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Human Upper Limb Motion Analysis for

Post-stroke Impairment Assessment using Video

Analytics
Cheng Yang, Student Member, IEEE, Andrew Kerr, Vladimir Stankovic, Senior Member, IEEE,

Lina Stankovic, Senior Member, IEEE, Philip Rowe, and Samuel Cheng∗ Senior Member, IEEE

Abstract—Stroke is a worldwide healthcare problem which
often causes long-term motor impairment, handicap, and dis-
ability. Optical motion analysis systems are commonly used
for impairment assessment due to high accuracy. However, the
requirement of equipment-heavy and large laboratory space
together with operational expertise, makes these systems imprac-
tical for local clinic and home use. We propose an alternative,
cost-effective and portable, decision support system for optical
motion analysis, using a single camera. The system relies on
detecting and tracking markers attached to subject’s joints,
data analytics for calculating relevant rehabilitation parameters,
visualization, and robust classification based on graph-based
signal processing. Experimental results show that the proposed
decision support system has the potential to offer stroke survivors
and clinicians an alternative, affordable, accurate and convenient
impairment assessment option suitable for home healthcare and
tele-rehabilitation.

Index Terms—Rehabilitation, Graph-based signal processing,
Video analytics

I. INTRODUCTION

EMERGING multimedia-based motion analysis systems

with optical equipment are being increasingly used for

periodical limb impairment assessments during rehabilitation

for patients who survived stroke, a world-wide healthcare

problem which can cause long-term motor impairment, hand-

icap, and disability to survivors [3], [4]. Autonomous mech-

anism of these systems with high-fidelity outcome measure

is welcomed by clinical practitioners, significantly improving

the objectivity and accuracy compared to classical visual

observation. For example, laboratory-based optical motion

analysis systems [5] with high accuracy and real-time tracking

features are available so that interventions such as exercise

or ankle foot orthoses can be optimally prescribed. These

systems capture motion patterns, namely, joint angles [6],

[7], by tracking reflective markers fixed to the skin overlying

anatomical landmarks of the subject using multiple infrared

cameras, and provide visualization for diagnosis, however,
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with the sacrifice of the cost, space, and portability, which

is thus impractical for local clinics and home use.

In our previous conference paper [8], we propose a cost-

effective and portable single-camera motion analysis system

for lower-limb (gait) analysis to track three bullseye markers

attached to the pelvis and legs. The proposed system shows

a significant improvement with respect to a joint color-texture

histogram (JCTH) approach [9] and a Tracking-Learning-

Detection (TLD) scheme [10]. The tracking result is then used

for manual impairment assessment of stroke survivors via

gait analysis.

Motivated by the fact that arm impairment is also a common

outcome of stroke [4], [11], building on [8], in this paper,

we propose a decision support system for upper limb motion

analysis that simultaneously tracks a number of identical

bullseye markers, and maps the trajectories of the tracked

markers into meaningful information used for rehabilitation

assessment. The system comprises a single high-speed camera

together with a visualisation module that enables navigating

through the captured frames, selecting parameters to present,

and comparison with the previous results.

The data analytics part of our solution can be used inde-

pendently of the capturing module to process autonomously

existing reach-to-grasp (RTG) video datasets (see Section III),

that contain recordings of RTG movements in the sagittal

plane with multiple bullseye markers adhered to the joints

of a human body, which are a common alternative to 3D

datasets. Note that in 2D video-based clinical kinematic anal-

ysis [12], as in the RTG datasets, conventionally black-and-

white bullseye markers are used, attached to the skin overlying

anatomical landmarks of the subject’s pelvis, cervical spine,

shoulder, elbow, and wrist (see Fig. 1(a)).

The motion of the subject’s upper limb kinematics is

captured by tracking the markers frame by frame and au-

tonomously computing joint angles (see Fig. 1(b)). Once the

joint angles have been extracted in each frame, they are used

as classification features to automatically estimate the level

of impairment [13]. Data classification using regularization

on graphs [14], [15], [16] is proposed in [17], where it is

shown that graph-based supervised binary classification shows

competitive performance to conventional classifiers, such as

Support Vector Machine (SVM) [18], [19] and neural networks,

and good robustness to noise in the training dataset. The main

idea is to first represent the dataset to be classified as a signal

indexed by a graph, whose vertices correspond to samples
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(a) Camera scene (b) Angles of interest

Fig. 1: Experimental setup.

in the dataset and weighted edges reflecting similarities or

correlation between vertices, then minimize total variation on

a graph [20] based on a binary mapping of this graph. In this

paper (see Section II-C), we propose two regularization on

graph signals (RGS) based multi-class classification methods,

by first constructing graphs for the motion patterns obtained as

a result of object tracking, and then designing binary mappings

of these graphs using graph-based tools following [17] for

minimization of the total variation on graphs [20]. We also

propose a third RGS multi-class classification method, by first

constructing a graph following [17], and then, designing a

multi-class mapping of this graph, unlike binary mappings

in [17], [20], and minimize the total variation on graph.

We validate the proposed system with a standardized, multi-

infrared-camera Vicon system using a Bland-Altman plot [21],

to evaluate the amount of agreement between the two systems.

Experimental results show that the proposed system can cap-

ture upper limb motion patterns accurately, explicitly classify

participants into a healthy group and different stroke groups

with levels of impairment [13], provide visual and written

feedback, and thus has potential to offer stroke survivors and

clinicians an alternative, affordable, accurate and convenient

impairment assessment option.

In summary, the main contributions of the paper are:

• Novel multi-class and binary RGS classification methods

for rehabilitation diagnostics.

• Effective multimedia-based decision support tools for

processing autonomously large RTG video datasets.

• Overall plug-and-play cost-effective motion analysis sys-

tem suitable for home use, including data capture, pro-

cessing and visualisation blocks, tested on the patients

and designed with the feedback from practitioners.

The remainder of this paper is organized as follows. In

the next section we discuss each component of the proposed

system. In Section III, we present the experimental results

— tracking performance comparison with [9], [10], and [22],

angle accuracy validation with state-of-the-art motion analy-

sis system Vicon, and subject classification using RGS. We

conclude this paper in Section IV.

II. PROPOSED SYSTEM

The aim of the proposed system is to autonomously assess

the upper limb motor condition of the subject by accurately

and simultaneously tracking the multiple bullseye markers

adhered to the joints and provide visual and written feedback

to stroke survivors and clinicians.

Impairment of the upper limb following a stroke can be

assessed in a number of ways [13], by measuring physical

Video acquisition

Feature extraction

Bullseye marker tracking

Autonomous joint angle calculation

Classification

Fig. 2: Unit blocks of the proposed decision support system.

attributes such as range of motion, strength and co-ordination

or more commonly by quantitatively assessing the ability to

carry out a functional task such as the RTG movement [23],

shown in Fig. 1(a), where the subject picks up a cup from the

desk, carries it towards the mouth and puts it back on the desk.

Three joint angles can be analysed during this activity, namely,

(i) elbow movement defined by a supplementary angle to the

shoulder-elbow-wrist angle denoted by α shown in Fig. 1(b);

(ii) trunk-tilt defined by the pelvis-cervical spine-vertical angle

β; and (iii) shoulder movement defined by an angle γ at the

intersection of pelvis-cervical spine and shoulder-elbow lines.

To calculate the relevant joint angles, we track, through the

captured frames, five bullseye markers adhered to the skin

overlying anatomical landmarks of the pelvis, cervical spine,

shoulder, elbow, and wrist of the participant, highlighted by

yellow squares in Fig. 1(a). The tracked motion patterns are

then used to calculate the three angles in each frame, which

are subsequently used for classification.

The main components of the proposed human upper limb

motion analysis procedure to be described next are shown in

Fig. 2.

A. Bullseye marker tracking

Simultaneously tracking all bullseye markers is challenging

due to the following marker features: 1) The markers clinically

used in 2-D video-based kinematic analysis are identical and

are in close proximity, which can easily cause tracking confu-

sion. 2) The size, orientation, and appearance of each marker

could change due to joints movement, and thus the tracker

should be capable of handling such non-rigid objects. 3) These

markers move along with the limb motion of the subject, i.e.,

small-size target objects move with a large moving object that

can be assumed as the appearance-changing background [24],

which potentially distract marker tracking which reduces the

tracking accuracy, and thus the tracker needs to address the

object-on-object tracking problem.

There is a substantial amount of work on object tracking,

and good surveys can be found in [24], [25], [26], [27]. Next,

we review the work most relevant to ours. [28] represents each

object with object-correspondence-points for point tracking.

However, this approach cannot handle non-rigid objects. For

silhouette tracking, [29] handles non-rigid objects well by

building online shape priors and implementing object contour

evolvement using energy minimization in gradient descent

direction for target objects. However, [29] is only capable

of tracking objects that are very different. [9] embarks from

kernel tracking, jointly applies local binary pattern texture

with color histogram which effectively extracts the features
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of the edges and corners within the target region, and adopts

mean-shift with the above JCTH approach and acquires ro-

bust performance for tracking objects that have similar color

appearance to the background. However, the object-on-object

problem significantly affects the tracking accuracy and can

cause tracking failure. [10] also exploits kernel tracking by

online learning and binary classification within a TLD scheme

to update the object template adaptively. i.e., [10] is robust for

tracking non-rigid objects. However, online learning in [10]

is achieved by searching a global frame, which means [10]

cannot be directly used for simultaneously tracking multiple

objects. “Struck” (STR) [22] is the best tracker among 19 state-

of-the-art trackers tested in [27] and a highly competitive on-

line tracker gauged in [25], [30], [31]. The tracking scheme in

[22] is based on structured output prediction with kernels. Still,

[22] cannot handle out-of-plane rotation well, and there is no

object-dynamic model incorporated into this adaptive tracking-

by-detection framework. Furthermore, [32] proposes a particle

swarm optimization method, and [33] a particle filter-mean

shift joint tracking algorithm, both of which achieve simulta-

neous multiple objects tracking. However, these two methods

cannot address the object-on-object problem.

In the following, we describe the proposed method that

addresses some of the shortcomings of the above approaches

for the RTG dataset. First, as in [8], the centre coordinates

of all bullseye marker templates are selected via mouse-click

on our developed user interface in Frame 1 (see Fig. 3) (the

only manual effort during the entire process). All markers

are then tracked simultaneously using a Discrete Kalman

FIlter (DKF) [34], [35]. First the position and size of a

rectangular Search Area (SA) for each marker is set in each

frame based on the output of DKF. Then, for each marker,

block matching is performed within the SA using structural-

similarity (SSIM) [36] to identify a block most similar to the

marker template.

Let ŝ
j
i = [c

SAj

i , r
SAj

i , u
SAj

i , v
SAj

i ], where c
SAj

i and r
SAj

i

denote the column and row of the centre of the SA for Marker

j (pelvis, cervical spine, shoulder, elbow, or wrist marker) in

Frame i, respectively, and u
SAj

i and v
SAj

i are velocities along

horizontal and vertical directions, respectively. Similarly, let

ẑ
j
i = [cji , r

j
i ], where cji and rji denote the column and row of

the centre of Marker j in Frame i, respectively.

We use DKF to determine the position and size of SA for

all markers in each frame, where ŝi = [̂s1i , ŝ
2
i , ŝ

3
i , ŝ

4
i , ŝ

5
i ]

T

and ẑi = [ẑ1i , ẑ
2
i , ẑ

3
i , ẑ

4
i , ẑ

5
i ]

T are used to build the dynamic

and observation model of the DKF, respectively. In particu-

lar, the prediction phase is given by: ŝ−i = Tŝi−1,P
−

i =
TPi−1T

T + O, where ŝ−i is the a priori estimate of

ŝi in Frame i, ŝi−1 is the a posteriori estimate, T =
diag(T1,T2,T3,T4,T5) is the state transition matrix with

Tj = [1, 0, t, 0; 0, 1, 0, t; 0, 0, 1, 0; 0, 0, 0, 1], where t is the du-

ration of one frame, P−

i is the a posteriori covariance matrix,

and O is the process noise covariance matrix pre-computed

by running the filter off-line based on the assumption that O

is time invariant [34].

The correction phase is given by: Ki = P−

i Z
T/(ZP−

i Z
T+

E), ŝi = ŝ−i + Ki(ẑi − Zŝ−i ),Pi = (I − KiZ)P
−

i , where

Ki is the Kalman gain, Z = diag(Z1,Z2,Z3,Z4,Z5) is
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Fig. 3: System user interface.

the observation matrix which translates ŝi to ẑi, with Zj =
[1, 0, 0, 0; 0, 1, 0, 0], and E is the measurement error covariance

matrix pre-computed by running the filter off-line based on the

assumption that E is constant across all frames [34].

We initialize the DKF by ŝ−
1

= [̂s10, ŝ
2
0, ŝ

3
0, ŝ

4
0, ŝ

5
0]

T, with

ŝ
j
0
= [c

SAj

0
, r

SAj

0
, 0, 0], and ẑ1 = [ẑ11, ẑ

2
1, ẑ

3
1, ẑ

4
1, ẑ

5
1]

T, with

ẑ
j
1
= [cj

1
, rj

1
], where (cj

1
, rj

1
) is the centre coordinate of the

marker template, and c
SAj

0
= cj

1
, r

SAj

0
= rj

1
.

The size of each SA is initialized to ⌊1.4q⌋×⌊1.4q⌋ pixels,

given Marker j’s size is q × q pixels, and is dynamically

updated, for each marker, in each frame according to u
SAj

i

and v
SAj

i firstly by adjusting the width (horizontally) and then

updating the height (vertically). If u
SAj

i t ≥ 0 the width of

the SA is increased from ⌊1.4q⌋ pixels to ⌊1.4q⌋ + u
SAj

i t
horizontally towards the right, that is, the right edge of the

SA is shifted to the right; otherwise, the width of the SA is

increased to ⌊1.4q⌋ + u
SAj

i t towards the left. If v
SAj

i t ≥ 0

the height of the SA is increased to ⌊1.4q⌋+ v
SAj

i t vertically

down, that is, the bottom edge is shifted down; otherwise, it is

increased by the same amount vertically upwards by shifting

the top edge by v
SAj

i t.

Once SA is set, we use SSIM [36], an image quality

assessment algorithm based on image formation, to detect the

marker within each SA. In particular, SSIM [36] combines the

luminance, contrast, and structure comparisons between a can-

didate block (always of the same size as the marker template

block) and the marker template, and outputs a similarity value

between 0 and 1. Using full motion search, we search for the

candidate block within SA which has the maximum similarity

value with the marker template. The centre coordinate of the

found marker is the new marker position and is used to update

the observation model of the DKF, ẑi, which is in turn used

to update the dynamic model, ŝi.

In summary, the advantage of the proposed approach comes

from the proposed dynamic SA position and size update and

marker detection via block matching using SSIM [36].

We note that only the waist marker can sometimes (rarely)

be occluded, in which case we perform the same procedure

as in [8]. For the upper limb motion analysis, the centre

coordinates of pelvis, cervical spine, shoulder, elbow, and

wrist markers obtained by marker tracking are next used for
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(b) stroke survivor

Fig. 4: Marker trajectories.
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Fig. 5: Automatically calculated joint angles (in degrees) on

the upper limb motion. Top row: elbow movement α; middle

row: trunk-tilt β; bottom row: shoulder movement γ.

visualization and autonomous joint angle calculation.

B. Autonomous joint angle calculation and visualization

During the tracking process, three joint angles - elbow

movement α, trunk-tilt β, and shoulder movement γ, are,

automatically and in real time, calculated on a frame-by-

frame basis according to the centre coordinates of the detected

markers. We record the marker trajectories by mapping the

centre coordinates of all detected markers into a single frame.

By working with practitioners and taking their feedback, we

design a user interface in order to visualize all marker trajecto-

ries, and joint angles and check accuracy w.r.t benchmarks, as

shown in Fig. 3. Via the interface, one can choose the video

to be processed, and select (reselect if needed) the marker

templates by mouse-click on the video frame shown in the

“Current frame” panel. The “Template” panel then displays

the appearance and centre coordinates of the marker templates.

The marker tracking process begins by clicking “Start track-

ing”, followed by showing appearance of the detected marker

blocks in the “Tracking” panel and marker trajectories and

joint angles, where Vicon 3D is the original tracking result

from the Vicon system and Vicon 2D projects the 3D result to

one of the three orthogonal Vicon system planes that is closely

parallel to the plane of camera scene [8] in the “Result” panel.

Fig. 4 shows the marker trajectories of one trial from a

healthy subject and one from a stroke survivor. The corre-

sponding joint angles for these examples shown in Fig. 5

indicate that the joint angle plots of the proposed method

closely follow those of the benchmarks Vicon 2D and 3D.

C. Subject classification

The aim of subject classification is to explicitly classify all

participants into a healthy group and a patient group (binary

classification) or a healthy group and several stroke groups

with different levels of impairment [13] using the variations

of the three tracked joint angles. Building on the principles of

RGS [17], [20], we attempt to solve these binary and multi-

class classification problems. Since binary classification is a

special case of the multi-class classification, in the follow-

ing we describe only the proposed multi-class classification

schemes.

As classification features we use the standard deviation that

is able to quantify the variation of a joint angle over one trial.

RGS is achieved by constructing a graph signal — using

vertices to represent data elements with weighted edges con-

necting these vertices, and then applying regularization on

the constructed graph signal to find an updated signal with

minimum variation [17], [20]. We propose three RGS multi-

class classification methods: “one-against-one” (OAO-RGS) —

classify two classes at a time and next use the voting strategy,

suggested in [37], to designate the final class for each sample,

“one-against-all” (OAA-RGS) — consider one class at a time

and group the other classes into a single class, and “once-for-

all” (OFA-RGS) — classify all classes at once.

For OAO-RGS, we first design l(l− 1)/2 binary classifiers,

where l > 2 is the number of classes. Each classifier is trained

using data from two of the l classes. In particular, given a set of

data from Classes a and b: {xab
i , yi}, yi ∈ {+1, 0,−1},xab

i ∈
R

V , i = 1, . . . , D, where all data elements with known labels

construct the set of two-class training data: {xab
i , yi}, yi ∈

{+1,−1},xab
i ∈ R

V , i = 1, . . . , N,N < D, where D and N
are the total number of samples and the number of training

samples, respectively. For the classifier on data from Classes a
and b, we define a connected, undirected, and weighted graph

Gab = (X ab, ζab,Jab), where X ab = {X ab
1 , ...,X ab

D } is a set

of vertices corresponding to dataset xab = {xab
i , . . . ,xab

D }, ζab

denotes a set of edges, and Jab denotes a weighted adjacency

matrix. In particular, the weight Jab
i,j on edge ζabi,j indicates the

graph similarity of vertices X ab
i and X ab

j , and is commonly

defined by a Gaussian weighting function as:

Jab
i,j =

{

exp(−
‖xab

i −x
ab
j ‖

2

2

2θ2 ) if
∥

∥xab
i − xab

j

∥

∥

2

2
≤ τ,

0 otherwise,
(1)

where θ denotes the Gaussian standard deviation, and τ is a

threshold on the squared Euclidean distance of two vertices

X ab
i and X ab

j . Furthermore, we define a mapping of the

graph Gab as follows: hab: X ab → R, X ab
n 7→ hab

n , or

hab = (hab
1 , . . . , hab

D )T ∈ R
D, where hab

i corresponds to

vertex X ab
i and data element xab

i , and is given by: hab
i = 1 if

X ab
i belongs to Class a, −1 if X ab

i belongs to Class b, and 0
if class is unknown.

Next, as in [17], we use the total variation on a graph (TVG)

to measure the total variation of Gab:

TVGab(hab) =
1

‖hab‖
2

2

∥

∥

∥

∥

hab −
1

|ηabmax|
Jabhab

∥

∥

∥

∥

2

2

(2)

where the product h̃ab = Jabhab is the output of the

graph shift [17], a nontrivial graph filter; ηabmax is an eigen-

value of Jab that has the largest amplitude with constraint

|ηabmax| ≥ |ηabi |, 1 ≤ i ≤ D. The objective of the classification
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on TVGab is to update all unknown labels within hab to get

the lowest total variation on a graph [20], that is, a minimum

TVGab(hab): hab′ = arg min
hab∈RD

TVGab(hab).

We apply the above OAO-RGS classification procedure

using all l(l − 1)/2 binary RGS-based classifiers and use the

voting strategy of [37] to designate classes.

For OAA-RGS, we design l binary classifiers. Each classifier

is for data from one of the l classes and the group of remaining

l− 1 classes. In particular, we follow the procedure on graph

construction as above, and define a graph Gall for data from

all l classes. We then defined l different h’s, i.e., l different

mappings of the same graph Gall, for data from each of

the l classes, and minimize each corresponding TVGall(h)
to designate the class labels for each set of testing samples.

For OFA-RGS, we adopt the same graph Gall as used in

OAA-RGS. Instead of using the binary mapping hab, we define

a multi-class graph mapping hall for Gall (see Section III-C).

We then minimize the total variation on Gall, that is, to get a

minimum TVGall(hall) and designate the class labels.

We discuss the multi-class classification process on the

targeted upper limb motion analysis, and evaluate the perfor-

mance of above three RGS methods, in Section III-C.

III. EXPERIMENTAL RESULTS

In this section, we report the following experimental results:

• Comparison of bullseye marker tracking performance of

the proposed DKF-SSIM tracking with four benchmark

tracking methods JCTH [9], TLD [10], STR [22], and

DKF-SSIM without the SA update (DKF-SSIM WSA).

• Separate validation of the proposed system with Vicon

2D and Vicon 3D (see Section II-B) for the group of

healthy subjects and the group of stroke survivors since

the stochastic movements of the stroke survivors make

tracking more challenging.

• Evaluation of binary and OAO-, OAA- and OFA-RGS

multi-class classification methods (Section II-C) for clas-

sifying all subjects into healthy and stroke groups.

Each video is captured using a digital camera EX-FH20
EXILIM (Casio Computer Co., Ltd., Tokyo, Japan) with

360×480 resolution. We adapt the camera calibration method

from [38], where the coefficients of the radial distortion

are obtained by solving a nonlinear minimization problem

with the Levenberg-Marquardt Algorithm [39], to correct lens

distortion of the acquired video frames before marker tracking.

For benchmarking and validation, we simultaneously capture

video with the 12-camera Vicon MX Giganet 6×T40 and

6×T160 (Vicon Motion Systems Ltd., Oxford, UK) optical

motion analysis system (100fps), that is recognised as the state

of the art [5] and commonly used in clinical rehabilitation

practice. Fig. 1(a) shows a sample frame, where one out of

the 12 Vicon infrared cameras is highlighted by a red square.

The proposed system is validated on 10 participants, in-

cluding 5 healthy subjects and 5 stroke survivors. Each of

the 10 participants performed 5 RTG trials, i.e., a total of

50 video clips are used, with a frame rate of 100fps for fair

comparison with Vicon. The size of each marker template

is always q × q = 11 × 11 pixels, which was heuristically

TABLE I: Bullseye marker tracking on healthy subjects.
Method Precision Recall PMR

JCTH [9] 0.581 0.581 27.5%
TLD [10] 0.958 0.922 64.6%
STR [22] 0.974 0.974 80.3%

DKF-SSIM WSA 0.852 0.852 82.8%
DKF-SSIM 0.998 0.998 97.3%

TABLE II: Bullseye marker tracking on stroke survivors.
Method Precision Recall PMR

JCTH [9] 0.507 0.507 16.9%
TLD [10] 0.913 0.894 52.4%
STR [22] 0.955 0.955 81.7%

DKF-SSIM WSA 0.781 0.781 75.2%
DKF-SSIM 0.980 0.980 94.6%

found for optimal appearance representation of each marker

that results in best tracking accuracy without sacrificing much

computation cost.

A. Bullseye Marker Tracking Performance Comparison

We randomly choose 1 of 5 trials for each participant, and

select bullseye marker templates from the first frame of the

corresponding video clip. Next, for each marker, we manually

label the marker blocks in all frames of the video clip, with

the same size as the marker template, as the ground truth (GT)

to assess the bullseye marker tracking performance of all five

methods. In the DKF-SSIM WSA approach, for each marker,

we fix the size of SA at ⌊1.4q⌋ × ⌊1.4q⌋ and let the centre

coordinate of the SA in the current frame be equal to the

coordinate of the centre of the same marker detected in the

previous frame.

We assess the performance by assigning True Positive (TP)

if the detected marker block overlaps no less than 40% of the

corresponding GT, and assigning False Positive (FP) other-

wise. Furthermore, we define that a Perfectly Detected Marker

(PDM) is assigned if the detected marker block overlaps no

less than 90% of the corresponding GT. Let F be the total

number of frames. Then, we define Precision=TP/(TP+FP),

Recall=TP/F, and Perfect Marker Rate (PMR)={total number

of PDMs}/F, where Precision and Recall indicate time pro-

portion a tracking algorithm tracks the targeted marker; PMR

indicates the accuracy of detecting the centre coordinate of the

marker block.

Tables I and II show the performance of the five tracking

algorithms for bullseye marker tracking on healthy subjects

and stroke survivors, respectively. JCTH [9] cannot recover

from tracking failure caused by the object-on-object problem

(see Section I). TLD [10] updates the marker model to help

recover from the tracking failure, resulting in much higher

scores than JCTH [9]. STR [22] outperforms TLD [10], but

still cannot get marker centre accurately during out-of-plane

rotation which commonly occurs when performing the RTG

movement (see Fig. 6 for an illustration of the hand-labelled

groundtruth shoulder and wrist markers over one trial).

The results also show that the SA update in each frame

brings a 15-20% improvement in PMR, at the cost of a higher

tracking complexity. Indeed, the average tracking and process-

ing time per frame was 35msec and 43msec, for DKF-SSIM

WSA and the proposed DKF-SSIM, respectively, measured in

Matlab R2013b on a laptop running Windows 8.1, with Core

i7 2820QM 2.3GHz processor and 16GB RAM.
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(a) shoulder marker (b) wrist marker

Fig. 6: Hand-labelled groundtruth shoulder and wrist markers.

0 1 2 3 4 5 6 7

130

140

150

160

170

180

190

200

210

tracking time (second)

co
lu

m
n
−

co
o
rd

in
at

e 
in

 t
h
e 

v
id

eo
 f

ra
m

e

 

 
CCG

DKF−SSIM

STR
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Fig. 7: Illustration of the tracking performance of the pro-

posed DKF-SSIM and STR [22]. CC=column-coordinate.

CCG=column-coordinate groundtruth. AG=angle groundtruth.

The proposed DKF-SSIM tracking-by-detection scheme is

best suited for bullseye marker tracking due to its ability to

incorporate dynamic and measurement models during tracking

and combining the luminance, contrast, and structure features

of the marker for detection. Since the position of the centre co-

ordinate of the detected marker block has significant influence

on the accuracy of the joint angle calculation, none of the four

benchmark tracking methods are suited for autonomous joint

angle calculation due to their resulting low PMR. To further

demonstrate this, we show the tracking performance of the

proposed DKF-SSIM and STR [22], the best benchmarking

scheme among JCTH [9], TLD [10] and STR [22] according

to Tables I and II, on one trial of a healthy subject in

Fig. 7, where Fig. 7(a) shows the column-coordinate of the

wrist marker given the benchmarking hand-labelled column-

coordinate groundtruth, and Fig. 7(b) shows the corresponding

elbow movement angle (degree) given the benchmarking angle

groundtruth calculated from the hand-labelled groundtruth

shoulder, elbow, and wrist markers. The corresponding error

is shown in Table III.

TABLE III: Tracking error in Fig. 7. CC=column-coordinate.
wrist marker CC (pixel) elbow movement (degree)
mean error max error mean error max error

STR [22] 2.6028 5 2.1291 5.4342
DKF-SSIM 0.5670 2.4215 0.7350 3.3349

B. Angle Accuracy Validation

We validate the proposed DKF-SSIM tracking with Vicon

2D and 3D using Bland-Altman plot [21] for evaluation of the

limits of agreement. Bland-Altman plot is a typical clinical

measurement scheme to evaluate a new measurement system

based on an established one. In particular, let vectors Q1

and Q2 contain all measurements from Methods 1 and 2,

respectively. For each value Q1(i) ∈ Q1 and corresponding

Q2(i) ∈ Q2, Bland-Altman plot is constructed by assigning

[Q1(i) + Q2(i)]/2 as the abscissa value, and Q1(i) − Q2(i)
as the ordinate value. Next, we calculate the mean difference

(MD) and the standard deviation of Q1 and Q2, followed by
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Fig. 8: Bland-Altman plots (in degrees) of all healthy subjects.

Left column: P vs. V2. Right column: P vs V3. Top row: elbow

movement α; middle row: trunk-tilt β; bottom row: shoulder

movement γ.
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Fig. 9: Bland-Altman plots (in degrees) of all stroke survivors.

lower and upper 95% confidence interval (LCI, UCI) and a

linear fit, all of which are based on the constructed Bland-

Altman plot, for complete limits of agreement evaluation.

The dataset used contains 25 trials from healthy subjects and

another 25 trials from stroke survivors. We group all 25-trial

results of healthy subjects (stroke survivors) together forming

three vectors Qα
X

, Q
β
X

, and Q
γ
X

, where X = {P,V2,V3},

denotes (P)roposed, Vicon 2D (V2) or 3D (V3).

Figs 8 and 9 show the Bland-Altman plots based on above

construction process for the healthy subjects and stroke sur-

vivors, respectively. Table IV shows the corresponding limits

of agreement (LOA). Note that good LOA is indicated by

small MD, narrow 95% CI, and a linear fit that is close to

zero [21]. Since the deviation between the elbow movement α
plane and camera scene plane (CSP) is more notable than that

between the trunk-tilt β plane and CSP and that between the

shoulder movement γ plane and CSP, validation of P and V3

on α shows a relatively large MD and wide 95% CI. Other-

wise, P and V3 show good LOA on β and γ; P and V2 show

good LOA for all motion patterns. In general, 3D information

is needed in diagnostic systems. However, the above validation

incorporates loss of 3D information, indicating that 2D suffices

for the targeted RTG sagittal movement analysis. This is in

accordance to the prior literature [40].

C. Subject Classification

As classification features we use the standard deviation

of all three joint angles over one trial. That is, each data

sample (σαi
, σβi

, σγi
) is a 3-dimensional feature vector that

contains standard deviations of the joint angles α, β, and γ,

where σαi
, σβi

, and σγi
are the standard deviations during
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TABLE IV: Limits of agreement (in degrees) between P and

V2, and between P and V3 for all participants.
Healthy subjects Stroke survivors

MD LCI UCI MD LCI UCI

α 2.38 -5.86 10.6 7.72 -3.51 19.0
P vs V2 β -3.08 -11.3 5.16 -1.68 -10.8 7.39

γ -4.02 -15.8 7.72 -7.26 -20.9 6.37

α -11.5 -28.3 5.24 -18.8 -49.8 12.3

P vs V3 β 3.93 -3.24 11.1 7.01 0.22 13.8
γ 4.13 -8.07 16.4 4.22 -11.6 20.1

TABLE V: Levels of impairment of stroke survivors.
Stroke survivor SS 1 SS 2 SS 3 SS 4 SS 5

Ordinal scale 2 5 1 4 2

one trial of angles α, β, and γ, respectively. We evaluate the

performance of the classification algorithms under different

sizes of the training and testing data by using following metric:

Classification Accuracy = {Number of correctly classified

samples}/{Number of testing samples}.

First, we perform binary classification, whose task is to

group all subjects into two groups: healthy and stroke patients.

We compare the proposed RGS binary classifier to that of

linear and non-linear (we use a Gaussian Radial Basis Function

(rbf) kernel with scaling factor ρ = 1) SVM binary classifier-

s, denoted as l-SVM and rbf-SVM, respectively. The results

are given in Fig. 10 expressed as Classification Accuracy. In

particular, we assume that between 4% and 80% of randomly

selected labels are known for training, perform 10,000 tests,

and then get the averaged result. It can be seen that RGS shows

competitive performance with l-SVM when the percentage of

known labels is above 40% at lower complexity.

Next, we turn to the multi-class classification, whose task

is to classify further patients into different recovery levels.

Table V shows the levels of upper limb impairment for 5 stroke

participants, reported from a recruited rater, a biomechanics

researcher with over ten years of experience in biomechanics

data analysis, by observational assessment [13], [41]. Thus,

we define l = 5 classes for all experimental data: Healthy,

Stroke with ordinal scale 1 (OS 1), OS 2, OS 4, and OS 5,

denoted as Class q, q = 1, ..., 5, respectively.

For OAO-RGS, we design l(l− 1)/2 binary classifiers. For

each classifier, we first define a graph for data from two of the

l classes: a connected, undirected, and weighted graph G =
(X , ζ,J), with vertices X = {X1, . . . ,XD} correspond to the

dataset x = {x1, . . . ,xD}, edges ζ, and a weighted adjacency

matrix J defined using (1), with θ = 1 and τ = 100 which

balances the number of non-zero entries in J and computation

time, where xi = (σαi
, σβi

, σγi
). Next, we define h, i.e., the

mapping of the graph G, and minimized TVG of G as defined

in (2). Finally, we use the voting strategy [37] to designate

groups for all testing data.

For OAA-RGS, we design l binary classifiers. For each

classifier, we first define a graph Gall for data from all l
classes with the same parameter setting θ = 1 and τ = 100,

for J, then defined h for Gall, followed by minimization of

each corresponding TVGall(h) and the voting strategy [37] to

designate the class labels for each set of testing samples.

For OFA-RGS, we apply the same graph Gall as used in

OAA-RGS, and defined a multi-class graph mapping hall of

Gall as follows: hall
i = −7+2q if Xi belongs to Class q, q =
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Fig. 10: Binary classification accuracy of testing data.
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Fig. 11: Multi-class classification accuracy of testing data.

1, ..., 5, and 0 if class is unknown.

We then perform hall′ = arg min
hall∈RD

TVGall(hall) for class

labels of all testing samples.

For benchmarking, we adopt “one-against-one” multi-class

SVM classification [37], [42], [43], a competitive approach

among five multi-class SVM classification methods compared

in [44]. We first train l(l−1)/2 binary linear / non-linear (we

use rbf kernels with scaling factor ρ = 1 which gives best

classification results without overfitting) SVM classifiers, and

then classify all testing data by using voting strategy in [37],

denoted as OAO-l-SVM and OAO-rbf-SVM, respectively.

We evaluate the above 5 multi-class classification methods

using k-fold cross-validation adapted from [45]. In particular,

we set k = 5, i.e., 4 folds are used for training and the last

fold is used for evaluation. We repeat this process k times,

leaving one different fold for evaluation each time. The ith
process outputs a confusion matrix of data counts, denoted as

Ci
c = [ci11, ..., c

i
1l; ...; c

i
l1, ..., c

i
ll], whose columns represent the

classifier prediction, and rows represent the true classes, e.g.,

the value of index ciij in Ci
c increases by 1 if a data sample

that belongs to Class i is classified as Class j. k-fold cross-

validation finally combines all Ci
c’s into a single confusion

matrix of data counts Cc with indices cij =
∑k

i=1
ciij , and

outputs the corresponding accuracy (acc) given by: acc =
∑k

i=1
cii/

∑k
i=1

∑k
j=1

cij . Note that Cc can be alternatively

represented as a confusion matrix of recognition rates, denoted

as Cr = [Cc(1, :)/
∑

Cc(1, :); ...;Cc(k, :)/
∑

Cc(k, :)].

Next, we show the evaluation result of the above 5 multi-

class classification methods using Accuracy in Fig. 11 (aver-

aged over 10,000 runs based on the assumption that between

20% and 80% of randomly selected labels are known for

training) and k-fold cross-validation in Table VI, where tr and

te denote the average execution time for training and testing

during the ith process of k-fold cross-validation, respectively.

OFA-RGS is not competitive with any of above 4 methods.

The performance of OAO-RGS is between SVM methods and

OAA-RGS when the percentage of known labels is above 40%.

SVM methods and OAO-RGS achieve the highest acc, where
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TABLE VI: k-fold cross-validation result.
Method Cr acc tr (ms) te (ms)

OAO-l-SVM I5 1 58.3 3.9

OAO-rbf-SVM I5 1 53.1 4.6

OAO-RGS I5 1 22.5 3.3

OAA-RGS













1 0 0 0 0

0 1 0 0 0

0.1 0 0.9 0 0

0.2 0 0 0.8 0

0.2 0 0 0 0.8













0.94 6.5 3.7

OFA-RGS













0.68 0.08 0.24 0 0

0 0.4 0.6 0 0

0 0 0.9 0.1 0

0 0 0.2 0.8 0

0 0 0.2 0.8 0













0.64 7 1.5

OAO-RGS performs faster than both SVM methods. Indeed,

OAO-RGS performs over 100% and 15% faster, for training

and testing, respectively, than the SVM methods. The overall

performance of OAO-RGS indicate that our decision support

system has the potential to accurately classify participants into

a healthy group and different stroke groups with the aid of

levels of impairment [13].

We note that the above multi-class analysis is provided to

demonstrate the potential of the proposed methods, since the

amount of data is insufficient to make firm conclusions.

IV. CONCLUSION

Currently available optical motion analysis systems are ex-

pensive and require multiple infrared cameras, large laboratory

space, and operational expertise to assess motor impairment

of a stroke survivor. In this paper we propose and evaluate

an alternative, portable, and cheap, single-camera decision

support system with the following components: simultaneous

multiple bullseye marker tracking, autonomous joint angle

calculation, visualization, and subject classification. Validation

of the proposed tracking method with the current state-of-

the-art Vicon optical motion analysis system shows overall

good limits of agreement on the upper limb motion analysis.

In addition, we designed three RGS binary and multi-class

classification methods, of which OAO-RGS has strong poten-

tial to explicitly classify participants into a healthy group and

different stroke groups with the aid of levels of impairment.

In practice, for a 10-second trial, a patient can get his/her

upper limb kinematics assessed in under 2 minutes, given the

average processing time (see Section III-A) per video frame.

Experimental results show that the proposed decision support

system can track the markers with high accuracy, capture the

upper limb motion explicitly, and give stroke survivors and

clinicians visual and written feedback based on classification

with the aid of impairment levels.
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