, the probability density of the normal distribution
N(0, 1) with zero-mean and unit variance ψ(x) given by:

ψ(x) :=
1√
2π
e−x

2/2. (74)

The meaningful inequality [19] of a specific log expression is
also used in our bound computation, expressed as follows

(1− x−1)√
π log(x)

≤ 1√
2π
≤ 2

5
, (75)

for all x > 1.

Moreover, we will use two formulations which are fre-
quently used in our computations denoted as A(x) and B(x)
same as in [19]:

A(x) :=
1√
2π

∫ ∞
x

(v − x)2e−v
2/2dv (76a)

B(x) :=
1√
2π

∫ x

−∞
(v − x)2e−v

2/2dv. (76b)

Without difficulty, if x = 0 we obtain

A(0) = B(0) = 1/2. (77)

For x 6= 0, we have useful inequalities [19] expressed by:

A(x) ≤
{
ψ(x)/x, x > 0
x2 + 1, x < 0

(78a)

B(x) ≤
{
−ψ(x)/x, x < 0
x2 + 1, x > 0.

(78b)

Lemma B.1. Given x ∈ (0, 1] and τ > 0, for ψ(x) given in
(74), we have

ψ(τx)

τx
≤ 1√

2π

1− x2

τx
+ x

ψ(τ)

τ
. (79)

Proof: We have the left hand of the inequality (79) is
expressed based on (74) as

ψ(τx)

τx
=

1√
2π

e−τ
2x2/2

τx
. (80)

Applying the Bernoulli’s inequality on e−τ
2x2/2 obtains

e−τ
2x2/2 =

(
1+(e−τ

2/2−1)
)x2

≤ 1+x2(e−τ
2/2−1), (81)

where 0 < x ≤ 1 and (e−τ
2/2 − 1) > −1 given τ > 0.

Combining (81) and (80), we derive the inequality (79).

Lemma B.2. Given a sparse signal x∈Rn with nnz(x)=s0
and J SI signals, zj∈Rn with nnz(x−zj)=sj , considering
bound mn-`1 in (32), the last quantity δn-`1 (47) is negative.

Proof: Let us recall the last quantity in mn-`1 (32),
δn-`1 = (κn-`1 −1)(s̄n-`1−p). Based on the definition of s̄n-`1
(43c), clearly (s̄n-`1−p) > 0 due to ci < 1 (34c).

We consider κn-`1 (43b), wherein ci is derived from (31)
and (34c) as

ci = di

(
di +

∑
j /∈[li+1,li+di]

ε

|xi − zji|+ ε

)−1
. (82)

We have set the pretty small parameter ε, thus from (82) ci≈1.
As a result, κn-`1 (43b) is approximately obtained by

κn-`1 ≈
4√
2πτ

≈ 2√
π log(n/s̄n-`1)

, (83)

due to the setting τ =
√

2 log(n/s̄n-`1). We observe that
κn-`1 < 1 if s̄n-`1/n < 0.28. From (43c), s̄n-`1 ≈ p≤ inf{sj}
(Definition IV.2). We have assumed that our input source
signal is supposed to be sparse with certain degree. In case of
the source signal is not sparse enough and also all SI signals
are very bad qualities, in other words, s̄n-`1 ≈ p≤ inf{sj} is
relative high, the recovery algorithm would not work well as
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expected. To show this statement, look at the looser bound
m̂n-`1 (59) for RAMSI or the similar form bound m`1 (5)
without SI signals, we refer to Lemma B.3. We prove for m̂n-`1
(59) in Lemma B.3 that if the sparse degree p/n is less than
0.23, bound m̂n-`1 (59) is less than the source dimension n.
Otherwise, bound m̂n-`1 (59) is higher than n, i.e., the recovery
is useless in this context. Therefore, in our feasible context,
i.e., p/n < 0.23 or s̄n-`1/n < 0.23, we get (κn-`1 − 1) < 0
and combine with (s̄n-`1 − p) > 0 to conclude the quantity
δn-`1 < 0.

Lemma B.3. Given a sparse signal x∈Rn with nnz(x)=s0
and J SI signals, zj∈Rn with nnz(x−zj)=sj , considering
bound m̂n-`1 (59), if the sparse degree p/n < 0.23, bound
m̂n-`1 (59) is less than the source dimension n, otherwise
m̂n-`1>n.

Proof: Let us recall bound m̂n-`1 (59) and suppose the
bound satisfies the condition m<n as

2p log
n

p
+

7

5
p < n. (84)

Let x ∈ R denote x = n/p, substituting x for the inequality
(84) gives

2 log x+
7

5
< x

⇔ f(x) = x− 2 log x+
7

5
> 0,

(85)

where x>1. From (85), we find an extremum at x=2 due to
f ′(x)=(x−2)/x. Without difficulty, we can find the condition
of x > 4.33 or p/n < 0.23 to get the inequality (85) as the
proof.
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