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Abstract

Motion-Augmented Inference and Joint Kernels in Structured Learning for

Object Tracking and Integration with Object Segmentation

Kumara Ratnayake

Concordia University, 2016

Video object tracking is a fundamental task of continuously following an object of interest in

a video sequence. It has attracted considerable attention in both academia and industry due

to its diverse applications, such as in automated video surveillance, augmented and virtual

reality, medical, automated vehicle navigation and tracking, and smart devices. Challenges

in video object tracking arise from occlusion, deformation, background clutter, illumination

variation, fast object motion, scale variation, low resolution, rotation, out-of-view, and motion

blur. Object tracking remains, therefore, as an active research field. This thesis explores

improving object tracking by employing 1) advanced techniques in machine learning theory

to account for intrinsic changes in the object appearance under those challenging conditions,

and 2) object segmentation.

More specifically, we propose a fast and competitive method for object tracking by mod-

eling target dynamics as a random stochastic process, and using structured support vector

machines. First, we predict target dynamics by harmonic means and particle filter in which

we exploit kernel machines to derive a new entropy based observation likelihood distribution.

Second, we employ online structured support vector machines to model object appearance,

where we analyze responses of several kernel functions for various feature descriptors and

study how such kernels can be optimally combined to formulate a single joint kernel func-

tion. During learning, we develop a probability formulation to determine model updates and

use sequential minimal optimization-step to solve the structured optimization problem. We

gain efficiency improvements in the proposed object tracking by 1) exploiting particle filter

for sampling the search space instead of commonly adopted dense sampling strategies, and 2)

iii



iv

introducing a motion-augmented regularization term during inference to constrain the output

search space.

We then extend our baseline tracker to detect tracking failures or inaccuracies and re-

initialize itself when needed. To that end, we integrate object segmentation into tracking.

First, we use binary support vector machines to develop a technique to detect tracking failures

(or inaccuracies) by monitoring internal variables of our baseline tracker. We leverage learned

examples from our baseline tracker to train the employed binary support vector machines.

Second, we propose an automated method to re-initialize the tracker to recover from tracking

failures by integrating an active contour based object segmentation and using particle filter to

sample bounding boxes for segmentation.

Through extensive experiments on standard video datasets, we subjectively and objectively

demonstrate that both our baseline and extended methods strongly compete against state-of-

the-art object tracking methods on challenging video conditions.
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Chapter 1

Introduction

With rapid advances in semiconductor technologies, low cost smart devices with increasing

computational power have become ubiquitous in our daily lives. Video processing is an active

research area, which aims at devising advanced algorithms that enable such devices to per-

ceive the visual world. Despite much effort on high level tasks, including object detection,

recognition, and tracking, state-of-the-art video processing systems are by far inferior when

compared to the human ability of understanding and interpretation of such tasks. In this the-

sis, we address the task of following moving object throughout a video sequence; a task often

referred to as object tracking. The main objective of our proposed research is to build and

validate a fast, effective, and automated object tracking system. More specifically, this the-

sis focuses on generic model-free online object tracking where no prior knowledge about the

target is available, other than the target’s initial selection by means of a rectangular bounding

box.

1.1 Motivation

Video object tracking starts when a moving object first appears in a video scene, and typi-

cally estimates the tracked-object’s position, motion, and shape. Object tracking has gained

increased attention in both academia and industry as it is the core in widespread application-

domains [1–4], such as

1. augmented and virtual reality applications, for example, entertainment, education,
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medical, and manufacturing,

2. traffic applications, such as automatic vehicle detection to optimize traffic flowing for

the existing transportation infrastructures, detecting traffic violations (speed, lights, and

lane crossing etc.), identifying hazardous vehicles, and managing toll booths,

3. security applications, such as detecting potential hazardous problems and emergency

situations pertinent to the public safety, and protecting critical infrastructures and assets,

traffic violations (speed, lights, and lane crossing etc.), identifying hazardous vehicles,

and managing toll booths,

4. counting applications, such as determining the number of clients at entrances in retail

stores enabling efficient management of wait time, queue length, and service points.

Conventional tracking systems heavily depend on human operators to continuously mon-

itor video scenes for any abnormal events and alert relevant authorities [5]. However, such

human-operated systems are error prone because prolonged monitoring of colossal number

of videos is tedious, exhaustive, and uninteresting. Video data are often stored and used as

passive records for subsequent forensic investigations. Failing to detect critical incidents can

be fatal, particularly, in security applications. Therefore, the modality of tracking systems is

shifting from solely human-operated model to partially or fully automated model [1, 3].

Some system integrators provide solutions with some degree of automated tracking capa-

bilities [3]. Such systems require strict operating conditions in carefully controlled environ-

ments. Intrinsic visual changes, for example, due to weather conditions, daylight changes,

and occlusion affect tremendously the effectiveness of those systems generating frequent false

alarms. Consequently, there are growing concerns on the feasibility and viability of adopt-

ing them in real-world practical applications. Moreover, these systems are built on high-

performance workstations, where video data from multiple cameras are streamed in, pro-

cessed, and displaced. Such server based architectures are large, heavy, power hungry, and

unreliable due to slow responsiveness and long latency in communication channels limiting

the overall accuracy and scalability of such systems.
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1.2 Challenges

Object tracking is challenging due to camera noise in the scene, occlusion, illumination

variation, fast object motion, deformation, background clutter, low resolution, scale varia-

tion, in-plane rotation, out-plane rotation, out-of-view, motion blur, and speed requirements

[1, 3, 6–10].

Over the last few decades, many tracking methods have been proposed to overcome these

challenges. Most of those hypotheses are ad-hoc to specific applications. Modeling the ob-

ject’s motion dynamics is important for accurate and efficient object tracking when the motion

is large or abrupt. Motion dynamics is often modeled with linear systems with additive Gaus-

sian noise. Kalman filtering technique is typically used to compute the complete statistic of

such linear-Gaussian model [11, 12]. However, tracking of real-world objects induces multi-

modal distributions which are non-linear, non-Gaussian problems [1, 3, 5, 13]. Computing the

distribution of non-linear, non-Gaussian problems analytically is intractable; thus many algo-

rithms have been proposed to approximate them. Particle filter [14–16], which recursively

estimates the posterior distribution of the state space using Monte Carlo integration, is a very

popular approach to approximate non-linear and non-Gaussian problems.

Traditional trackers [17–24] without explicit appearance modeling are suboptimal under

challenging conditions, such as deformation, scale variation, in-plane rotation, out-plane ro-

tation, and illumination variation. Online appearance modeling based on machine learning is

effective in taking intrinsic appearance changes into account. Online models built on machine

learning theories require self-learning from past data. This is a difficult problem, specially

in model-free object tracking, where no prior knowledge about the target is given other than

the initial selection of the object. Many machine learning based trackers rely on a single cue–

kernel combination for learning and inference. The choice of a particular cue–kernel combina-

tion depends on the context of the application. However, a single cue–kernel combination may

not be reliable in all conditions. In many situations, it can degrade the tracker’s accuracy. For

example, color cues are effective to partial occlusion and camera noise, but can be weak when

color features of the background are similar to the tracked object. Color cues are also sensitive

to lighting changes. On the other hand, edge-based cues are invariant to illumination changes,
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but are sensitive to occlusion and camera noise. Other pitfalls of state-of-the-art machine

learning based trackers include 1) lack of effective mechanisms for target motion modeling,

2) high computational demand required during sampling, 3) continuous model updates even

during object occlusion and background clutter, and 4) lack of regularization to constrain the

output search space. Our objective is to extend the strength of machine learning based object

tracking methods by 1) effective target dynamic modeling, 2) formulating joint kernel func-

tions for effective object tracking, 3) constraining output search space during inference, and

4) exploiting kernel machines to evaluate posterior likelihood.

Tracking failure is inevitable. The tracker may not be able to locate the target due to its

own drifts in addition to intrinsic object disappears due to occlusion and out-of-view. Recov-

ering from tracking failures is a challenging problem which requires effective mechanisms for

both detecting tracking failures and re-initialization. Integrating segmentation can alleviate

this problem, but segmentation is often erroneous in the presence of background clutter and

occlusion. Therefore, relying on segmentation output frequently (i.e., each frame) to reduce

tracking drift is undesirable. Our second objective is to improve object tracking by 1) effec-

tively detecting tracking failures or inaccuracies, and 2) automatically re-initializing object

tracking effectively using segmentation and particle filters in the event of tracking failures or

inaccuracies.

1.3 Requirements of Effective Object Tracking Technique

Following lists some of the main requirement of an effective object tracking technique.

Automated tracking system: In order to apply object tracking to real-world applications, we

require an automated tracking system. Given only the initial selection of the object of

interest, the system autonomously performs tracking. This also implies that no off-line

training is required, which is often the case for popular model-based trackers, such as

those based on deep learning [25]. Such system requires no manual intervention in case

of tracking failures and subsequent re-initialization stage.

Efficiency (speed): We require an efficient object tracking system; an aspect less focused by

many state-of-the-art tracking system. Modern video cameras contain high resolution
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image sensors with capabilities of streaming video at high frame rates. In order for

object tracking to be useful for interactive applications, the system must perform fast.

Error resiliency and reliability: Tracking drift and failure are often encountered due to in-

herent challenges associated with visual object tracking. Tracking systems requiring

following objects for long-term must be resilient to such failures. To that end, the sys-

tem must be built with effective appearance model that can optimally discriminate the

object of interest from its background.

Scalability: We require a scalable object tracking platform with functionally independent

components. Instead of a complex system with hardwired one-piece module, such mod-

ular system provides operator with the flexibility of trading-off tracking accuracy and

efficiency.

1.4 Summary of Contributions

We started our research by investigating object detection methods and their FPGA implemen-

tations. We then moved to study object tracking methods, such as particle filter [14,26–28] and

Continuously Adaptive Mean Shift Guided Particle Filter (CAMSGPF) [24]. Acknowledging

the limitations of these methods, we investigated machine learning based object tracking. Fi-

nally, we integrated object segmentation into object tracking to improve accuracy.

The contributions of this thesis are:

1. A fast and competitive method for tracking video objects by modeling target dynamics

and using structured support vector machines, where

(a) we represent the target dynamics as a random stochastic process and use harmonic

means and particle filter for predicting it,

(b) we formulate a new observation likelihood model for the particle filter by using

kernel machines and entropy to evaluate certainty of the likelihood distribution,

(c) we derive an adaptive weighted joint kernel function,

(d) we construct a probability formulation to determine selective model updates in the

structured maximization problem,
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(e) we introduce a motion-augmented regularization term during inference to con-

strain the output search space.

2. A technique for improving the effectiveness of object tracking, where

(a) we detect tracking failures based on online binary support vector machines frame-

work and

(b) we introduce an automated method to re-initialize the tracker based on an active

contour based object segmentation and utilized particle filters to sample bounding

boxes for segmentation.

3. A hardware implementation of object detection, where

(a) we integrate Mixture-of-Gaussian background modeling, noise estimation, and

motion detection and

(b) we propose a new Gaussian parameter compression technique.

So far, we have published two papers [29,30], and two journal paper are being prepared (based

on object tracking and integration of segmentation) to submit to IEEE Transactions on Circuits

and Systems for Video Technology.

1.5 Thesis Outline

This thesis is organized as follows.

In Chapter 2, we first review related work on traditional object tracking methods. We then

focus on our discussion on machine learning based object tracking techniques by categorizing

them into 1) generative, 2) discriminative, and 3) hybrid methods.

In Chapter 3, we first present our baseline object tracking method, then, we describe our

technique of improving the effectiveness of the proposed baseline tracker by introducing a

failure detection technique and integrating it with object segmentation.

In Chapter 4, we present the objective and subjective experimental results of both our

baseline tracker and its integration with an active contour based object segmentation, which we

have validated using large datasets by classifying the video sequences into several challenging

categories.

In Chapter 5, we conclude the contributions of the thesis and discuss possible avenues for
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future research.



Chapter 2

Related Work

2.1 Overview

In this Chapter, we first review traditional object tracking methods. Second, we focus on our

discussion on machine learning based object tracking techniques by categorizing them into

1) generative, 2) discriminative, and 3) hybrid methods. Third, we outline recent work on

integrating object segmentation into object tracking. Finally, we summarize the Chapter.

2.2 Traditional Object Tracking Methods

There is extensive bibliography on video object tracking. Recent advances and future trends

in tracking methods are comprehensively described in surveys [1,3,6–10]. In general, moving

object tracking methods can be broadly classified into three categories; interest point based,

silhouette based and kernel based [1].

In interest point based tracking [22, 31–33], moving objects are detected and represented

by a set of interest points (for example, corners) at each frames. Tracking is performed by

linking the correspondences of these points between frames. Most of the interest point based

tracking methods assume that the interest points of a given object have homogeneous motion

vectors, thus may fail in tracking isolated objects with interest points moving in different

directions.

In silhouette based tracking [18–20, 23], the complete objects are detected in every frame

8
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using the information encoded within the object region. The objects are typically modeled

with contours, edges or histograms. Tracking is achieved by matching one or more of these

models for the silhouettes in each frame. Silhouette trackers are generally sensitive to camera

noise.

In kernel based tracking [1, 34, 35], objects are modeled using shape and appearance. For

example, an object can be modeled using a rectangle as a geometric shape, and a color his-

togram as an appearance model. Tracking is achieved by computing the motion of each objects

frame by frame. Among the three tracking categories, kernel based tracking is widely adopted

due to its accuracy and computational efficiency [34]. Current research on kernel based meth-

ods primarily focuses on incorporating Kalman filter, mean-shift, and particle filter for object

tracking. We review some of this research next.

Rowe et al. [36] used Kalman filter for tracking multiple objects by incorporating a block

based color histogram matching method. This method involves tuning many parameters to get

good performance, thus it may fail in tracking objects in complex environments. In [11,12,37],

Kalman filter is adopted for object tracking in noisy environments. However, these methods

lack quantitative analysis for object occlusion, so they can suffer from tracking drift problems.

Mean-shift method utilizes center-weighted histograms for object tracking [34]. The weights

are defined by a spatial circular kernel which gives higher weights to the pixels in the vicin-

ity of the object center. Mean-shift method maximizes the appearance similarity iteratively

by comparing the weighted histograms of the object being tracked and window around the

hypothesized object location. Bhattacharyya coefficient [38, 39] is often used for histogram

comparison. In [34, 40], Comaniciu et al. introduced mean-shift procedure for object track-

ing. Here, non-rigid moving objects are tracked under partial occlusion by maximizing the

Bhattacharyya coefficient. Collins [41] extended this early work with Lindebergs theory [42],

so the objects with scale change can be tracked. This method is, however, computationally

expensive. In [43], Zivkovic and Krose also extended the mean-shift procedure to adapt for

objects scale and shape changes. Ning et al. introduced a mean-shift tracker using the joint

color-texture features in [44] . Despite the efforts, most of Kalman and mean-shift tracking

drift away in the presence of rapid motion, appearance changes, complete object occlusion,

and lighting variations.
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Particle filter, also known as condensation [14] or Sequential Importance Sampling (SIS)

[15], has been proven to be a powerful and reliable tool for moving object tracking due to

its excellent effectiveness, simplicity and flexibility in adapting nonlinear and non-Gaussian

systems [1,3,13]. In [14], Isard and Blake introduced condensation for object tracking, which

was then extended to color based tracking [16,45]. Such methods can suffer from tracking drift

problem in environments where moving object appears in similar colors to the background.

In [46], Lu et al. used grids of Histogram of Oriented Gradients (HoG) as object representation

to alleviate such tracking drifts.

The effectiveness of object tracking based on particle filter is theoretically improved when

more particle samples utilized. However, the computational cost in the particle filter increases

as the number of particle samples increase. There has been some research focusing on to

reduce computational complexity in the particle filter based tracking. Zhou et al. dynamically

adapted the number of particle samples based on the video noise in [26]. In this method,

the number of utilized particles is directly proportional to the noise variance. In [45], Khan

et al. adopted Rao-Blackwellization [47] method to analytically compute a portion of the

posterior distribution over the state space. This has substantially decreased the number of

samples required to track a moving object. Linzhou et al. [48] introduced the concept of

active particles in an attempt to reduce the computational complexity of the tracker. Recently,

an adaptive selection of the number of particles depending on the output of an active contour

has been introduced in [49]. Although these methods require fewer particles than conventional

particle filter approaches and can handle rapid object motion, they are not usually effective

against cluttered background and occlusion.

A common problem with particle filter is the degeneracy phenomenon [50], that causes

the variance of the particle-weights to increase over time [51]. This means that the majority

of particles would have negligible weights after a few iterations, resulting in a highly skewed

posterior distribution. Consequently, subsequent samples drawn from this skewed posterior

distribution can deteriorate filters performance. To overcome degeneracy problem, Shan et

al. [21] proposed Mean Shift Embedded Particle Filter (MSEPF) that embeds mean shift in

the particle filter. MSEPF performs mean shift search on each particles and then merge parti-

cles to nearby modes with larger probability. Recently, Wang et al. [24] combined MSEPF [21]
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with Continuously Adaptive Mean Shift (CAMShift) [17] and proposed Continuously Adap-

tive Mean Shift Guided Particle Filter (CAMSGPF) to further improve the accuracy of object

tracking using significantly fewer particle samples. Here, CAMShift and particle filter are

exploited to optimize the position and scale of each particle. Particularly, CamShift is applied

on the whole particle set in a simplified way by removing the redundancy between the parti-

cles. Moreover, CAMSGPF employs an ad-hoc scheme to more efficiently overcome particle

degeneracy problem. Thus, CAMSGPF is efficient in tracking moving objects with varying

scales in cluttered background, and it outperforms trackers based on conventional particle

filter and MSEPF [24]. The observation model of CAMSGPF is a color histogram, which

is sensitive to lighting changes and can be weak when color features of the background are

similar to the tracked object. Therefore, CAMSGPF is suboptimal under severe occlusion.

Integration of multiple cues has recently been applied to improve the effectiveness in some

tracking systems in [27, 28], where color and motion cues are used to tackle some challenges

in object tracking, such as illumination variation and background clutter.

While some effort [26,46]) has been put forth, adaptive template updates are largely over-

looked in many traditional object tracking methods reviewed above. In order to account for

intrinsic appearance changes, online appearance modeling based on machine learning theories

attracted a lot of attention recently [1, 7]. Our object tracking technique is an online machine

learning method. In the next Section, we, therefore, focus on related work on machine learning

based object tracking.

2.3 Machine Learning based Object Tracking Methods

In general, based on various appearance modeling, online machine learning based object track-

ing can be categorized into three classes: generative, discriminative, and hybrid generative-

discriminative methods. Our method is online discriminative as it exploits Structured Support-

Vector-Machines (Structured SVMs) [52] to effectively discriminate the surrounding back-

ground from the target.
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2.3.1 Generative Methods

In generative object tracking methods, the object appearance is learned online to adapt to ap-

pearance changes, and object tracking is expressed as finding the most similar object to this

learned appearance model [1]. The most trivial approach to model the target appearance is

with a rectangle patch at the start of object tracking. Object tracking can be expressed as

registering this rectangle patch in subsequent frames, by maximizing some similarity func-

tion, e.g., Bhattacharyya distance [39] of histograms between target and candidate. A major

drawback of these trivial methods is that they are computationally expensive. Ross et al. de-

veloped a generative object tracking method [53] that incrementally learns a low-dimensional

subspace representation to account for appearance changes. The generative methods [54–58]

that are based on sparse representation have been successful in recent years. These methods

represent target as a sparse linear combination of dictionary templates. These target models

are updated online in order to adapt to appearance changes. In [54,55] Mei et al. used a holis-

tic representation of the object as the appearance model and then solved the l1 minimization

problem. Another related work to solving l1 minimization problem for object tracking was

carried out by Bao et al. [56]. Sparse and discriminative set of features are used to improve

the object tracking quality in [58], while histograms of the local sparse representation are in-

corporated with mean-shift to locate the target object in [57]. In [59], Wang et al. propose a

generative object tracking scheme by maintaining holistic appearance information and repre-

senting the target in compact form. This method exploits classic principal component analysis

methods [60] and sparse representation schemes [61] to learn appearance models online, there-

fore [59] can handle heavy occlusion in higher resolution images more efficiently. Tian et al.

propose a generative tracking method using a local sparse model and particle filter to local-

ize candidate samples in [62]. The method utilizes a hash coding scheme as a similarity to

evaluate the resemblance of appearance model with target candidates. Because [62] uses least

absolute shrinkage and selection operator [63] to solve sparse coefficients, the method [62]

demands a high computational load. Despite the demonstrated successes of these generative

object tracking methods, they are computationally expensive. Moreover, the accuracy of these

methods is sub-optimal due to the lack of discriminative information in the appearance model
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to successfully separate the object from the background.

2.3.2 Discriminative (Tracking-by-Detection) Methods

Discriminative object tracking methods aim at computing a decision boundary that can best

describe to separate the object from the background rather than explicitly modeling the object

appearance as in generative methods. The discriminative object tracking methods are also

referred as tracking-by-detection [64, 65], where the target and background are described by

set of features at the initialization stage, and a binary classifier is used to distinguish the target

from background. The classifier is updated to account for appearance changes in successive

frames [65, 66]. In [67, 68], Grabner et al. presented discriminative object tracking schemes

based on online boosting algorithm, that passes a labeled sample to boost through weak clas-

sifiers. However, such trackers are sensitive to noise because classifier is updated with its

own classification results. Moreover, these methods predict the unlabeled samples at the ini-

tialization frame which can degrade the effectiveness in object tracking. To overcome such

ambiguities, Babenko et al. [64, 69] presented an online Multiple Instance Learning (MIL)

scheme to improve the flexibility of the classifier. The MIL tracker learns a discriminative

classifier from positive and negative bags of samples. A positive bag of samples is generated

by collecting the target Bounding Box (BB) and rectangular patches that are in very close

proximity to the target. Multiple negative bags of samples are collected from rectangular

patches that are far away from the target. The object location is determined by taking the

highest classification score. The old classifier parameters and the new data points are used

to update of the classifier. MIL tracker adopts dense sampling strategy to locate the target at

the expense of high computational load. In [70], Zhang et al. extended the MIL tracker that

incorporate the sample importance into the online learning scheme to recognize the samples

in the positive bag. However, [64, 69, 70] update the classifiers using the positive labels for

all samples in the positive bag, and such update procedure can diminish the discriminability

of the classifier. In [66], Hare et al. presented Structured output object tracking framework

(Struck) that integrates the learning and tracking without incorporating ad-hoc update strate-

gies. Struck employs Support-Vector-Machines (SVMs) in its structured output framework
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due to their good generalization ability, effectiveness to label noise, and flexibility in object

representation through the use of kernels. The appearance is modeled by Haar features [71]

and intensity histograms. The target location is computed by obtaining the highest discrimi-

nant score of the classifier. To gain efficiency improvements in Struck, the authors incorporate

a budgeting mechanism which constrains the number of support vectors. Struck updates the

classifier with the new data derived from the current target location. Some of the limitations

of Struck are lack of dynamic motion modeling, occlusion handling, tracking articulated and

deformable objects that undergo scale variations. In [65], Kalal et al. presented discrim-

inative classifier learning method decomposed into tracking, learning and detection (TLD).

The method incorporates object detector with an optical flow tracker for appearance model-

ing, which is subsequently used for correcting any tracking drifts. The optical flow tracker

is based on Lucas Kanade tracker [72, 73] which estimates the displacements of interesting

points. The appearance model is based on binary patterns and Random Ferns [74] are utilized

to learn the object detector. Similar to the other discriminative methods, the positive samples

are drawn from the target location and negative samples are selected from locations further

from the optimal target location. TLD evaluates the errors of object detector by using positive

and negative experts which estimate missed detections and false alarms, respectively. Because

TLD is based on interesting points, its performance is particularly suboptimal for articulated

objects and when the object undergoes rotation.

Recently, correlation filters [75] have been applied to object tracking methods [76–79] to

improve efficiency. In [76], Ma et al. propose a tracker based on discriminative correlation

filters by decomposing the task of object tracking into translation and scale estimation prob-

lems. To reduce tracking drifts, the method [76] uses an online random fern based classifier

for re-detecting any objects. In [77], Henriques et al. exploit circulant structures in natural

images and uses Fourier transforms to reduce storage and computational demand in their ker-

nelized correlation filter (KCF) tracker. The method [77] assumes that it can train a classifier

efficiently from background patches, but this can produce unwanted boundary effects thereby

degrading the accuracy of KCF. Danelljan et al. in [78] relax this assumption and extends

KCF by introducing a regularization term to penalize coefficients of correlation filter taking

corresponding spatial location into account. Efficiency improvements are achieved in [78] by
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using low-dimensional color features. Because the correlation filter based trackers [77, 78]

limit the utilization of a single kernel, Tang et al. propose a method in [79] that incorpo-

rate multiple kernels. Nevertheless, despite superior performance in [76–79], correlation filter

based trackers often drifts away from the target during affine transformations or non-rigid

deformations.

A graph based discriminative tracker is proposed in [80], which uses tensors to model ap-

pearance of the target. In [80], geometric structure of object and its background are differenti-

ated by dedicating multiple graphs. The method reduces the tensor dimensions by exploiting

graph embedding. The technique [80] is semi-supervised therefore restricting its use in lim-

ited applications. Liang et al. adopt BING objectness [81] for object tracking in [82], where

BING is adapted individually for each videos and objects being tracked. The method [82],

however, requires off-line training using SVMs. In [83], a discriminative tracker based on

cognitive dynamic systems is proposed. The method [83] utilizes feedback and feed-forward

mechanisms to effectively track small objects and uses Kalman filters to infer the target loca-

tions. Experimental results reported in [83] are limited to few video sequences and the method

is compared with few state-of-the-art trackers.

2.3.3 Hybrid Generative-Discriminative Methods

When sufficient training data is available, the discriminative methods often outperforms the

generative methods. However, if the training data is scarce, generative models often have

better generalization performance [84]. Hybrid generative and discriminative methods are

combined to benefit from both types of methods [85–87]. Zhong et al. [87] has developed

sparsity-based discriminative classifier and a sparsity-based generative model. Here, the dis-

criminative model computes a confidence value that assigns more weights to the foreground

than the background, while the histogram-based generative model incorporates spatial infor-

mation to handle occlusion. In [86], Wand et al. has presented a hybrid scheme based on

an over-complete dictionary to represent local image patches of target, and then learned a

classifier to separate the object from the background. Here, targets are searched by using the

over-complete dictionary in a high-dimensional feature space, requiring high computational
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cost. Another hybrid method based on discriminative naı̈ve Bayes classifier and a static ran-

dom projection matrix [88] is proposed in [85]. Here, the appearance model is extracted from

compressed domain features, and the discriminative classifier is updated with positive and neg-

ative samples drawn from the current frame. However, such methods based on static random

projection matrix can introduce tracking drifts in dynamic video sequences with large appear-

ance changes. An online dictionary based discriminative tracker in which target appearance is

modeled by sparse representation is proposed in [89]. The method constrains a sparsity con-

sistency term to exploit properties of generative and discriminative of the appearance. In [89],

partial occlusion is handled by constraining an elastic net to capture local appearance charac-

teristics. In general, the hybrid models require tuning many parameters to trade-off the overall

influence between generative and discriminative models, thus improper hybrid models can be

of worse performance than native generative or discriminative models [90].

2.4 Integration of Object Segmentation into Tracking

Majority of recent work on integration of segmentation into tracking can be grouped based on

the employed segmentation methods. In what follows, we summarize some of the recent work

on object segmentation integrated into object tracking based on graph-cuts, active contours,

Random walk, and watershed.

Object tracking integrated with graph cut segmentation are presented in [91–94]. In [91],

the authors present a marker-less object tracking method for augmented reality applications.

By integrating graph cut segmentation within the optical flow tracker, the result of [91] show

that the integrated method is effective in tracking articulated objects under challenging envi-

ronmental conditions. In [92], Malcolm et al. propose multiple object tracking framework

by fusing graph cut technique as segmentation method. The method spatially constrains the

object segmentation process to a user defined object region so that accurate segmentation can

be performed. Papadakis et al. in [93], decompose object into visible and occluded regions

which are tracked assuming the velocity of each object can be represented by a dynamic

model. Graph cut segmentation is employed to separate predicted regions which allows han-

dling partial and full occlusions. A discriminative tracker with a rough segmentation based
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on graph cut is proposed in [94], which aims to track deformable target with a discriminative

classifier. The method requires a ground truth bounding box of the object at the start of each

video to initialize the tracker. However, graph cut based segmentation methods are prone to

errors in the presence of background clutter and occlusion.

Object segmentation based on active contours [95] are fused with tracking in [96–99].

Paragios et al. propose a multiple object tracking framework minimizing a geodesic active

contour objective model using stochastic gradient descent in [96]. Using a Gaussian mixture

model, motion detection is performed. The method tracks complex contours and efficiently

handles topological changes for the evolving contours with a computationally efficient imple-

mentation. In [97], Zhou et al. present an object tracker in which shape priors are incorporated

and modeled using active contours. The method requires off-line training stage where a shape

codebook representing the shape mode is trained. In [98], object foreground is segmented

from the background using an active contour scheme that preserves accurate object bound-

aries. The method exploits the extracted boundaries and learns dynamic shape models that

enable effective tracking during occlusion. Another object tracking method by active contour

segmentation is presented in [99], which uses a level set to represent the object and utilizes the

Bhattacharyya distance [38] to locate the region that optimally describes object being tracked.

The active contour segmentation is used to refine the contours of the target. In [96–99], seg-

mentation output is integrated with tracking in each frame. During background clutter or

occlusion, segmentation result is often unreliable; consequently, integrating the segmentation

with tracking at every frame can, in fact, degrade the accuracy of the tracker. Our method

integrates the segmentation [100], which is also an active contour based technique, however,

different from [96–99], we do not execute segmentation at every frame, but only during a

tracking failure. Therefore, the speed of segmentation method does not significantly affect the

overall speed of our object tracking integrated with segmentation. Also, possible segmentation

errors are much less propagated into the tracking.

Random-walk [101] based segmentation is integrated in [102–104]. In [102, 103], the

authors propose a color histogram based object tracking method in which Random-walk based

image segmentation is utilized to track non-rigid objects. Reliable tracking is achieved by

exploiting the spatial properties of the segmented object to initialize the tracking method.
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Kwon et al. in [104] integrate result of semi-supervised object segmentation to enhance their

object tracking method, which is based on a local patch-based appearance model. Using a

deterministic local optimizer, the computational complexity of [104] is significantly reduced.

These methods are suboptimal under large object displacements and complete occlusions.

Moreover, [104] is semi-supervised which precludes using it for many real world applications

requiring real-time performance.

Integrating segmentation to improve object tracking using Kalman filtering is proposed

in [105]. The authors employ watershed [106] as the object segmentation technique and

demonstrate the object tracking performance in applications such as head and hand tracking.

The method is confronted with challenges, such as divergence in iterations, computational

cost, over-segmentation, etc.

2.5 Summary

Object tracking is a difficult problem due to many challenges inherited in video sequences.

Thus, it will continue to be an active field of research. Classical trackers without explicit ap-

pearance modeling (such as CAMShift and MSEPF) are suboptimal under challenging condi-

tions. In order to account for intrinsic appearance changes, online appearance modeling based

on machine learning theories has attracted significant attention. Among several categories in

machine learning based object tracking, discriminative methods perform better because they

compute a decision boundary that can best separate the object from the background; therefore,

much of current research focus on this category.

Our object tracking method extends discriminative machine-learning based method by

1) representing the target dynamics as a random stochastic process and use harmonic means

and particle filter for predicting it, 2) formulating a new observation likelihood model for the

particle filter by using kernel machines and entropy to evaluate certainty of the likelihood

distribution, 3) developing an adaptive weighted joint kernel function to construct an effective

appearance model, 4) devising a probability formulation to determine model updates and for

structured maximization problem, and 5) formulating a motion-augmented regularization term

during inference to constrain the output search space.
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To improve object tracking, intuitively, object segmentation can be exploited. Recent

methods focus on explicitly integrating graph-cuts and active contours based segmentation

methods into object tracking in each frame. Choosing the segmentation method and mech-

anism for tracking failure detection plays an important effect on overall accuracy of object

tracking. The main difference between our proposed integration of segmentation into object

tracking is that we do not apply each frame but only if we detect object tracking failures.



Chapter 3

The Proposed Object Tracking

3.1 Introduction

In this Chapter, we first outline the proposed method of modeling the target dynamics by har-

monic means and particle filter, and describe our technique of using online Structured SVMs

to the tracking problem, where 1) we derive an adaptive weighted joint kernel function, 2) we

construct a probability formulation to determine model updates and for structured maximiza-

tion problem, and 3) we introduce a motion-augmented regularization term during inference

to constrain the output search space. In the second part of the Chapter, we describe our tech-

nique of improving the effectiveness of the proposed object tracking by introducing a failure

detection technique and integrating an active contour based segmentation method. Note that

in Section 3.3 we propose how to use object segmentation output to improve the accuracy of

object tracking. We are not studying here the interesting aspect of improving object segmen-

tation based on object tracking such as in [107–110].

3.2 The Proposed Motion Inferred Structured Tracker

3.2.1 Algorithm Overview

Figure 1 and Algorithm 1 summarize the proposed MIST, which consists of two main steps:

dynamic modeling (Section 3.2.2) and tracking by learning (Section 3.2.3). The dynamic

20
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Figure 1: Overview of our object tracking method. u is the state vector of particle filter; z
is observation to the particle filter; y is output BB; x is feature vector of y; m̃ is normalized
importance weight; and û and ŷ denote the optimal estimation of u and y, respectively.

modeling step is composed of three modules: Kernelized Harmonic Means (KHM), particle

filter, and entropy-based likelihood; the tracking by learning step consists of three modules:

conditional model-update, Joint Kernel Function (JKF), and motion-inferred inference. In the

dynamic modeling step, first, we use KHM to propagate the target’s state dynamics and sec-

ond, employ particle filter for sampling and filtering the propagated states. Third, to evaluate

the certainty of the likelihood distribution of the particle filter, we formulate a new observa-

tion likelihood model by using kernel machines and entropy. Finally, applying Maximum A

Posteriori (MAP) rule [51], we obtain the estimated state of the target. In tracking by learn-

ing step, first, the learning component outputs a scoring function and retain a pool of positive

and negative samples. Positive and negative samples contain and describe variations of object

and background, respectively. Here, we design an effective JKF using color and HoG [111]

features. Then, we employ a conditional model-update scheme to minimize tracking drifts

and use Sequential Minimal Optimization (SMO)-step for maximization problem. Finally, in

the regularized inference step, we predict an optimal output of target BB by maximizing the

scoring function is regularized with a motion-augmented term.
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Algorithm 1: Proposed online object tracking algorithm
Input : Initial BB of the target in F1.
Output: Prediction of the output BB ŷ in Ft.

1 repeat
2 if F1 then
3 Draw N P

1 particles around the initial BB.
4 go to line 12.

5 for each particle r do
6 Propagate particles according to (4).
7 Evaluate entropy-based likelihood p(zt|u(r)

t ) by (16).
8 Update the importance weights m(r)

t using (11).

9 Estimated optimal particle state ût with (17).
10 Compute number of particles: N P

t = µu + 3σu.
11 Sort {u(r)

t ,m
(r)
t } according to m

(r)
t , and resample.

12 for each particle r do
13 Extract color x⋆ and local shape x� features.
14 Compute scoring function φ(x,y) by (28).
15 if min(p(D+, |yOPT), φ(xOPT,y)) > CCMU then
16 Evaluate (35), and compute JKF:
17 k(x, x̄) = g · k⋆(x⋆, x̄⋆) + (1− g) · k�(x�, x̄�).
18 Compute regularization term ϕ(u,y) using (37).
19 Evaluate ŷ = argmaxy∈Y⋆ φ(x,y)ϕ(u,y).
20 Select {y+,y−} according to (29).
21 Maximize the dual (24) using SMO-style [112].
22 else
23 Derive output BB ŷ using (4).

24 until end of video sequence.

3.2.2 Target Dynamic Modeling

Modeling the target dynamics is important for accurate and efficient object tracking especially

when the motion is large or abrupt. The proposed dynamic modeling is composed of three

modules: KHM, particle filter, and entropy-based likelihood, which are explained in the next

three sections.

3.2.2.1 Kernelized Harmonic Means Propagation

We represent our dynamic model by a state vector s = [s1 s2] that describes the moving target

by its [s1 s2] position in the 2D Cartesian coordinate system. Typically, the dynamics of s is
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represented by a constant velocity model [1, 7, 24]

ŝt+1 = st + (st − st−1) + nHM
t , (1)

where ŝt+1 is the predicted state at time t + 1 (in frame Ft+1) and st and st−1 are the current

and previous states at time t and t− 1, respectively, and nHM
t is system noise modeled by a

Gaussian distribution with zero mean and a standard deviation of 0.25. In (1), (st − st−1)

represents constant velocity component computed using two most recent states. We use N HM

prior state vectors (e.g., N HM = 8) and apply KHM to estimate ∆st = st − st−1 as

∆st =
1

kHM(t−1,t−1)
∆st−1

+ kHM(t−1,t−2)
∆st−2

+ · · ·+ kHM(t−1,t−NHM)
∆st−NHM

=
1

NHM∑
l=1

kHM(t−1,t−l)
∆st−l

,
(2)

where l ∈ [1, N HM] is the prior state number and kHM is a Gaussian Radial Basis Function

(GRBF) kernel with parameter CHM (e.g., CHM = 1.0)

kHM(t, t′) = exp
(
−CHM · (t− t′)2

)
. (3)

Since kHM(t, t′) is higher for the most recent state vectors and lower for past state vectors, the

later state dynamics are aggregated more (than the former dynamics) into the KHM predicted

state vector. Substituting ∆st in (1), we predict the state dynamics of the target at time t + 1

by

ŝt+1 = st +
1

NHM∑
l=1

kHM(t−1,t−l)
∆st−l

+ nHM
t . (4)

We utilize the proposed state dynamics model for propagating each particle in our particle

filtering process.
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3.2.2.2 Particle Filter

During the initialization of the tracker (i.e., on frame F1), we draw N P
1 (e.g., N P

1 = 1000)

particles around the initial BB according to a Gaussian distribution. We denote the state of

particle r at time t by u
(r)
t and propagate each particles with independent KHM propagation

model, i.e., u(r)
t → ŝ

(r)
t , where r ∈ [1, N P

t ] is particle r. The measurement to the particle filter

is zt, which we obtain from the optimal BB estimated by the proposed SVMs inference model

(see Section 3.2.3.4). We consider state dynamic prediction as an estimation problem of the

system state ut using a sequence of noisy measurement zt made on the system. In particle

filtering, state ut is modeled as a Markovian random process and observation zt are assumed

to be conditionally independent given the state sequence. Under these assumptions, state and

observation models are described [50] by

ut = f ST(ut−1, n̄
S
t),

zt = f OB(ut, n̄
O
t ).

⎫⎬⎭ (5)

Both f ST(·) and f OB(·) are nonlinear functions and n̄S
t and n̄O

t are independent non-Gaussian

noise processes. We are interested in making an inference about ut given all the observations

up to time t, z1:t = {z1, ..., zt}. This is given by the posterior distribution for ut, p(ut|z1:t)

[50], which by Bayes rule

p(ut|z1:t) =
p(zt|ut)p(ut|z1:t−1)

p(zt|z1:t−1)
. (6)

Here, p(zt|ut) is the observation likelihood distribution describing how the observation zt

depends on state ut. We assume that system dynamics are governed by a first order Markov

process; thus the prior distribution p(ut|z1:t−1) can be described by the Chapman-Kolmogorov

Equation [50]

p(ut|z1:t−1) =

∫
p(ut|ut−1)p(ut−1|z1:t−1)dut−1, (7)

where p(ut|ut−1) is defined as the state transition distribution. Substituting (7) in (6), we

obtain

p(ut|z1:t) =
p(zt|ut)

∫
p(ut|ut−1)p(ut−1|z1:t−1)dut−1

p(zt|z1:t−1)
. (8)
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Equation (8) forms the optimal Bayesian solution for inferring the system state. However, (8)

cannot be analytically solved [50]. Particle filter provides a numerical approximation for the

posterior distribution p(ut|z1:t) using a discrete set of weighted samples (particles) u(r)
t . With

such particles, the posterior density in (8) [15, 50] is approximated

p(ut|z1:t) ≈
N P

t∑
r=1

m̃
(r)
t · δ(ut − u

(r)
t ); m̃

(r)
t =

m
(r)
t

N P
t∑̄

r=1

m
(r̄)
t

, (9)

where δ(·) is the Dirac delta function, m̃(r)
t is the normalized importance weight of particle r

at frame Ft, and m
(r)
t [15] is calculated

m
(r)
t ∝

p(zt|u(r)
t )p(u

(r)
t |u(r)

t−1)

q(u
(r)
t |u(r)

t−1, z1:t)
m

(r)
t−1, (10)

where q(u
(r)
t |u(r)

t−1, z1:t) is the importance distribution from which particles are drawn at each

frame. As with widely adopted Sequential Importance Resampling (SIR) particle filters

[113], we choose q(u
(r)
t |u(r)

t−1, z1:t) as the state transition distribution, i.e., q(u(r)
t |u(r)

t−1, z1:t) =

p(ut|u(r)
t−1), and (10) becomes

m
(r)
t ∝ p(zt|u(r)

t ) ·m(r)
t−1. (11)

For improving the efficiency of the proposed tracker, we use the mean µu and the standard

deviation σu of the motion vectors of the previously estimated N PP optimal particles (e.g.,

N PP = 16) to adaptively derive the number of particles N P
t . To that end, we set the number of

particles to the number of locations covered by a circular region with a radius of µu + 3σu;

more specifically, N P
t = ⌈π(µu + 3σu)2⌉, where ⌈·⌉ rounds up to the nearest integer. The

weights m
(r)
t are sorted in ascending order and resampled so that the particles with higher

weights are multiplied if N P
t > N P

t−1 and those with lower weights are eliminated otherwise.
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3.2.2.3 Entropy-based Likelihood

The observation likelihood model p(zt|ut) plays an important role in estimating the state ut.

Entropy can be used to measure certainty of distribution; a lower entropy means less uncer-

tainty in the underline distribution. We formulate the observation likelihood using entropy of

the similarity-distribution between each particle and the target by exploiting kernel machines

described in Section 3.2.3.3. Let kOL be a vector of similarity between previous target ût−1and

each particle

kOL =
[
k(u1, ût−1) k(u2, ût−1) · · · k(uN P

t
, ût−1)

]
, (12)

where JKF k(u, û) = g ·k⋆(u⋆, û⋆)+(1−g) ·k�(u�, û�), k⋆ and k� are color and shape kernel

functions, and g is a weight. To compute entropy of the similarity scores, we normalize each

elements in (39)

k̃OL
r =

kOL
r −min(kOL)

max(kOL)−min(kOL)
, (13)

and deduce their similarity distribution p(kOL
r |ût−1)

p(kOL
r |ût−1) =

k̃OL
r

N P
t∑

r=1

k̃OL
r

. (14)

Then, we compute the corresponding entropy score H for the distribution p(kOL
r |ût−1) by

H = −
N P

t∑
r=1

p(kOL
r |ût−1) log

(
p(kOL

r |ût−1)
)
, (15)

and subsequently we define our observation likelihood

p(zt|u(r)
t ) =

exp(−k̃OL
r ·H)

N P
t∑́

r=1

exp(−k̃OL
ŕ ·H)

. (16)

By substituting (16) in the weight computation in (11), and using MAP rule [51], we obtain

the estimated state ût

ût ≈ argmax
u
(r)
t

m̃
(r)
t . (17)
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We incorporate state dynamics to efficiently infer the prediction within our SVMs learning

model, termed as motion-augmented inference, as shown in Section 3.2.3.4.

3.2.3 Tracking by Learning

In general, the objective of a tracker is to maintain an estimate of the position of the target

object. The tracker typically extracts and compares features from an image patch within the

estimated BB and its example pairs which are usually learned online. Structured SVMs are

widely used in machine learning and computer vision as they possess good generalization

ability with built-in flexibility in object representation through the use of kernels, while being

effective against estimation noise. Because of such rich characteristics of Structured SVMs,

we utilize Structured SVMs to the object tracking problem. The proposed tracking by learn-

ing is composed of four modules: conditional model-update, joint kernels, motion-inferred

inference, and SMO-step. We start by presenting classical Structured SVMs theory, in which

SMO-step is outlined, and then, we describe the three remaining modules.

3.2.3.1 Structured Support-Vector-Machines

The Structured SVMs traditionally are used for classification problem, where the task is to take

a set of training examples and learn a classification function to make binary labels ±1 [114].

Instead, object tracking is considered as learning a prediction function f : X → Y that

maps the space of input features X to the space of output BBs Y based on N EX input-output

example pairs S = {(x1,y1), ..., (xNEX ,yNEX)} ∈ (X × Y)N
EX . With Structured SVMs, we

discriminatively learn a scoring function φ : X × Y ∈ R over input-output example set S.

Alternatively, the scoring function φ maps both output BB y and its corresponding feature

x to a scalar label. Hence, φ can be seen as measuring the compatibility of an input-output

pairs (notice that each BB y is extracted from the corresponding particle u). Once the scoring

function is learned, the prediction of the output ŷ that constitutes the highest compatibility

with the input x can be obtained by maximizing φ over all possible output y ∈ Y

ŷ = f(x) = argmax
y∈Y

φ(x,y). (18)
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The scoring function is defined [52] in the form of

φ(x,y) = ⟨w,Φ(x,y)⟩, (19)

where the weight vector w is learned with sequentially obtained example pairs in set S, and

Φ(x,y) is a joint feature map that maps joint input feature and output BBs to a transform

space. The specific form of Φ(x,y) depends on the nature of the problem. In general, Φ(x,y)

is not explicitly modeled allowing us to exploit the advantages of kernel machines [114]. In

(19), the inner product ⟨·, ·⟩ is defined in a high (potentially infinite) dimensional vector space

H referred as the Reproducing Kernel Hilbert Space (RKHS) [115], where the classes are

hoped to be linearly separable.

Following the standard SVMs derivation [114], the scoring function φ can be learned by

minimizing the constrained convex objective function

min
w

⎧⎨⎩1

2
∥ w ∥2 +C SVM

NEX∑
i=1

ξi

⎫⎬⎭ ,

subject to

∀i : ξi ≥ 0 and

∀i ∀y ̸= yi : ⟨w, δΦi(y)⟩ ≥ ∆(yi,y)− ξi,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

where i ∈ [1, N EX], the slack variables ξi allow the examples to violate the constraint of

being outside of the margin, δΦi(y) = Φ(xi,yi) − Φ(xi,y), and C SVM is a parameter (e.g.,

C SVM = 25) which controls how strongly margin violations are penalized. The loss function

∆ is 1 when the BBs defined by ȳ and y are disjoint (i.e., ȳ ̸= y), and is 0 when the BBs are

identical.

Instead of solving the primal optimization problem in (20) directly, its dual formulation
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using the Lagrangian function [52] is obtained

max
α

− 1

2

∑
i

y ̸=yi

∑
j

ȳ ̸=yj

αiyαjȳ⟨δΦi(y), δΦj(ȳ)⟩+
∑
i

y ̸=yi

∆(yi,y)αiy,

subject to

∀i : ∑
y ̸=yi

αiy ≤ C SVM and

∀i ∀y ̸= yi : αiy ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

where j ∈ [1, N EX] is an index, the Lagrangian multiplier α corresponds to the margin

constraint in (20). By solving this dual optimization problem, the weight vector w =∑
i,y ̸=yi

αiyδΦi(y) and the scoring function in (19) can be rewritten

φ(x,y) =
∑

i,ȳ ̸=yi

αiȳ⟨δΦi(ȳ),Φ(x,y)⟩. (22)

Following [116], we use β

βiy =

⎧⎪⎨⎪⎩−αiy, if y ̸= yi∑
ȳ ̸=yi

αiȳ, otherwise,
(23)

and substitute β in (21) to form a simplified dual problem

max
β

− 1

2

∑
i,y

∑
j,ȳ

βiyβjȳKij −
∑
iy

∆(yi,y)βiy,

subject to

∀i : ∑
y

βiy = 0 and

∀i ∀y : βiy ≤ C SVM∆′(yi,y),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)
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where ∆′(yi,y) = 1, if y = yi, and ∆′(yi,y) = 0 otherwise, and

K =

⎡⎢⎢⎢⎢⎢⎢⎣
k(x1,x1) k(x2,x1) · · · k(xNEX ,x1)

k(x2,x1) k(x2,x2) · · · k(xNEX ,x2)
...

... . . . ...

k(xNEX ,x1) k(xNEX ,x2) · · · k(xNEX ,xNEX)

⎤⎥⎥⎥⎥⎥⎥⎦ . (25)

The JKF k : X ×X ∈ R is the inner product of input-output pairs (xi,y) and (xj, ȳ) mapped

in RKHS H space, i.e.,

k
(
(xi,y), (xj, ȳ)

)
= ⟨Φ(xi,y),Φ(xj, ȳ)⟩. (26)

In (24), the loss function ∆(yi,y) quantifies how well the estimated BB y approaches the

output BB yi. Hence, it plays an important role in optimizing the maximization problem in

(24). As in [117], we use the BB overlap ratio

∆(yi,y) = 1− A(yi ∩ y)

A(yi ∪ y)
. (27)

where A(yi ∩ y) is the area of the intersection of the BBs yi and y, and A(yi ∪ y) is the area

of their union.

We extract the feature (color and shape) inputs x from their corresponding BBs y as

in [117]. Hence, without loss of generality, we denote the JKF as k(xi,xj) omitting y. Sub-

stituting α in (22) with β in (23), a simplified form of φ [116] is obtained

φ(x,y) =
∑
i,ȳ

βiȳk(xi,x). (28)

Often, β is sparse, i.e., most of the elements in β have the value 0. We denote the pairs (xi,y)

for which βiy ̸= 0 as support vectors. Support vectors with βiy > 0 and βiȳ < 0 are referred

as positive and negative support vectors respectively.

We adopt SMO-style [112] for maximization of our dual problem in (24) because of its

proven simplicity and efficiency [116]. We select a pair of positive and negative BBs by
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searching for the maximum and minimum of the gradient of (24), respectively. For example,

y+ is chosen by finding the most important positive sample according to

y+ = argmax
y

− φ(xi,y)−∆(yi,y). (29)

For this pair of y+ and y−, we optimize their corresponding coefficients β+
iy and β−

iy using

SMO-step. If these coefficients are non-zero, we retain βiy, the corresponding gradients and

support vector (xi,y). During tracking, both gradient and βiy are updated, and we remove any

support vector if its βiy becomes zero. In practice, however, the target may not be present in

the scene, for example, due to occlusion. Therefore, updating the model every frame results

in tracking drift. To alleviate this problem, we construct a probability model to determine the

state of the target and effectively update our learning model, which is described next.

3.2.3.2 Conditional Model Update

During SMO-step, we search for the maximum and minimum of the gradient to select a pair of

positive and negative BBs. If the corresponding coefficients (β+
iy and β−

iy) of these positive and

negative BBs are non-zero, we retain the sample as a support vector in each frame. Let xOPT

and D+ be the feature vector of the optimally inferred BB yOPT and the set of positive support

vectors, respectively. We define the probability that yOPT belongs to D+ by

p(D+|yOPT) =
µ+

µ+ |µ−|
, (30)

where the sum of kernel scores (µ+ and µ−) for positive and negative BBs are given by

µ+ =
∑
i∈D+

β+
iyk(xi,x

OPT), µ− =
∑
i∈D−

β−
iyk(xi,x

OPT). (31)

We retain the current estimated BB as a positive support vector only when

min(p(D+, |yOPT), φ(xOPT,y)) > CCMU (e.g., CCMU = 0.02). When the target is absent from the

scene, min(p(D+, |yOPT), φ(xOPT,y)) is lower than CCMU, and we avoid updating the learning

model and rely on the proposed motion model for trajectory estimation.

Moreover, to adapt Structured SVMs for object tracking, it is crucial to carefully design
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the JKF k(x,y, x̄, ȳ) = ⟨Φ(x,y),Φ(x̄, ȳ)⟩ for the optimization problem in (24). Next, we

discuss the proposed joint kernel design.

3.2.3.3 Adaptive Weighted Joint Kernel

For the joint kernel formulation, the input feature vector x is extracted from the image regions

defined by the BB y. We define x = [x⋆ x�] by two feature descriptors to characterize the

target using color x⋆, and local shape x�. For color features, we use joint Bhattacharyya

(Hellinger) kernel [38] function

k⋆(x⋆, x̄⋆) =
√
⟨x⋆, x̄⋆⟩. (32)

By incorporating the shape kernels within the JKF, we ensure that input-output pairs with

good geometric-similarity are assigned with higher similarity score. We construct the local

shape kernel k� as GRBF kernel function with parameter γ� = 0.22

k�(x�, x̄�) = exp
(
−γ� ∥ x� − x̄� ∥2

)
. (33)

We design our JKF ensuring that the input-output pairs are similar if and only if both their

inputs and outputs are similar. To this end, we define our joint kernel by taking weighted sum

of color and global shape kernels. The final JKF yields a smaller output if any one of the two

kernels’ response is small. This also implies that the JKF is stronger than classical kernels

defined over single kernel only. Formally, given two input-output pairs (x,y) and (x̄, ȳ), we

define adaptive weighted JKF

k(x, x̄) = ⟨Φ(x),Φ(x̄)⟩

= g · k⋆(x⋆, x̄⋆) + (1− g) · k�(x�, x̄�)
(34)

where k⋆ and k� are color and global-shape kernel functions measuring similarity between two

feature vectors. The weight 0 ≤ g ≤ 1 balances the two terms and is computed adaptively by
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taking the color similarity between the target and its background into account:

g =

{
gn; Ln < k⋆(x⋆, x̄⋆) ≤ Ln+1, (35)

where {Ln}∞n=0 is a monotonically increasing sequence. Experimentally, we obtain L =

{0, 0.10, 0.25, 0.50, 0.75, 1} and G = {0.0, 0.15, 0.25, 0.35, 0.45}.

Note that a kernel derived by weighted sum of valid kernels holds Mercer’s condition

[114]. Therefore, (34) is still a valid kernel and we can evaluate the quality of complex rela-

tionship between the feature descriptors derived from both color and global shape. In partic-

ular, (34) returns with higher responses to pairs with similar features while lower responses

to dissimilar features. We utilize our joint kernel in formulating the proposed observation

likelihood model p(zt|ut) described in Section 3.2.2. In Chapter 4, we justify the selection of

features and their corresponding kernels.

However, JKF based on multiple features is computationally expensive. To gain perfor-

mance improvements, we introduce a motion-augmented regularization term during inference

to constrain the output search space in the next section.

3.2.3.4 Motion-Augmented Inference

In the maximization problem in (18), we infer the prediction of the output ŷ by maximizing

φ over all possible output y ∈ Y , which is intractable. Instead, we leverage our proposed

dynamic model and restrict the search space to a smaller subspace Y⋆ ⊂ Y . To this end, we

amend our original maximization problem in (18) with a regularization term ϕ(u,y) derived

from our dynamic model

ŷ = argmax
y∈Y⋆

φ(x,y) · ϕ(u,y). (36)

We want the regularization term ϕ(u,y) to be higher (smaller) if a BB u is closer to (far from)

the output y. To reflect this, we compute the relative distance of the dynamic models between

the BBs u and y. We use a distance measure based on l2-norm of the dynamic model mapped
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in the RKHS space, which is subsequently induced by the JKF kMI

ϕ(u,y) = exp
(
− ∥ Φ(u,y)−Φ(û, ŷ) ∥2

)
= exp

(
2⟨Φ(u,y),Φ(û, ŷ⟩)−

⟨Φ(u,y),Φ(u,y)⟩ − ⟨Φ(û, ŷ),Φ(û, ŷ)⟩
)

= exp
(
2kMI(u, û)− kMI(u,u)− kMI(û, û)

)
.

(37)

The regularization term ϕ(u,y) incorporated in (36) is not an explicit component of the learn-

ing model in (18). Therefore, it simplifies the overall learning task to a greater deal since

it allows focusing on a restricted, smaller subspace Y⋆. For efficiency and simplicity, we

formulate our JKF for motion states kMI using GRBF kernel with parameter γMI = 0.2

kMI(u, û) = exp
(
− γMI ∥ u− û ∥2

)
. (38)

3.3 The Proposed Object Segmentation Integration in

MIST

In this Section, we first review the segmentation integrated with our MIST. Then, we describe

the proposed integration of object segmentation into MIST (MIST-SEG), which consists of

two main steps: 1) detection of tracking failures and 2) using object segmentation to effectively

reinitialize the object tracking after a tracking failure.

3.3.1 Segmentation Method Selection

Object segmentation aims at separating perceptually relevant foreground objects from the

background [100, 118–120]. We have tested the proposed MIST with three different seg-

mentation methods: active contour-based method [100], Lazy snapping method [118], and

K-means segmentation method [119]. Based on our experimental results presented in Section

4.4.2 of Chapter 4, we have selected the active contour-based segmentation method [100] due

to its effectiveness and efficiency in segmenting objects. The segmentation method in [100]

localizes region-based active contour energies. The energy model is composed of global, local
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and regularization terms. In order to retain object boundary details, the global energy term is

used. The authors improve the accuracy of segmentation of images with non-homogeneous

intensity regions by taking local image information (local energy term) into account. The reg-

ularization term is included to avoid the presence of small isolated segments. The method is

developed using curve evolution, local statistical function, and level set techniques. Exploiting

the difference of evolving contour length, the method employs a termination condition to min-

imize long iteration process. The experimental results presented by the authors of [100] show

that the segmentation accuracy is less sensitive to its parameters and variations in the initial

location of the contours (i.e., the initial BB encompassing the foreground object of interest to

be segmented).

3.3.2 The Proposed Tracking Failure Detection

The integration of object segmentation requires tracking failure detection mechanism. To that

end, we analyze internal variables of the proposed tracker of Section 3.2. Intuitively, one can

use a temporal-statistical metric of the optimal scoring function φ(x, ŷ) in (19) to determine

tracking failures. However, we experimentally found that such trivial methods are ineffective.

Therefore, to determine tracking failures, we propose to form a failure-detection feature vector

x• by utilizing the following internal variables: scoring function φ(x, ŷ) in (19), responses

from JKF k(x, x̄) in (34), color kernel k⋆(x⋆, x̄⋆) in (45), global shape kernel k�(x�, x̄�) in

(32), and motion kernel kMI(u, û) in (38). Formally

x• =
[
φ(x, ŷ) k(x, x̄) k⋆(x⋆, x̄⋆) k�(x�, x̄�) kMI(u, û)

]
. (39)

3.3.2.1 Failure Detection as an SVM Classification Problem

Given a set of N̄ EX example pairs
{
x•
ī , y

•
ī

}N̄EX

ī=1
, where ī ∈ [1, N̄ EX] is an index, yS

ī
∈ {−1,+1}

is the class label of the feature vector x•
ī . We employ a standard binary SVMs model as a
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classifier to effectively detect the tracking failure as follows

min
w̄

⎧⎨⎩1

2
∥ w̄ ∥2 +C̄ SVM

N̄EX∑
ī=1

ξ•ī

⎫⎬⎭ ,

subject to

∀ī : y•ī (⟨w̄, Φ̄(x•
ī )⟩+ b•) ≥ 1− ξ•ī and

∀ī : ξ•ī ≥ 0, b• ∈ R,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(40)

where the weight vector w̄ is learned with sequentially obtained N̄ EX example pairs
{
x•
ī , y

•
ī

}
,

Φ̄(x•
ī ) is a nonlinear function that maps x•

ī to a high-dimensional feature space, the slack

variables ξ•i allow the examples to violate the constraint of being outside of the margin, b• is

the bias term of the separating hyperplane, and C̄ SVM is a parameter (e.g., C̄ SVM = 25) which

controls how strongly margin violations are penalized.

Using the Lagrangian function [52], the corresponding dual expression of the optimization

problem in (40) is obtained

max
α•

− 1

2

N̄EX∑
ī

N̄EX∑
j̄

α•
īα

•
j̄y

•
ī y

•
j̄k

•(x•
ī ,x

•
j̄

)
+

N̄EX∑
ī

α•
ī ,

subject to

∀ī :
N̄EX∑
ī

α•
ī y

•
ī = 0 and

∀ī : C̄ SVM ≥ α•
ī ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(41)

where j̄ ∈ [1, N̄ EX] is an index, the Lagrangian multiplier α• corresponds to the margin con-

straint in (40), and k•(x•
ī ,x

•
j̄

)
is a kernel function defined as

k•(x•
ī ,x

•
j̄

)
= ⟨Φ̄(x•

ī ), Φ̄(x•
j̄)⟩. (42)
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By solving this dual optimization problem in (41) using SMO-step [112], we obtain

w̄ =
N̄EX∑
ī

α•
ī y

•
ī Φ̄(x•

ī ). (43)

Once the optimization problem for SVMs has been solved, we can predict any tracking fail-

ures, i.e., y•(x•) = −1, using the failure-detection feature vector x• corresponding to the

current frame as follows

y•(x•) =

⎧⎪⎪⎨⎪⎪⎩
+1, if

N̄EX∑̄
i

α•
ī y

•
ī k

•(x•
ī ,x

•)+ b• ≥ 0

−1, otherwise.

(44)

For detecting tracking failures, we construct the kernel k•(x•
ī ,x

•
j̄

)
as a GRBF kernel func-

tion with parameter γ• = 1

k•(x•
ī ,x

•
j̄

)
= exp

(
−γ• ∥ x•

ī − x•
j̄ ∥

2
)
. (45)

For online object tracking, the proposed tracking failure detection technique must be trained

online, which we describe in the next Section.

3.3.2.2 Online Training of Binary SVM for Tracking Failure Detection

We assume the target can be correctly tracked for the first N̄ EX few frames (for example

N̄ EX = 32). This is not a strong assumption since most of state-of-the-art trackers are ef-

fective in tracking the object during the first few frames. In each N̄ EX frames, we leverage the

proposed MIST to select a pair of positive and negative BBs by searching for the maximum

and minimum of the gradient of (24), respectively. We extract the failure-detection feature

vector x• corresponding to the positive and negative BBs, and use them to train the binary

SVMs classifier online. Once the training is complete, i.e., after the first N̄ EX frames, we

predict the tracking failures using (44). In the event of any tracking failures, we re-initialize

the tracker by effectively incorporating object segmentation, which we describe in the next

Section.
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3.3.3 The Proposed Re-initialization of MIST by Particle Filter

Often, the input to the object segmentation is provided by human labeling of an object of inter-

est. Such manual interventions preclude the use of object segmentation to offline applications.

In this work, we propose a technique based on particle filter that automatically provides the

input (i.e., the initial BB) to the object segmentation. To that end, we leverage object trajectory

within the most recent N• frames and we use particle filter to sample and estimate the location

of the optimal BB. Once tracking failure is detected, restricting the sampling to the vicinity of

the most recent object trajectory is important to prevent outliers caused by background clutter.

In what follows, we first discuss our method of BB selection for segmentation with particle fil-

ter (Section 3.3.3.1), and then present how we use object segmentation to effectively evaluate

the observation likelihood model of particle filter (Section 3.3.3.2).

3.3.3.1 Sampling for segmentation

Let the state vector s• = [s•1 s•2 s•3 s•4] describe the origin [s•1 s•2] and the width and height

[s•3 s•4] of the BBs. We can regard making inference about s• as the estimation of the system

state given a series of t̄ observations z•1:t̄ = {z•1, ..., z• t̄}. Our goal is to recursively find the

posterior distribution p(s• t̄|z•1:t̄) for s• t̄. Using Bayes rule [50]

p(s• t̄|z•1:t̄) ∝ p(z• t̄|s• t̄)p(s• t̄|z•1:t̄−1), (46)

where the observation likelihood distribution p(z• t̄|s• t̄) describes how the observation z• t̄ de-

pends on s• t̄, i.e., the origin and size of the BB. As with our motion modeling presented in

Section 3.2.2.2, we assume the system dynamics can be modeled by a first order Markov

process. Using Chapman-Kolmogorov Equation [50], the posterior distribution p(s• t̄|z•1:t̄) is

calculated

p(s• t̄|z•1:t̄) ∝ p(z• t̄|s• t̄)
∫

p(s• t̄|s• t̄−1)p(s
•
t̄−1|z•1:t̄−1)ds

•
t̄−1, (47)

where p(s• t̄|s• t̄−1) is the state transition distribution. We leverage the proposed KHM dynamic

model in (4) to propagate the state s•. The posterior distribution p(s• t̄|z•1:t̄) is approximated

by particle filtering using a set N SP weights ωt̄,ℓ corresponding to the state s• t̄,ℓ, where ℓ ∈
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[1, N SP]. Using SIR particle filters [113], ωt̄,ℓ is estimated by

ωt̄,ℓ ∝ p(z• t̄|s• t̄,ℓ) · ωt̄−1,ℓ. (48)

Using MAP rule [51], the estimated location and the size of the BB ŝ•
t̂

is obtained from

ŝ•t̂ ≈ argmax
s• t̄,ℓ

ω̃t̄,ℓ, (49)

where ω̃t̄,ℓ is the normalized weight. The observation likelihood model p(z• t̄|s• t̄,ℓ) is implicitly

required to estimate ŝ•
t̂

in (49). In the next Section, we present our techniques of using object

segmentation to effectively estimate the observation likelihood model ωt̄,ℓ.

3.3.3.2 Observation likelihood model

For each particle s• t̄,ℓ, we execute C SITR iterations of [100], (e.g., C SITR = 10), to effectively

discriminate non-homogeneous foregrounds from the backgrounds. We draw N SP particles

(e.g., N SP = 100) equally around each of the object positions in the most recent N• frames

(e.g., N• = 16). Let M be the foreground mask returned by the segmentation method [100].

For each particle s• t̄,ℓ, we extract color histogram Θt̄,ℓ only within the area defined by the

foreground mask M. Then, we use χ2 kernel for defining our observation likelihood

p(z• t̄|s• t̄,ℓ) = exp

(
−∥ Θt̄,ℓ − Θ̄ ∥2⏐⏐Θt̄,ℓ − Θ̄

⏐⏐1
)
, (50)

where ∥ · ∥2 and ∥ · ∥1 are l2 and l1 norms, respectively, and Θ̄ is the color histogram of the

target reference s̄•. We obtain the target reference s̄• by searching for the BB with the minimal

gradient within the positive SVMs pool retained in the MIST.

We can now estimate the optimal location and the size of the BB ŝ•
t̂

using (49) and use it to

re-initialize the proposed MIST to recover from the current failure state. The proposed object

segmentation integration with MIST is summarized in Algorithm 2.
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Algorithm 2: Proposed object segmentation integration with object tracking.
Input : Internal variables: φ(x, ŷ), k(x, x̄), k⋆(x⋆, x̄⋆), k�(x�, x̄�), kMI(u, û) in Ft.
Output: Prediction of the segmented BB ŝ•

t̂
in Ft.

1 repeat
2 Construct the feature vector x• using (39).
3 Learn the binary SVM online using the first N̄ EX frames.
4 Predict any tracking failures, i.e., y•(x•) = −1, using (44).
5 if y•(x•) = −1 then
6 Draw N SP particles around each of the object positions in the most recent N•

frames.
7 for each particle ℓ do
8 Propagate particles according to (4).
9 Evaluate the foreground mask M by a segmentation method [100].

10 Evaluate observation likelihood p(z• t̄|s• t̄,ℓ) by (50).
11 Update the importance weights ωt̄,ℓ using (48).

12 Estimated the optimal particle state ŝ•
t̂

with (49).
13 Re-initialize the proposed MIST with ŝ•

t̂
.

14 until end of video sequence.

3.4 Conclusion

In this Chapter, we described the proposed MIST and how we improved it by integrating

object segmentation. Effective object tracking requires modeling target dynamics and appear-

ance changes. Leveraging harmonic means and particle filter to formulate target dynamics

improves accuracy and efficiency of object localization. Structured SVMs possess good gen-

eralization ability with built-in flexibility to model object appearances, while being effective

in the presence of estimation noise. Accuracy of object tracking based on Structured SVMs is

improved when the following are effectively explored: 1) adaptive joint kernels using orthogo-

nal features for Structured SVMs learning and inference, 2) motion-augmented regularization

for constraining the output search space, and 3) conditional model updates for structured max-

imization problem.

Tracking failure is inevitable due to challenging factors inherent in videos, such as defor-

mation, illumination changes, occlusion etc. Therefore, effective tracking also requires both

tracking failure detection and re-initialization after its failure. Integrating object segmentation

with tracking minimizes tracking failures and improves overall accuracy of object tracking.
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Tracking failure can be detected using online binary SVMs framework. Recent history of

the object trajectory provides rich clues for relocating lost target, for which particle filter is

effective to sample and estimate the target state and object segmentation provides accurate

modeling of the likelihood.

The selection of the segmentation method to integrate in case of tracking failure clearly

affects the overall tracking results. On the other side, a different object tracking method may

differently benefit from the integration of the same segmentation method. We observe that

accuracy and speed of the overall tracking strongly depends on the three steps: segmentation

method selected, object tracking method selected, and tracking failure method used.



Chapter 4

Experimental Results

4.1 Overview

In this Chapter, first, we discuss the experimental setup. We use large datasets and classify

the video sequences into several challenging categories. Second, we present experimental

results of the proposed MIST and objectively and subjectively compare it with several state-

of-the-art trackers. Third, we present the results of the proposed integration of MIST with an

active contour based object segmentation method using several challenging video sequences.

Finally, we conclude the Chapter.

4.2 Experimental Setup

For our experiments, we used 50 video sequences (total 29, 490 frames, with frame size rang-

ing from 250× 350 to 800× 1000) from the [7] benchmark dataset. Following [7], we divide

the 50 test videos into 11 challenging categories to evaluate the effectiveness of the track-

ers according to: fast motion, occlusion, illumination variation, deformation, background

clutter, low resolution, scale variation, in-plane rotation, out-plane rotation, out-of-view, and

motion blur. We compare our method against 10 state-of-the-art object tracking algorithms:

Struck [66], ASLA [121], SCM [87], TLD [65], MIL [64], CT [85], CSK [122], L1APG [56],

Frag [123], and IVT [53]. We used a PC with Intel i5 1.8 GHz CPU and 4 GB of RAM to

42
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execute the proposed method and the original implementation of the compared methods pro-

vided by the respective authors. We use the CPU implementation of Struck [66], since the

implementations of our and other compared trackers are based on CPU. Our method involves

random numbers, therefore we report the mean result of 5 executions on each video sequences.

We apply four widely used [85, 124–127] objective measures for evaluating the selected

tracking algorithms: center location error, overlap score, precision plot, and success plot. The

center location error is defined as the average Euclidean distance between the center locations

of the tracked targets and the manually labeled ground truths. The second evaluation metric

is the overlap score ∆(yi,y) = 1 − A(yi∩y)
A(yi∪y) defined in Chapter 3. Notice that ∆(yi,y) = 1

means identical match between the candidate y and ground truth yi BBs, and ∆(yi,y) = 0

means no similarity. The third and fourth measures are precision plot and success plot [7].

The precision plot is based on center location error metric while the success plot is based

on the overlap metric. The precision plot shows the percentage of frames whose estimated

location is within the given threshold distance of the ground truth. A success plot is computed

by measuring the fraction of frames with overlap score (varied from 0 to 1) that is greater than

a given threshold. Notice that by plotting the precision and success plots for all thresholds,

no parameters are required, which makes the plots unambiguous and intuitive to interpret. A

higher precision score at low center error thresholds and higher success score at high overlap

thresholds mean the tracker is more accurate. As the representative precision score for each

tracker, the threshold for the score is normally set to 20 pixels, and for success score, the

representative threshold is typically set to 0.5 [128].

4.3 MIST Evaluation

In this Section, we list the parameters of our method, and present representative quantitative

and qualitative tracking results. We then demonstrate some results of the internal analysis of

the proposed algorithm, and discuss limitations of the proposed method.
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4.3.1 MIST Parameters

The parameters of the proposed MIST are listed in Table 1. We used 10 video sequences

(carDark, david3, trellis, soccer, matrix, car4, sylvester, suv, jumping, and fleetface) to ex-

perimentally determine optimal parameter values. The 10 videos were selected so that their

attributes cover different challenging categories. We observed that our method is mainly sensi-

tive to the penalty parameter C SVM. In Section 4.3.4.3, we present the results of the experiments

carried out to estimate C SVM. Our experiments showed that increasing or decreasing the values

of the parameters in Table 1 (except C SVM) about 10% − 25% did not noticeably affect the

accuracy of the proposed MIST.

Parameter Description Value
N HM Number of states in the KHM motion model 8

N P Number of particles set at the first frame in the
motion model 1000

N PP Number of prior states considered for estimat-
ing number of particles 16

C SVM Structured SVM regularization parameter 25
CCMU SVM model update threshold 0.02
γMI Precision parameter of motion GRBF 0.20
γ� Precision parameter of color GRBF 0.22

Table 1: Parameters of the proposed MIST.

4.3.2 Quantitative Comparison of MIST

In Table 2, we list the averaged objective measures for all sequences as well as the average

frame rates obtained for all videos. We also present these objective measures for individual

sequences in Tables 3 and 4. As can be observed from these Tables, our method well out-

performs the compared trackers in the overall objective measures. Compared to the 3 most

accurate methods (Struck, ASLA, and SCM) of Tables 2, 3, and 4, the proposed method is

the fast with 11.23 Frames Per Seconds (FPS), which can be improved by down-sampling the

input frames, or skipping frames, or by implementing MIST on a Graphic Processing Unit

(GPU).

Figure 2 depicts the averaged success and precision plots for all sequences, and confirms
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Tracker
Mean over-
lap score

Mean center
error

Frame rate
(FPS) Code

MIST [Ours] 0.551 26.84 11.23 C
Struck [66] 0.481 50.81 9.46 C

TLD [65] 0.432 52.27 24.12 MC
ASLA [121] 0.457 62.17 4.88 MC
CSK [122] 0.400 88.88 230.72 M

CT [85] 0.256 84.63 44.95 MC
IVT [53] 0.373 77.56 23.22 MC

L1APG [56] 0.360 73.39 1.23 MC
SCM [87] 0.437 64.35 0.36 MC
MIL [64] 0.354 61.74 21.12 C

Frag [123] 0.320 77.28 4.29 C

Table 2: Mean objective measures and average frame rates for 50 test video sequences. The
Code column states which programming language each tracker is coded; C:C/C++, M: Matlab,
MC: Matlab and C/C++.

that our method outperforms the other trackers in both measures. With Figures 3 and 4, we

also report the effectiveness of the proposed tracker with others on various challenge attributes,

such as fast motion, occlusion, background clutter, etc. Figures 3 and 4 illustrate that the

our method strongly competes against state-of-the-art effectively handling the challenging

situations, except in the scale variation category where its effectiveness is similar to those of

SCM and ASLA.

Figure 2: The averaged precision and success plots of the proposed MIST and the compared
trackers on all 50 sequences.
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Sequence
Tracker

MIST Struck TLD ASLA CSK CT IVT L1APG SCM MIL Frag
[Ours] [66] [65] [121] [122] [85] [53] [56] [87] [64] [123]

carDark 1.4 1.4 27.5 1.1 3.8 28.7 8.4 0.9 3.4 45.7 79.7
david 13.1 63.0 5.1 4.2 17.7 11.6 4.4 70.7 9.6 21.1 99.3
trellis 3.9 27.1 31.1 31.8 18.8 46.6 125.8 62.2 11.6 68.9 56.3

soccer 35.6 75.6 77.1 86.0 70.1 82.9 146.4 101.3 158.1 37.0 127.4
matrix 23.2 195.4 57.2 56.8 113.7 59.2 144.8 57.1 52.5 44.4 184.5

ironman 28.0 116.2 93.2 93.9 185.5 165.3 132.3 173.0 167.4 189.2 252.5
deer 3.8 6.9 30.9 139.3 4.8 240.5 181.9 24.2 86.0 57.5 98.8

skating1 75.2 75.4 145.8 48.9 7.8 150.7 140.0 92.3 73.7 156.8 137.8
shaking 46.2 23.3 37.1 19.3 17.6 115.0 228.1 109.8 13.9 14.5 178.1
singer1 22.0 12.2 8.0 3.0 14.2 18.3 11.3 97.9 4.3 22.7 56.2
singer2 12.2 173.8 58.3 68.9 185.9 147.0 15.4 191.4 111.7 169.1 97.3

coke 23.6 11.8 25.1 59.7 13.6 31.6 82.3 101.5 28.5 48.3 207.0
bolt 390.7 386.2 90.9 367.9 430.3 281.8 389.5 402.1 432.4 387.2 333.8
boy 3.3 3.4 4.5 52.9 20.3 37.1 91.3 66.2 60.1 28.0 49.8

crossing 2.8 120.1 24.3 1.5 8.8 5.9 2.3 3.7 2.7 2.7 39.0
couple 11.0 30.0 2.5 57.6 145.2 77.3 123.9 31.8 157.3 34.3 36.6

football1 6.8 14.1 45.4 17.9 16.8 23.0 24.5 10.6 26.1 8.0 16.3
jogging-1 18.4 87.2 6.7 100.8 135.4 91.1 84.1 88.5 142.1 113.4 21.6
jogging-2 66.2 137.6 13.6 137.3 165.1 139.9 131.3 5.6 142.3 135.4 76.7

doll 5.6 11.7 6.0 17.1 44.8 16.3 15.2 114.8 7.4 21.7 11.8
girl 8.3 2.8 9.8 6.2 19.3 19.6 18.5 3.7 4.2 17.0 20.3

walking2 5.0 11.8 44.6 40.3 17.3 66.2 2.9 6.4 3.1 43.5 64.0
walking 7.3 5.3 10.2 1.8 6.7 434.4 1.6 3.1 3.6 4.5 9.8
david3 10.1 107.1 208.1 55.3 56.2 89.6 52.4 93.2 104.3 33.7 61.0

carScale 14.6 34.5 22.6 21.2 83.3 77.7 11.9 17.2 12.2 32.9 31.0
skiing 5.4 252.9 279.4 251.8 247.3 258.0 274.5 258.3 242.6 256.8 279.7

motorRolling 143.7 143.5 80.9 180.2 622.1 168.8 181.0 194.6 159.5 165.6 141.5
mountainBike 10.8 9.4 216.1 9.0 6.5 87.0 7.7 12.1 18.2 7.7 206.0

lemming 14.0 36.7 16.0 203.8 114.2 122.0 184.1 172.5 162.8 74.0 17.6
liquor 27.4 72.0 37.6 51.3 160.6 178.7 118.6 90.7 81.9 140.5 91.7

woman 12.7 3.4 139.9 156.0 207.1 121.6 196.0 133.5 10.5 124.2 103.8
faceocc1 52.1 19.2 27.4 97.7 11.9 25.7 17.6 22.7 20.2 34.9 19.2

basketball 23.0 85.4 213.9 249.8 6.5 96.5 117.4 114.2 232.4 106.4 11.8
subway 5.8 3.3 150.3 4.4 164.8 10.9 126.3 148.8 2.2 6.8 16.2

tiger1 22.5 14.4 49.5 92.3 70.2 83.5 106.6 64.3 81.1 35.4 55.9
tiger2 15.8 19.1 37.1 89.5 59.6 80.8 105.1 79.9 63.8 42.7 86.5

car4 27.9 4.2 86.2 1.7 19.5 85.2 2.2 101.4 8.4 53.8 147.6
sylvester 5.3 6.3 7.3 17.2 10.1 17.6 34.2 23.8 10.2 14.6 20.4

suv 12.1 36.2 13.1 73.1 573.2 86.3 57.3 91.4 74.9 73.4 41.2
jumping 5.7 7.0 5.9 39.9 85.7 45.0 61.6 33.5 41.0 13.3 7.4
fleetface 16.4 20.3 41.2 25.2 25.6 54.2 62.2 63.1 25.2 21.3 69.3

freeman1 11.5 11.4 39.7 13.1 125.7 14.5 11.6 10.2 7.7 12.2 11.2
freeman3 36.4 24.4 29.3 2.5 54.1 42.2 35.9 19.0 6.8 25.2 8.8

dog1 8.3 6.0 4.2 5.0 3.9 7.9 3.5 9.5 11.3 7.8 16.6
freeman4 24.0 43.6 39.2 60.8 78.7 95.0 43.0 33.8 98.0 76.7 42.8

football 20.5 13.8 14.3 8.6 16.0 15.6 14.3 17.6 7.3 12.5 16.5
faceocc2 10.6 6.3 12.3 20.1 5.9 26.0 7.4 10.9 11.4 16.9 39.8

fish 3.1 3.3 6.5 3.3 41.2 10.6 4.5 9.1 9.6 19.3 26.9
dudek 10.4 10.8 18.1 11.9 13.4 33.4 9.7 64.7 58.0 43.7 86.6

david2 1.8 1.7 5.0 10.1 2.3 59.6 1.2 25.8 9.8 16.2 15.7
mhyang 3.2 2.6 9.5 1.7 3.6 32.7 1.9 8.2 8.1 9.5 13.9

Mean 26.8 50.8 52.3 62.2 88.9 84.6 77.6 73.4 64.3 61.7 77.3
#Best score 20 4 4 6 5 0 6 2 4 0 0

#Second best score 4 7 7 5 3 1 7 3 7 5 2

Table 3: Comparison of MIST against 10 state-of-the-art trackers on the center error metric of
the 50 video sequences. #Best and #Second best scores are the total number of sequences that
each tracker performs best and second best on the center error metric, respectively.
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Sequence
Tracker

MIST Struck TLD ASLA CSK CT IVT L1APG SCM MIL Frag
[Ours] [66] [65] [121] [122] [85] [53] [56] [87] [64] [123]

carDark 0.866 0.863 0.449 0.827 0.716 0.117 0.663 0.885 0.730 0.153 0.073
david 0.501 0.228 0.718 0.754 0.402 0.464 0.679 0.247 0.625 0.373 0.087
trellis 0.632 0.434 0.484 0.619 0.480 0.278 0.277 0.200 0.669 0.264 0.315

soccer 0.401 0.151 0.127 0.140 0.145 0.143 0.151 0.168 0.108 0.279 0.169
matrix 0.485 0.101 0.156 0.190 0.031 0.155 0.022 0.177 0.180 0.117 0.015

ironman 0.427 0.098 0.102 0.152 0.119 0.082 0.049 0.081 0.109 0.050 0.028
deer 0.756 0.720 0.602 0.055 0.748 0.032 0.033 0.602 0.063 0.363 0.080

skating1 0.346 0.311 0.191 0.482 0.497 0.091 0.080 0.147 0.465 0.134 0.105
shaking 0.221 0.502 0.390 0.514 0.568 0.033 0.035 0.079 0.612 0.581 0.109
singer1 0.343 0.357 0.725 0.776 0.359 0.337 0.574 0.244 0.830 0.333 0.223
singer2 0.669 0.045 0.217 0.501 0.043 0.048 0.569 0.032 0.164 0.037 0.193

coke 0.452 0.679 0.396 0.166 0.570 0.336 0.119 0.095 0.424 0.243 0.032
bolt 0.017 0.019 0.159 0.011 0.019 0.007 0.010 0.009 0.008 0.011 0.015
boy 0.775 0.768 0.662 0.369 0.654 0.323 0.260 0.331 0.325 0.384 0.379

crossing 0.742 0.312 0.403 0.806 0.506 0.604 0.307 0.669 0.690 0.732 0.288
couple 0.474 0.492 0.772 0.210 0.075 0.195 0.074 0.483 0.064 0.498 0.448

football1 0.607 0.455 0.377 0.485 0.456 0.208 0.557 0.491 0.368 0.560 0.345
jogging-1 0.577 0.175 0.770 0.185 0.178 0.176 0.177 0.149 0.133 0.152 0.517
jogging-2 0.113 0.136 0.656 0.136 0.141 0.061 0.142 0.736 0.106 0.114 0.105

doll 0.548 0.540 0.570 0.836 0.316 0.479 0.497 0.075 0.719 0.345 0.494
girl 0.599 0.741 0.572 0.635 0.364 0.272 0.173 0.692 0.644 0.341 0.457

walking2 0.492 0.510 0.306 0.353 0.465 0.266 0.659 0.697 0.748 0.266 0.260
walking 0.566 0.552 0.446 0.766 0.537 0.003 0.766 0.730 0.649 0.535 0.479
david3 0.734 0.281 0.097 0.551 0.492 0.304 0.544 0.300 0.301 0.501 0.484

carScale 0.395 0.410 0.450 0.656 0.415 0.354 0.626 0.467 0.532 0.413 0.358
skiing 0.493 0.044 0.066 0.096 0.059 0.059 0.078 0.066 0.083 0.090 0.028

motorRolling 0.165 0.132 0.229 0.095 0.090 0.098 0.090 0.082 0.106 0.116 0.121
mountainBike 0.640 0.682 0.200 0.698 0.716 0.434 0.726 0.645 0.621 0.701 0.122

lemming 0.654 0.483 0.531 0.142 0.332 0.253 0.126 0.126 0.131 0.493 0.568
liquor 0.696 0.608 0.518 0.638 0.252 0.199 0.226 0.307 0.334 0.201 0.327

woman 0.703 0.750 0.133 0.150 0.191 0.102 0.148 0.146 0.549 0.154 0.135
faceocc1 0.474 0.718 0.585 0.249 0.795 0.619 0.735 0.632 0.662 0.537 0.675

basketball 0.548 0.428 0.022 0.080 0.707 0.165 0.085 0.173 0.078 0.229 0.640
subway 0.723 0.750 0.183 0.742 0.194 0.542 0.160 0.188 0.816 0.681 0.466

tiger1 0.531 0.632 0.376 0.182 0.259 0.105 0.095 0.249 0.117 0.387 0.333
tiger2 0.626 0.562 0.261 0.087 0.170 0.141 0.086 0.163 0.226 0.382 0.136

car4 0.407 0.491 0.206 0.870 0.465 0.215 0.861 0.243 0.752 0.253 0.099
sylvester 0.742 0.722 0.674 0.601 0.625 0.526 0.517 0.400 0.618 0.550 0.490

suv 0.729 0.475 0.692 0.466 0.524 0.166 0.406 0.400 0.455 0.246 0.549
jumping 0.649 0.596 0.664 0.223 0.050 0.059 0.122 0.274 0.133 0.404 0.601
fleetface 0.657 0.635 0.486 0.623 0.587 0.554 0.457 0.572 0.621 0.615 0.479

freeman1 0.390 0.364 0.280 0.447 0.236 0.305 0.426 0.360 0.587 0.293 0.349
freeman3 0.211 0.183 0.445 0.752 0.297 0.025 0.394 0.272 0.502 0.066 0.279

dog1 0.546 0.544 0.587 0.702 0.546 0.532 0.741 0.617 0.641 0.527 0.500
freeman4 0.226 0.244 0.224 0.147 0.123 0.014 0.149 0.157 0.123 0.039 0.189

football 0.579 0.532 0.489 0.568 0.560 0.451 0.557 0.553 0.626 0.584 0.507
faceocc2 0.706 0.782 0.616 0.585 0.780 0.476 0.727 0.702 0.690 0.643 0.492

fish 0.866 0.866 0.814 0.876 0.208 0.703 0.778 0.724 0.702 0.528 0.472
dudek 0.734 0.736 0.648 0.753 0.716 0.602 0.775 0.463 0.591 0.513 0.505

david2 0.848 0.858 0.693 0.469 0.825 0.032 0.702 0.332 0.506 0.376 0.605
mhyang 0.808 0.818 0.632 0.909 0.796 0.324 0.796 0.739 0.733 0.685 0.608

Mean 0.551 0.481 0.432 0.457 0.400 0.256 0.373 0.360 0.437 0.354 0.320
#Best score 15 7 5 8 3 0 4 2 7 0 0

#Second best score 11 7 3 11 4 0 4 2 2 5 2

Table 4: Comparison of MIST against 10 state-of-the-art trackers on the overlap ratio metric
of the 50 video sequences. #Best and #Second best scores are the total number of videos that
each tracker performs best and second best on the overlap ratio metric, respectively.
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Figure 3: Precision plots of the proposed MIST and the compared trackers for 11 challenging
categories on all 50 sequences.
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Figure 4: Success plots of the proposed MIST and the compared trackers for 11 challenging
categories on all 50 sequences.
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4.3.3 Subjective Comparison of MIST

Based on our objective experimental results above, we observe that Struck, ASLA, SCM, TLD,

and IVT outperform the others. To retain the clarity in subjective figures, we present the

subjective comparison results1 of our method against these best performing trackers only.

4.3.3.1 Object deformation

We use David3, David, and Crossing sequences to evaluate the effectiveness of the trackers in

handling object deformation. Figure 5 depicts some qualitative results of the compared track-

ers and the proposed method. In general, our method, ASLA, and Struck are more effective

than TLD, IVT, and SCM. More specifically, in the David3 sequence, the proposed method and

ASLA (to a lesser degree) are more effective in handling drastic deformation and occlusion,

while Struck gradually drifts away from the object around the middle of the sequence. TLD

fails almost at the beginning of this sequence.

4.3.3.2 Fast motion

The Boy, Jumping, and Dudek video sequences are used to qualitatively evaluate the trackers

in dealing with fast object motion. Some subjective results are shown in Figure 6. We observe

that the proposed method, Struck, and TLD are more effective than ASLA, IVT, and SCM. In

the Boy and Jumping sequences, the effectiveness of ASLA and SCM deteriorate during the

abrupt object motion.

4.3.3.3 Occlusion

For evaluating the trackers against occlusion subjectively, we employ Soccer, Liquor, and Ma-

trix video sequences. Some representative tracking results are shown in Figure 7 highlighting

that the proposed method qualitatively outperforms the compared methods. Notice that, the

object in this sequence also undergoes deformation and illumination changes.

1The subjective results are best viewed in color.
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4.3.3.4 Illumination variation

We use Basketball, Skiing, and Fish sequences to subjectively evaluate the trackers effective-

ness in handling illumination variation, and some results are depicted in Figure 8. We observe

that our method qualitatively outperforms the others. More specifically, in the Basketball se-

quence, the object (player) is similar to background objects (players) in the scene, and the

proposed method performs well while all other compared methods gradually lose tracking the

object when it becomes closure to other objects in the background with similar colors. Fur-

thermore, our method is very effective in tracking the miniature object throughout the Skiing

sequence, while all other methods fail after the first few frames.

4.3.3.5 Background clutter

We use Singer2, CarDark, and Football1 sequences to test the effectiveness of the respective

trackers in dealing with background clutter. Figure 9 shows some qualitative results, and we

observer that the effectiveness of the proposed method and ASLA (to a lesser degree) is better

compared with all other tested trackers. More specifically, the object in the Singer2 sequence

is surrounded by significant background clutter, however, only the proposed method is able to

track the object by effectively discriminating the background clutter throughout the sequence.

4.3.3.6 In-plane rotation

We use Coke, Freeman4, and David2 video sequences to subjectively compare the trackers

in dealing with in-plane rotation. Figure 10 depicts some qualitative results. In general, the

proposed method, Struck, and TLD trackers are more effective than the other methods. More

specifically, we observe that ASLA incorrectly learns its appearance model few frames after

the beginning of the sequence and it fails to recover and track the object.

4.3.3.7 Out-plane rotation

Figure 11 depicts some results of the compared trackers and the proposed method in handling

with out-plane rotation in Trellis, Sylvester, and Jogging-1 vedeo sequences . In particular,

Struck, IVT and ASLA trackers are suboptimal in tracking the object in these sequences, while
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TLD is relatively effective. In the Jogging-1 sequence, Struck, IVT, ASLA, and SCM drift away

from the object when collusion occurs, while TLD is more effective. In contrast, the proposed

tracker succeeds tracking the object throughout the sequences.

4.3.3.8 Low resolution

We employ Walking2, Deer, and Ironman sequence to evaluate the effectiveness of the trackers

in dealing with scenarios with low contrast between the target and background, and some

qualitative results are shown in Figure 13. We observe that the proposed method, Struck, and

TLD are more effective than the other methods. In particular, in the Deer sequence, ASLA,

TLD, SCM, and IVT get distracted by background clutter, drift away from the target gradually.

4.3.3.9 Scale variation

Figure 12 shows some qualitative results of which the object undergoes significant scale vari-

ations in Doll, CarScale, and Couple video sequences. Our method compared with SCM and

ASLA keeps engaged with the object throughout the sequences avoiding tracking drifts. Our

method is based on objects with fixed scale and therefore, its effectiveness can be further

improved by adaptively computing the scale of the object.

4.3.3.10 Out-of-view

We use Suv, Lemming, and Tiger2 sequences for evaluating the tracks when the object is out-

of-view, and some qualitative results are shown in Figure 14. In general, the proposed method,

Struck, and TLD are more effective than the other methods. In the Suv sequence, the proposed

method and TLD successfully re-detect and continue tracking the object amidst its absence

from the scene (around 550 frame).

4.3.3.11 Motion blur

For subjective evaluation of the trackers against motion blur, we use Woman, Tiger1, and

FleetFace video sequences. Some qualitative results are shown in Figure 15, and we observe

that the proposed method, Struck, and SCM perform better than other methods. In particular,
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we observer that, in the Woman sequence, both TLD and ASLA drift away from the object

around the middle of the sequence, while the proposed method, Struck, and SCM keep tracking

the object throughout the sequence.
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Figure 5: Deformation category: top David3; middle David; and bottom Crossing.
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Figure 6: Fast motion category: top Boy; middle Jumping; and bottom Dudek.
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Figure 7: Occlusion category: top Soccer; middle Liquor; and bottom Matrix.
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Figure 8: Illumination variation category: top Basketball; middle Skiing; and bottom Fish.
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Figure 9: Background clutter category: top Singer2; middle CarDark; and bottom Football1.
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Figure 10: In-plane rotation category: top Coke; middle Freeman4; and bottom David2.
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Figure 11: Out-plane rotation category: top Trellis; middle Sylvester; and bottom Jogging-1.
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Figure 12: Scale variation category: top Doll; middle CarScale; and bottom Couple.
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Figure 13: Low resolution category: top Walking2; middle Deer; and bottom Ironman.
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Figure 14: Out of view category: top Suv; middle Lemming; and bottom Tiger2.
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Figure 15: Motion blur category: top Woman; middle Tiger1; and bottom FleetFace.
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4.3.4 Internal Analysis

In this Section, we present some results of the internal analysis of the proposed algorithm.

We used the same 10 test video sequences used in Section 4.3.1 (i.e., carDark, david3, trellis,

soccer, matrix, car4, sylvester, suv, jumping, and fleetface) to study the contribution of several

components in the proposed tracker, and to experimentally determine optimal feature-kernel

combinations and the parameter C SVM.

4.3.4.1 Contribution of internal components

We implemented several derivatives of our tracker to investigate the contribution of several

components. To that end, the effectiveness of color (MIST-CLR), adaptive learning rate in the

JKF (MIST-BKG), Conditional Model Update (CMU) (MIST-CMU), and the employed HoG

feature descriptor (MIST(Haar); i.e., Haar vs HoG) are studied by removing each components

from the main algorithm. As can be seen from Figures 16, 17, and 18, our main algorithm

MIST outperforms all other variations on all 11 challenging categories.

Figure 16: The averaged precision and success plots on all sequences for internal comparison.
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Figure 17: Precision plots for 11 challenging categories for internal comparison.
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Figure 18: Success plots for 11 challenging categories for internal comparison.
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4.3.4.2 Kernel design

For our joint kernel design, we consider using HSV color histogram [129] to measure the

color similarity and HoG [111] as feature descriptor to encode global shape. Figure 19 shows

the response of these features to the histogram-intersection (HistInt), GRBF, Bhattacharyya

(BTCH), and χ2 kernels. Based on the optimal overlap ratio, we, therefore, select the feature-

kernel combinations: color with Bhattacharyya kernel and HoG with GRBF kernel. Note that

we have also experimented other feature-kernel combinations, for example, raw pixels, Haar,

Oriented FAST and Rotated BRIEF (ORB) were combined with kernels, such as linear, poly-

nomial, and exponential; however, the responses of such feature-kernel combinations were

weaker compared to those depicted in Figure 19.
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Figure 19: Confusion matrix of kernels and feature descriptors.

4.3.4.3 Penalty parameter C SVM

The penalty parameter C SVM in (20) determines the trade-off between the effectiveness and

efficiency of the model, therefore tuning C SVM is inevitable [52]. To select the optimal value for

C SVM for object tracking, we studied its influence by taking BB overlap ratio as effectiveness

and frame rate as efficiency measures. Figure 20 shows respective overlap ratio and frame rate
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and their corresponding error bars. We calculate the standard deviation of the overlap ratio

and frame rate for each parameter C SVM in Figure 20. The each error bar in Figure 20 has a

distance of 1 standard deviation above and below the respective plots. As can be seen from

Figure 20, smaller C SVM deviates the effectiveness while larger C SVM penalizes the efficiency.

With larger C SVM, the SVM optimization chooses a hyperplane with a smaller margin and,

therefore, the classification of the positive and negative samples is more accurate. Figure 20

shows that when C SVM & 25 the effectiveness reaches its optimum. For the proposed tracker,

we thus set C SVM = 25.
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Figure 20: Influence of SVM parameter C SVM on the efficiency and effectiveness (horizontal-
axis is in log scale).

4.3.5 Limitations

Figure 21 depicts an inaccuracy case of our method. We observe that the implicit occlusion

detection built within our conditional model update scheme is suboptimal in handling severe

occlusion. This can be because, the employed HoG feature descriptors are suboptimal in

encoding object contrast enough to discriminate it from the background. The effectiveness

of the proposed method can be improved by incorporating Haar-like features in a Multiple

Kernel Learning (MKL) [130] framework, for example.
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Figure 21: Inaccuracy cases of our method: the target in football, jogging-2, and faceocc1
sequences undergoes severe occlusion.
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4.4 MIST Integrated with Object Segmentation

In this Section, we present experimental results of the proposed object tracking method when

integrated with object segmentation: MIST Integrated with Segmentation (MIST-SEG). First,

we list the parameters used in the proposed MIST-SEG. Second, we study the effect on our

MIST-SEG when integrated with several segmentation algorithms. Third, we present some

quantitative and qualitative results, and finally we discuss limitations of the MIST-SEG.

Note that, our goal is to use segmentation to recover from tracking failures anywhere in

the video sequence; thus, we do not run segmentation every frame, but rather only when we

detect a tracking failure. This also implies that we do not use segmentation at the start of the

sequence. Experimentally, we found that using segmentation to refine the initial (first frame)

BB does not improve the overall tracking results, particularly on challenging video sequences.

This means that the results of the proposed MIST and the proposed MIST-SEG are identical

until the first failure is occurred.

4.4.1 Parameters of MIST Integrated with Object Segmentation

The parameters of the proposed technique of integrating segmentation with MIST are listed in

Table 5. We empirically obtained optimal values of these parameters by testing the MIST-SEG

on the same 10 test sequences (i.e., carDark, david3, trellis, soccer, matrix, car4, sylvester,

suv, jumping, and fleetface) used for evaluating the parameters of the proposed MIST. These

videos were selected from different challenging categories. Experimentally, we observed that

our MIST-SEG is mainly sensitive to the number of iterations C SITR that the segmentation is

executed. With higher C SITR, the employed method [100] removes more smooth areas of the

object through its energy minimization, and with smaller C SITR, it retains more background

regions; in both cases, the method [100] is suboptimal in segmenting relevant foreground

object from the background. The proposed MIST-SEG is not sensitive to variations of about

10% of the value of parameters in Table 5 that have smaller values, such as γ•. Varying about

20% of parameters with higher values, for example N• or N SP, also does not noticeably affect

the effectiveness of the proposed MIST-SEG.
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Parameter Description Value
C̄ SVM Binary SVM regularization parameter 25

γ• Precision parameter of tracking failure-
detection GRBF 1

N• Number of most recent frames used in segmen-
tation particle filter 16

N SP Number of particles in segmentation particle fil-
ter 100

N̄ EX Number of examples pairs in the binary
Support-Vector-Machines 32

C SITR Number of segmentation iterations 10

Table 5: Parameters of the proposed MIST integrated with segmentation.

4.4.2 Comparison of Segmentation Methods Integrated with MIST

We manually integrate the proposed MIST with three different segmentation methods: active

contour-based method [100], Lazy snapping method [118], K-means segmentation method

[119]. The proposed integrated methods are denoted by MIST-SEG-AC, MIST-SEG-LS, and

MIST-SEG-KM, respectively. We used the same test sequences in Section 4.4.1 to observe

the effect on the proposed MIST when integrated with these segmentation methods.

In Table 6, we list the averaged overlap scores, center errors, and frame rates over all

10 video sequences. As can be seen from Table 6, MIST-SEG-AC outperforms the MIST-

SEG-LS, MIST-SEG-KM, and MIST on the averaged center error and overlap score metrics,

and MIST-SEG-AC is faster than MIST-SEG-LS and MIST-SEG-KM. In Tables 7 and 8, we

present the center errors and overlap scores for each of the 10 video sequences. With regard

to the total number of sequences that each of the tracker performs best and second best, we

note that MIST-SEG-AC is best on overlap ratio metric (cf. Table 8) while MIST is slightly

better than MIST-SEG-AC on the center error metric (cf. Table 7). The quantitative results in

these Tables also confirm the effectiveness of the MIST-SEG-AC when compared with MIST-

SEG-LS, MIST-SEG-KM, and MIST. Figures 22, 23, and 24 depict success and precision

plots. We observe from these Figures that MIST-SEG-AC outperforms MIST-SEG-LS, MIST-

SEG-KM, and MIST. Consequently, we have selected the active contour-based segmentation

method [100] due to its effectiveness and efficiency. The segmentation method [100] localizes

region-based active contour energies. We execute C SITR iterations of the [100], (e.g., C SITR =
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10), to effectively discriminate non-homogeneous foregrounds from background. In the next

Section, we present some results of manual (supervised) as well as automatic (unsupervised)

integration of [100] with the proposed MIST, which we denote by MIST-SEGM and MIST-

SEGA, respectively.

Tracker
Mean over-
lap score

Mean center
error

Frame rate
(FPS)

MIST-SEG-AC 0.670 10.46 11.53
MIST-SEG-LS 0.457 34.00 10.14

MIST-SEG-KM 0.326 63.14 10.56
MIST 0.634 14.03 12.52

Table 6: Mean objective measures and average frame rates of manually integrating the pro-
posed MIST with [100], [118], and [119] on the 10 test video sequences.

Sequence
Tracker

MIST-SEG-AC MIST-SEG-LS MIST-SEG-KM MIST
carDark 1.3 42.4 70.5 1.4

david3 11.2 10.7 238.8 10.1
trellis 4.2 7.5 12.9 3.9

soccer 13.7 80.5 65.9 35.6
matrix 10.6 55.6 78.4 23.2

ironman 21.6 100.0 67.8 28.0
deer 3.9 7.3 8.7 3.8
suv 14.1 10.5 33.2 12.1

jumping 4.3 5.4 33.7 5.7
fleetface 19.5 20.1 21.5 16.4

Mean 10.5 34.0 63.1 14.0
#Best score 5 1 0 4
#Second
best score 3 2 0 5

Table 7: Individual center errors of the proposed MIST integrated with [100], [118], and [119].

4.4.3 Quantitative Comparison of MIST Integrated with Object Seg-

mentation

In Table 9, we list the averaged objective measures and the averaged frame rates obtained for

50 video sequences. In Table 10, we present these objective measures for the 50 sequences
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Sequence
Tracker

MIST-SEG-AC MIST-SEG-LS MIST-SEG-KM MIST
carDark 0.870 0.090 0.004 0.866

david3 0.718 0.625 0.011 0.734
trellis 0.655 0.504 0.410 0.632

soccer 0.582 0.334 0.130 0.401
matrix 0.608 0.296 0.305 0.485

ironman 0.492 0.107 0.223 0.427
deer 0.784 0.749 0.698 0.756
suv 0.654 0.647 0.518 0.729

jumping 0.738 0.654 0.412 0.649
fleetface 0.595 0.562 0.551 0.657

Mean 0.670 0.457 0.326 0.634
#Best score 7 0 0 3
#Second
best score 3 1 0 6

Table 8: Individual overlap ratios of the proposed MIST integrated with [100], [118], and
[119].

Figure 22: The averaged precision and success plots on all 10 sequences for comparing the
proposed MIST manually integrated with [100], [118], and [119].

individually. As can be observed from the quantitative results in Tables 9 and 10, the in-

tegration of segmentation when tracking failure occurs improve the overall effectiveness of

the proposed MIST. When MIST-SEG-AC is compared with MIST with respect to the to-

tal number of sequences that each of the tracker performs best and second best (in Table 9),

MIST-SEG-AC performs best on both overlap ratio and center error metrics. Notice that in

Tables 3 and 4, we list these scores for MIST and 10 other trackers. Consequently, the total
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Figure 23: Precision plots for 11 challenging categories on all 10 sequences for comparing the
proposed MIST manually integrated with [100], [118], and [119].

number of video sequences that MIST performs best and second best when it is compared

with 2 trackers (MIST-SEGA and MIST-SEGM)) are different from those in Tables 3 and 4.

Clearly, the manual segmentation (MIST-SEGM) performs better than the proposed automatic
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Figure 24: Success plots for 11 challenging categories on all 10 sequences for comparing the
proposed MIST manually integrated with [100], [118], and [119].

segmentation (MIST-SEGA) in most cases. This is because the interactive selection of the

object for segmentation is more accurate than its detection by the proposed (automatic) tech-

nique. The proposed MIST-SEGA is based on the observation of the particle filter which is



4.4. MIST INTEGRATED WITH OBJECT SEGMENTATION 77

derived from optimal BB among all the positive support vectors. During a tracking failure,

the BBs of negative support vectors can be incorrectly labeled as positive due to drift, hence

the observation to the particle filter can become suboptimal. Consequently, the overall ef-

fectiveness of MIST-SEGA can be worse than MIST-SEGM. Figures 25, 26, and 27 depict

results based on precision and success metrics, which also affirm the effectiveness of object

segmentation integration with object tracking. The results in these Figures further confirm

that MIST-SEGM performs better than MIST-SEGA. In Table 11, we objectively evaluate the

proposed tracking failure detection using the 10 test video sequences. In each video sequence,

we count the number of tracking failures detected by our method, and we list the average

number of failures detected for the 10 test video sequences in Table 11. The proposed failure

detection method estimates the optimal location and the size of the BB ŝ•
t̂

using (49), which

is subsequently used to re-initialize tracking. Using the ground truth data of the 10 test video

sequences and the estimated BB ŝ•
t̂
, we measure the overlap ratio and center error at each fail-

ure state. We present the mean of these objective measures in Table 11. As can be seen from

Table 11, our method has a higher mean overlap ratio (closer to 0.5) and a lower mean center

error, and therefore, our failure detection technique is reliable.

Tracker
Mean over-
lap score

Mean center
error

Frame rate
(FPS)

MIST-SEGA 0.595 23.96 10.58
MIST-SEGM 0.619 18.29 7.44

MIST 0.551 26.84 11.23

Table 9: Mean objective measures and average frame rates of the proposed automatic and
manual integration of segmentation with MIST for 50 test video sequences.

4.4.4 Subjective Comparison of Manual and Automatic Integration of

Object Segmentation with MIST

In this Section, we present qualitative results of the proposed MIST-SEGM and MIST-SEGA,

and subjectively compare them against the proposed MIST.
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Sequence
Tracker

Center Error Overlap Ratio
MIST-SEGA MIST-SEGM MIST MIST-SEGA MIST-SEGM MIST

carDark 1.5 1.3 1.4 0.862 0.870 0.866
david 30.2 33.0 13.1 0.273 0.239 0.501
trellis 3.9 4.2 3.9 0.653 0.655 0.632

soccer 24.0 13.7 35.6 0.436 0.582 0.401
matrix 27.4 10.6 23.2 0.521 0.608 0.485

ironman 19.2 21.6 28.0 0.503 0.492 0.427
deer 4.1 3.9 3.8 0.756 0.784 0.756

skating1 10.5 18.2 75.2 0.640 0.597 0.346
shaking 12.5 11.0 46.2 0.647 0.694 0.221
singer1 13.4 12.6 22.0 0.572 0.609 0.343
singer2 11.5 10.2 12.2 0.695 0.695 0.669

coke 15.5 23.7 23.6 0.562 0.474 0.452
bolt 368.0 173.9 390.7 0.019 0.405 0.017
boy 3.9 3.2 3.3 0.732 0.773 0.775

crossing 2.8 1.9 2.8 0.713 0.789 0.742
couple 12.4 9.3 11.0 0.525 0.552 0.474

football1 6.3 5.7 6.8 0.624 0.653 0.607
jogging-1 20.3 19.1 18.4 0.523 0.555 0.577
jogging-2 8.8 6.2 66.2 0.750 0.759 0.113

doll 5.6 5.0 5.6 0.603 0.609 0.548
girl 6.4 5.1 8.3 0.587 0.654 0.599

walking2 3.9 3.1 5.0 0.578 0.632 0.492
walking 3.9 2.8 7.3 0.591 0.648 0.566
david3 56.2 11.2 10.1 0.560 0.718 0.734

carScale 11.5 15.2 14.6 0.515 0.497 0.395
skiing 102.6 86.0 5.4 0.317 0.327 0.493

motorRolling 61.6 36.6 143.7 0.458 0.527 0.165
mountainBike 5.9 6.0 10.8 0.762 0.773 0.640

lemming 11.0 10.6 14.0 0.691 0.701 0.654
liquor 31.0 24.2 27.4 0.615 0.704 0.696

woman 5.2 5.5 12.7 0.747 0.746 0.703
faceocc1 57.1 56.8 52.1 0.443 0.440 0.474

basketball 22.5 11.7 23.0 0.522 0.621 0.548
subway 5.2 5.0 5.8 0.735 0.739 0.723

tiger1 57.2 56.9 22.5 0.215 0.215 0.531
tiger2 15.1 14.9 15.8 0.636 0.638 0.626

car4 28.1 27.4 27.9 0.471 0.467 0.407
sylvester 5.7 7.4 5.3 0.732 0.724 0.742

suv 11.8 14.1 12.1 0.735 0.654 0.729
jumping 6.6 4.3 5.7 0.648 0.738 0.649
fleetface 20.3 19.5 16.4 0.608 0.595 0.657

freeman1 6.7 8.4 11.5 0.620 0.544 0.390
freeman3 6.4 10.7 36.4 0.436 0.429 0.211

dog1 4.0 4.2 8.3 0.659 0.648 0.546
freeman4 34.9 59.0 24.0 0.299 0.162 0.226

football 9.0 8.9 20.5 0.653 0.665 0.579
faceocc2 10.4 9.8 10.6 0.714 0.722 0.706

fish 4.0 3.7 3.1 0.855 0.871 0.866
dudek 10.9 11.0 10.4 0.721 0.722 0.734

david2 1.6 1.5 1.8 0.818 0.857 0.848
mhyang 3.6 2.5 3.2 0.768 0.806 0.808

Mean 24.0 18.3 26.8 0.595 0.619 0.551
#Best score 11 28 12 12 28 11

#Second best score 23 15 13 24 17 10

Table 10: Center error (second through fourth columns) and overlap ratio (right three columns)
of the proposed automatic and manual integration of segmentation with MIST for individual
sequences. #Best and #Second best scores are the total number sequences that each of the 3
trackers (MIST, MIST-SEGA, and MIST-SEGM) performs best and second best, respectively.
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Figure 25: The averaged precision and success plots of the proposed automatic and manual
integration of segmentation with MIST on all 50 sequences.

Tracker
Mean over-
lap score

Mean center
error

Mean number
of failures

MIST-SEGA 0.481 31.08 3.6

Table 11: Objective validation of tracking failure detection using the 10 test video sequences.

4.4.4.1 Object deformation, occlusion, and motion blur

We use jogging-2, motorRolling, and skating1 video sequences to compare the proposed

MIST-SEGM and MIST-SEGA with the proposed MIST during occlusion, deformation, and

motion blur. As evidenced in the jogging-2, the inaccuracy cases of the proposed MIST due to

implicit occlusion detection can be overcome by the proposed MIST-SEGM and MIST-SEGA.

In the motorRolling sequence, the proposed MIST-SEGM and MIST-SEGA are more effective

in handling motion blur and deformation.

4.4.4.2 Object scale variation, out-of-view, and fast motion

Figure 29 depicts qualitative results for carScale, ironman, and singer1 sequences with scale

variation, out-of-view, and fast motion. In the carScale and singer1 sequences, we observe that

the proposed MIST-SEGM and MIST-SEGA are more effective tracking objects undergoing

scale variations.
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Figure 26: Precision plots for 11 challenging categories on all 50 sequences for comparing the
proposed automatic and manual integration of segmentation with MIST.

4.4.4.3 Low resolution, illumination variation, and background clutter

In Figure 30, we subjectively compare the proposed two tracking methods using walking,

shaking, and coke sequences in challenging scenarios, such as low resolution, illumination
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Figure 27: Success plots for 11 challenging categories on all 50 sequences for comparing the
proposed automatic and manual integration of segmentation with MIST.

variation, background clutter, etc. In particular, tracking the object in shaking sequence is dis-

tracted by drastic illumination variation as well as object deformation. However, with the aid
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of the proposed tracking failure detection and tracking re-initialization, the proposed MIST-

SEGM and MIST-SEGA are more effective tracking the target.

4.4.4.4 In-plane and out-plane rotation

The overall effectiveness of the proposed MIST-SEGM and MIST-SEGA in handling with

object in-plane and out-plane rotation is subjectively demonstrated in Figure 31. In the free-

man3 sequence, the object is challenging to track due to relatively smaller BB initialized at

the first frame. An appearance model sufficient to handle drastic scale variation in addition to

the object rotation is difficult to be modeled from such a smaller BB. The effectiveness of the

proposed integration of segmentation is clearly evident by this challenging sequence.

4.4.4.5 Segmentation output

Figure 32 shows some subjective results of MIST-SEGA with few sequences. As can be seen,

BB extracted from the binary mask of the segmentation output is subjectively reliable for

re-initialization of the proposed tracker.

4.4.4.6 Challenging scenarios

Figure 33 shows some challenging scenarios of the proposed MIST-SEGM and MIST-SEGA.

In the skiing and faceocc1 sequences, the proposed detection of tracking failure is subopti-

mal with gradual illumination changes, occlusion, and background clutter. This is because

our conditional model update scheme incorporates part of the background. Incorporating an

explicit occlusion detection technique can improve the proposed MIST-SEGM and MIST-

SEGA, specially in the challenging situations similar to those encountered in skiing, football,

and faceocc1 sequences. However, we note that the proposed integration MIST and its inte-

gration with object segmentation are stable signifying that they do not significantly fail under

any of the 50 videos used.
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Figure 28: Improved tracking under occlusion, deformation, and motion blur. Tow jogging-2;
middle motorRolling; and bottom skating1.
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Figure 29: The proposed segmentation integration improves tracking under scale variation,
out-of-view, and fast motion. Top carScale; middle ironman; and bottom singer1.

4.5 Conclusion

The simulation results in this Chapter show that the proposed object tracking method strongly

competes against state-of-the-art trackers due to a) the proposed dynamic modeling by har-

monic means and particle filter with entropy-based observation likelihood distribution, which

effectively improves object localization, b) the proposed probability formulation on deter-

mining model updates for structured maximization problem, c) our adaptive weighted joint

kernel function, which allows generalizing the tracking problem more effectively, and d) the
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Figure 30: Improved tracking results with segmentation integration: walking, shaking, and
coke with low resolution, illumination variation, and background clutter.
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Figure 31: Tracking under in-plane and out-plane rotation is improved with segmentation
integration. Top doll and bottom freeman3.

proposed motion-augmented regularization term, which constrains the output search space

during inference.

Further improvements of the proposed object tracking method were attained by our track-

ing failure detection technique and the proposed integration of an active contour based seg-

mentation method using particle filter to reinitialize the tracker. As expected, the choice of the

segmentation method strongly affects performance of its integration in object tracking. Com-

paring supervised (manual) and unsupervised (automatic), BB selection has major impact as

well. Both of these observations are complementary and future advancement in segmentation
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Figure 32: Segmentation outputs of fleetface, ironman, jumping, and matrix sequences. Left
column − contours; middle column − binary masks; last column − BBs extracted from the
binary mask.

will enhance object tracking. We, however, think that using current segmentation methods,

such as active contour based [100], with the proposed automated integration (failure detection

and BB selection) significantly improve object tracking (for example, MIST becomes better

in 36 versus 21 videos, cf. Table 10).

In Table 12, we summarize main features of our techniques and several state-of-the-art

trackers. Some of the highlights includes a) our methods incorporate color features through

the proposed JKF formulation, which is largely ignored by the compared methods, b) for

sampling, only our methods, ASLA, and SCM employ particle filter while other methods use

inefficient dense sampling strategies, and c) only the proposed MIST-SEG and TLD employ

tracking failure and recovery. The proposed MIST-SEG implicitly handles scale variations
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Tracker Features Search Dynamic model Scale FDR
Struck [66] Haar Dense search × × ×

TLD [65] Points Dense search Median flow X X
ASLA [121] Sparse codes Particle filter Autoregressive X ×
CSK [122] Template Dense search × X ×
SCM [87] Sparse codes Particle filter Affine X ×

MIST [Ours] HoG + Color Particle filter KHM × ×
MIST-SEG [Ours] HoG + Color Particle filter KHM X X

Table 12: Comparison of our methods with several state-of-the-art trackers. Under Scale
column, the symbol X indicates that our MIST-SEG tracker partially supports scale variation
with segmentation integration. FDR denotes failure tracking detection and recovery.

when re-initializing tracking using the proposed technique of object segmentation (see Section

3.3.3.1), where we estimate both the location and size of the object once failure is detected.
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Figure 33: Some challenging scenarios of tracking with integrated segmentation: skiing, foot-
ball, and faceocc1 with occlusion, drastic illumination variation, and rotation.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Object tracking has gained increased attention in both academia and industry due to its

widespread applications including augmented and virtual reality, human-computer interac-

tion, automated navigation systems as drones or self-driving cars, and social video content

analysis. However, object tracking is a difficult problem inevitably causing frequent track-

ing failures due to many challenges inherited in video sequences, such as deformation, illu-

mination changes, occlusion, and background clutter. Our related work study showed that

traditional trackers without explicit appearance modeling are suboptimal under challenging

conditions. As such, online appearance modeling based on machine learning theory has at-

tracted significant attention to account for intrinsic appearance changes. Based on various

appearance modeling, online machine learning based object tracking can be categorized into

three classes: generative, discriminative, and hybrid generative-discriminative methods. Dis-

criminative object tracking methods are more effective, compared with other object tracking

categories based on machine learning. This is because discriminative methods compute a de-

cision boundary that can optimally separate the object from the background. Consequently,

much of current object tracking research focuses on discriminative category.

Our contributions in this thesis are two object tracking methods. We built our baseline

method using stochastic processes and machine learning theory. We extended this baseline

method by effectively integrating object segmentation. Specifically, we contributed
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1. a method to represent the target dynamics as a random stochastic process using harmonic

means and particle filter for predicting it;

2. a formulation to model a new observation likelihood model for the particle filter by

using kernel machines and entropy to evaluate certainty of the likelihood distribution;

3. an adaptive weighted joint kernel function to construct an effective appearance model;

4. a probability formulation to determine model updates for structured maximization prob-

lem;

5. a motion-augmented regularization term during inference to constrain the output search

space;

6. a technique to detect tracking failures based on online binary support vector machines

framework; and

7. a particle filter based automated method to re-initialize the tracker based on an active

contour based object segmentation.

Our baseline object tracking method is effective under several challenges by employing ad-

vanced techniques in machine learning: an adaptive dynamic model and a structured support

vector machines framework. In the proposed method, first, we modeled the target dynamics as

a random stochastic process, and adopted harmonic means and particle filter to predict dynam-

ics. In our dynamic model, we introduced a new observation likelihood model using kernel

machines. We used entropy to evaluate certainty of our observation likelihood distribution.

Second, we used online structured support vector machines to the tracking problem because

they can be generalized well through the use of kernels, while being effective against esti-

mation noise. For modeling the target appearance, we developed an adaptive weighted joint

kernel function using color and histogram of gradients as feature descriptors. For learning,

we built a probability model to avoid model updates when the target is absent from the scene.

To gain computational efficiency improvements, we used particle filter for sampling instead

of exhaustive dense sampling, and introduced a motion-augmented regularization term during

inference to constrain the output search space. Through extensive experiments, we demon-

strated that the proposed computationally efficient object tracking method well competes with

state-of-the-art trackers on standard datasets, and our technique is more effective against many

challenges often encountered in real-world applications.
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Tracking failures or inaccuracies are inevitable; therefore, effective tracking requires both

detecting tracking failures (or inaccuracies) and re-initialization after failures. To that end, we

extended our baseline tracker and proposed a method that integrates object segmentation into

tracking to minimize tracking failures thereby improving overall accuracy in object tracking.

In our integrated method, first, we proposed a technique to detect tracking failures based on

online binary support vector machines framework. Second, to recover from tracking failures,

we proposed an automated method to re-initialize the tracker based on an active contour based

object segmentation. We used particle filter to automatically select bounding box for segmen-

tation. Through experiments, we observe that the choice of the segmentation method strongly

affects performance of its integration in object tracking, and a different object tracking method

may differently benefit from the integration of the same segmentation method. Comparing

supervised and unsupervised, bounding box selection has major impact as well. These ob-

servations are complementary and future advancement in segmentation will enhance object

tracking. Our experiments showed that using state-of-the-art segmentation methods (without

adaptation) with the proposed automated integration of failure detection and bounding box

selection well improve our baseline object tracking method.

5.2 Future Work

5.2.1 Online Object Tracking

When characterizing the object of interest and the relevant background (i.e., positive and neg-

ative samples, respectively) for the structured support vector machines framework, the pro-

posed baseline method gives equal or more importance to the negative samples. In order to

keep computational demand and storage low, we collect only a few negative samples each

frame from different locations although there is virtually unlimited amount of negative sam-

ples available throughout the sequence. These limited samples can inhibit the effectiveness

of long term tracking. Thus, future work could include exploring how to leverage these vast

amount of negative samples, for example, by using correlation filters which offer the ability to

simultaneously localize and classify the object of interest [75, 131, 132].
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Our method employs color and histogram of gradients as feature descriptors and pre-

defined kernels within the structured learning framework. A potential avenue for future

work would be to investigate using additional features, for example, Haar-like features [71],

ORB [133], BRISK [134], FREAK [135], BRIEF [136], etc. To that end, a multiple kernel

learning [130] framework can be employed to adaptively combine both kernels and their pa-

rameters optimally. To tackle the high dimensional feature space, often encountered when

using multiple kernel learning for tracking, a dimensionality reduction approach, such as prin-

cipal component analysis [137] can also be investigated.

Depth data at each pixel level, in addition to color, is available from most recent commod-

ity RGB-D cameras [2,4]. One prospective avenue for future work would be to incorporate the

depth data into the proposed tracking method by extending our joint kernel formulation. Such

work can benefit many applications specially in augmented and virtual reality, for example,

entertainment, education, and manufacturing [4].

Another interesting extension of the proposed method would be to handle scale variations

of deformable objects, which could substantially improve the accuracy of our tracker. One

avenue for future work could be to model and learn features of deformable and articulated

objects or model the deformable object using many smaller objects.

From implementation perspectives, a potential future work would be to implement the

proposed method on a hardware platform, such as on FPGAs, which can significantly improve

the efficiency. Such hardware implementation can be combined with our proposed hardware

architecture for object segmentation [29] for applications utilizing stationary cameras.

Our object tracking technique is currently implemented for tracking a single object. The

proposed method can be extended to track multiple objects by engaging several single in-

stances of the proposed trackers. Alternatively, a linear programming model, such as [138],

can be utilized to handle jointly tracking multiple objects by taking inter-object constraints

and layout information into account.
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5.2.2 Integration of Segmentation into Tracking

Applying object tracking for improving object segmentation is an active research field [107–

110]. As such, an interesting area of future work would be to study how the proposed tracker

can be employed to enhance the quality of video object segmentation.

A potential future work that could extend the proposed tracker would be to produce more

accurate articulated object boundaries in-lieu of the current rectangular bounding box as the

tracker’s output. The proposed integration of segmentation with tracking facilitates developing

such work. However, popular tracking benchmark methodologies, for example [7–9], are

based on rectangular bounding box. To our best knowledge, a platform that evaluates trackers

based on articulated object boundaries on large datasets has not been reported in literature.

Thus, our proposed research implicitly motivates devising such evaluation benchmark along

with new evaluation metrics.

We have investigated the integration of segmentation into our own tracker. An interesting

future work could include testing similar, but adaptive, integration of segmentation into other

trackers, such as Struck [66] or ASLA [121].

Object segmentation is usually error-prone, especially during object occlusion. A potential

extension of the proposed tracker would be to measure when the object segmentation fails and

consequently avoid relying on it for calculating the likelihood distribution. In such scenarios,

BB can be used to extract the likelihood distribution instead of using segmentation output.
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