14 research outputs found

    Human upper limb motion analysis for post-stroke impairment assessment using video analytics

    Get PDF
    Stroke is a worldwide healthcare problem which often causes long-term motor impairment, handicap, and disability. Optical motion analysis systems are commonly used for impairment assessment due to high accuracy. However, the requirement of equipment-heavy and large laboratory space together with operational expertise, makes these systems impractical for local clinic and home use. We propose an alternative, cost-effective and portable, decision support system for optical motion analysis, using a single camera. The system relies on detecting and tracking markers attached to subject's joints, data analytics for calculating relevant rehabilitation parameters, visualization, and robust classification based on graph-based signal processing. Experimental results show that the proposed decision support system has the potential to offer stroke survivors and clinicians an alternative, affordable, accurate and convenient impairment assessment option suitable for home healthcare and tele-rehabilitation

    Visual tracking with online assessment and improved sampling strategy

    Get PDF
    The kernelized correlation filter (KCF) is one of the most successful trackers in computer vision today. However its performance may be significantly degraded in a wide range of challenging conditions such as occlusion and out of view. For many applications, particularly safety critical applications (e.g. autonomous driving), it is of profound importance to have consistent and reliable performance during all the operation conditions. This paper addresses this issue of the KCF based trackers by the introduction of two novel modules, namely online assessment of response map, and a strategy of combining cyclically shifted sampling with random sampling in deep feature space. A method of online assessment of response map is proposed to evaluate the tracking performance by constructing a 2-D Gaussian estimation model. Then a strategy of combining cyclically shifted sampling with random sampling in deep feature space is presented to improve the tracking performance when the tracking performance is assessed to be unreliable based on the response map. Therefore, the module of online assessment can be regarded as the trigger for the second module. Experiments verify the tracking performance is significantly improved particularly in challenging conditions as demonstrated by both quantitative and qualitative comparisons of the proposed tracking algorithm with the state-of-the-art tracking algorithms on OTB-2013 and OTB-2015 datasets

    Learning and recognition of objects inspired by early cognition

    Full text link
    In this paper, we present a unifying approach for learning and recognition of objects in unstructured environments through exploration. Taking inspiration from how young infants learn objects, we establish four principles for object learning. First, early object detection is based on an attention mechanism detecting salient parts in the scene. Second, motion of the object allows more accurate object localization. Next, acquiring multiple observations of the object through manipulation allows a more robust representation of the object. And last, object recognition benefits from a multi-modal representation. Using these principles, we developed a unifying method including visual attention, smooth pursuit of the object, and a multi-view and multi-modal object representation. Our results indicate the effectiveness of this approach and the improvement of the system when multiple observations are acquired from active object manipulation

    高速ビジョンを用いた振動源定位に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Motion-Augmented Inference and Joint Kernels in Structured Learning for Object Tracking and Integration with Object Segmentation

    Get PDF
    Video object tracking is a fundamental task of continuously following an object of interest in a video sequence. It has attracted considerable attention in both academia and industry due to its diverse applications, such as in automated video surveillance, augmented and virtual reality, medical, automated vehicle navigation and tracking, and smart devices. Challenges in video object tracking arise from occlusion, deformation, background clutter, illumination variation, fast object motion, scale variation, low resolution, rotation, out-of-view, and motion blur. Object tracking remains, therefore, as an active research field. This thesis explores improving object tracking by employing 1) advanced techniques in machine learning theory to account for intrinsic changes in the object appearance under those challenging conditions, and 2) object segmentation. More specifically, we propose a fast and competitive method for object tracking by modeling target dynamics as a random stochastic process, and using structured support vector machines. First, we predict target dynamics by harmonic means and particle filter in which we exploit kernel machines to derive a new entropy based observation likelihood distribution. Second, we employ online structured support vector machines to model object appearance, where we analyze responses of several kernel functions for various feature descriptors and study how such kernels can be optimally combined to formulate a single joint kernel function. During learning, we develop a probability formulation to determine model updates and use sequential minimal optimization-step to solve the structured optimization problem. We gain efficiency improvements in the proposed object tracking by 1) exploiting particle filter for sampling the search space instead of commonly adopted dense sampling strategies, and 2) introducing a motion-augmented regularization term during inference to constrain the output search space. We then extend our baseline tracker to detect tracking failures or inaccuracies and reinitialize itself when needed. To that end, we integrate object segmentation into tracking. First, we use binary support vector machines to develop a technique to detect tracking failures (or inaccuracies) by monitoring internal variables of our baseline tracker. We leverage learned examples from our baseline tracker to train the employed binary support vector machines. Second, we propose an automated method to re-initialize the tracker to recover from tracking failures by integrating an active contour based object segmentation and using particle filter to sample bounding boxes for segmentation. Through extensive experiments on standard video datasets, we subjectively and objectively demonstrate that both our baseline and extended methods strongly compete against state-of-the-art object tracking methods on challenging video conditions
    corecore