585 research outputs found

    Generalized Point Set Registration with the Kent Distribution

    Get PDF
    Point set registration (PSR) is an essential problem in communities of computer vision, medical robotics and biomedical engineering. This paper is motivated by considering the anisotropic characteristics of the error values in estimating both the positional and orientational vectors from the PSs to be registered. To do this, the multi-variate Gaussian and Kent distributions are utilized to model the positional and orientational uncertainties, respectively. Our contributions of this paper are three-folds: (i) the PSR problem using normal vectors is formulated as a maximum likelihood estimation (MLE) problem, where the anisotropic characteristics in both positional and normal vectors are considered; (ii) the matrix forms of the objective function and its associated gradients with respect to the desired parameters are provided, which can facilitate the computational process; (iii) two approaches of computing the normalizing constant in the Kent distribution are compared. We verify our proposed registration method on various PSs (representing pelvis and femur bones) in computer-assisted orthopedic surgery (CAOS). Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of the registration accuracy and the robustness

    Aligning 3D Curve with Surface Using Tangent and Normal Vectors for Computer-Assisted Orthopedic Surgery

    Get PDF
    Registration that aligns different views of one interested organ together is an essential technique and outstanding problem in medical robotics and image-guided surgery (IGS). This work introduces a novel rigid point set registration (PSR) approach that aims to accurately map the pre-operative space with the intra-operative space to enable successful image guidance for computer-assisted orthopaedic surgery (CAOS). The normal vectors and tangent vectors are first extracted from the pre-operative and intra-operative point sets (PSs) respectively, and are further utilized to enhance the registration accuracy and robustness. The contributions of this article are three-folds. First, we propose and formulate a novel distribution that describes the error between one normal vector and the corresponding tangent vector based on the von-Mises Fisher (vMF) distribution. Second, by modelling the anisotropic position localization error with the multi-variate Gaussian distribution, we formulate the PSR considering anisotropic localization error as a maximum likelihood estimation (MLE) problem and then solve it under the expectation maximization (EM) framework. Third, to facilitate the optimization process, the gradients of the objective function with respect to the desired parameters are computed and presented. Extensive experimental results on the human femur and pelvis models verify that the proposed approach outperforms the state-of-the-art methods, and demonstrate potential clinical values for relevant surgical navigation applications

    Joint Rigid Registration of Multiple Generalized Point Sets With Anisotropic Positional Uncertainties in Image-Guided Surgery

    Get PDF
    In medical image analysis (MIA) and computer-assisted surgery (CAS), aligning two multiple point sets (PSs) together is an essential but also a challenging problem. For example, rigidly aligning multiple point sets into one common coordinate frame is a prerequisite for statistical shape modelling (SSM). Accurately aligning the pre-operative space with the intra-operative space in CAS is very crucial to successful interventions. In this article, we formally formulate the multiple generalized point set registration problem (MGPSR) in a probabilistic manner, where both the positional and the normal vectors are used. The six-dimensional vectors consisting of both positional and normal vectors are called as generalized points. In the formulated model, all the generalized PSs to be registered are considered to be the realizations of underlying unknown hybrid mixture models (HMMs). By assuming the independence of the positional and orientational vectors (i.e., the normal vectors), the probability density function (PDF) of an observed generalized point is computed as the product of Gaussian and Fisher distributions. Furthermore, to consider the anisotropic noise in surgical navigation, the positional error is assumed to obey a multi-variate Gaussian distribution. Finally, registering PSs is formulated as a maximum likelihood (ML) problem, and solved under the expectation maximization (EM) technique. By using more enriched information (i.e., the normal vectors), our algorithm is more robust to outliers. By treating all PSs equally, our algorithm does not bias towards any PS. To validate the proposed approach, extensive experiments have been conducted on surface points extracted from CT images of (i) a human femur bone model; (ii) a human pelvis bone model. Results demonstrate our algorithm's high accuracy, robustness to noise and outliers

    Reliable Hybrid Mixture Model for Generalized Point Set Registration

    Get PDF
    Point set registration (PSR) is an essential problem in the field of surgical navigation and augmented reality (AR). In surgical navigation, the aim of registration is mapping the pre-operative space to the intra-operative space. This article introduces a reliable hybrid mixture model, in which the reliability of the normal vectors in the generalized point set (GPS) is examined and exploited. The motivation of considering the reliability of orientation information is that normal vectors cannot be estimated or measured accurately in the clinic. The point set (PS) is divided into two subsets according to the reliability of normal vectors. PSR is cast into the maximum likelihood estimation (MLE) problem. The expectation maximization (EM) framework is used to solve the MLE problem. In the E-step, the posterior probabilities between points in two PSs are computed. In the M-step, the transformation matrix and model components are updated by optimizing the objective function. We have demonstrated through extensive experiments on the human femur bone PS that the proposed algorithm outperforms the state-of-the-art ones in terms of accuracy, robustness, and convergence speed

    Comparison of 3D scan matching techniques for autonomous robot navigation in urban and agricultural environments

    Get PDF
    Global navigation satellite system (GNSS) is the standard solution for solving the localization problem in outdoor environments, but its signal might be lost when driving in dense urban areas or in the presence of heavy vegetation or overhanging canopies. Hence, there is a need for alternative or complementary localization methods for autonomous driving. In recent years, exteroceptive sensors have gained much attention due to significant improvements in accuracy and cost-effectiveness, especially for 3D range sensors. By registering two successive 3D scans, known as scan matching, it is possible to estimate the pose of a vehicle. This work aims to provide in-depth analysis and comparison of the state-of-the-art 3D scan matching approaches as a solution to the localization problem of autonomous vehicles. Eight techniques (deterministic and probabilistic) are investigated: iterative closest point (with three different embodiments), normal distribution transform, coherent point drift, Gaussian mixture model, support vector-parametrized Gaussian mixture and the particle filter implementation. They are demonstrated in long path trials in both urban and agricultural environments and compared in terms of accuracy and consistency. On the one hand, most of the techniques can be successfully used in urban scenarios with the probabilistic approaches that show the best accuracy. On the other hand, agricultural settings have proved to be more challenging with significant errors even in short distance trials due to the presence of featureless natural objects. The results and discussion of this work will provide a guide for selecting the most suitable method and will encourage building of improvements on the identified limitations.This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1201319, Basal grant FB0008, DGIIP-UTFSM Chile, National Agency for Research and Development (ANID)/PCHA/Doctorado Nacional/2020-21200700, Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Span ish Ministry of Science, Innovation and Universities (project RTI2018- 094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisitio

    DNSS: Dual-Normal-Space Sampling for 3-D ICP Registration

    Get PDF
    Rigid registration is a fundamental process in many applications that require alignment of different datasets. Iterative closest point (ICP) is a widely used algorithm that iteratively finds point correspondences and updates the rigid transformation. One of the key variants of ICP to its success is the selection of points, which is directly related to the convergence and robustness of the ICP algorithm. Besides uniform sampling, there are a number of normal-based and feature-based approaches that consider normal, curvature, and/or other signals in the point selection. Among them, normal-space sampling (NSS) is one of the most popular techniques due to its simplicity and low computational cost. The rationale of NSS is to sample enough constraints to determine all the components of transformation, but this paper finds that NSS actually can constrain the translational normal space only. This paper extends the fundamental idea of NSS and proposes Dual NSS (DNSS) to sample points in both translational and rotational normal spaces. Compared with NSS, this approach has similar simplicity and efficiency without any need of additional information, but has a much better effectiveness. Experimental results show that DNSS can outperform the normal-based and feature-based methods in terms of convergence and robustness. For example, DNSS can achieve convergence from an orthogonal initial position while no other methods can achieve. Note to Practitioners-ICP is commonly used to align different data to a same coordination system. While NSS is often used to speed up the alignment process by down-sampling the data uniformly in the normal space. The implementation of NSS only has three steps: 1) construct a set of buckets in the normal-space; 2) put all points of the data into buckets based on their normal direction; and 3) uniformly pick points from all the buckets until the desired number of points is selected. The algorithm is simple and fast, so that it is still the common practice. However, the weakness of NSS comes from the reason that it cannot handle rotational uncertainties. In this paper, a new algorithm called DNSS is developed to constrain both translation and rotation at the same time by introducing a dual-normal space. With a new definition of the normal space, the algorithm complexity of DNSS is the same as that of NSS, and it can be readily implemented in all types of application that are currently using ICP. The experimental results show that DNSS has better efficiency, quality, and reliability than both normal-based and feature-based methods have

    Advanced tracking and image registration techniques for intraoperative radiation therapy

    Get PDF
    Mención Internacional en el título de doctorIntraoperative electron radiation therapy (IOERT) is a technique used to deliver radiation to the surgically opened tumor bed without irradiating healthy tissue. Treatment planning systems and mobile linear accelerators enable clinicians to optimize the procedure, minimize stress in the operating room (OR) and avoid transferring the patient to a dedicated radiation room. However, placement of the radiation collimator over the tumor bed requires a validation methodology to ensure correct delivery of the dose prescribed in the treatment planning system. In this dissertation, we address three well-known limitations of IOERT: applicator positioning over the tumor bed, docking of the mobile linear accelerator gantry with the applicator and validation of the dose delivery prescribed. This thesis demonstrates that these limitations can be overcome by positioning the applicator appropriately with respect to the patient’s anatomy. The main objective of the study was to assess technological and procedural alternatives for improvement of IOERT performance and resolution of problems of uncertainty. Image-to-world registration, multicamera optical trackers, multimodal imaging techniques and mobile linear accelerator docking are addressed in the context of IOERT. IOERT is carried out by a multidisciplinary team in a highly complex environment that has special tracking needs owing to the characteristics of its working volume (i.e., large and prone to occlusions), in addition to the requisites of accuracy. The first part of this dissertation presents the validation of a commercial multicamera optical tracker in terms of accuracy, sensitivity to miscalibration, camera occlusions and detection of tools using a feasible surgical setup. It also proposes an automatic miscalibration detection protocol that satisfies the IOERT requirements of automaticity and speed. We show that the multicamera tracker is suitable for IOERT navigation and demonstrate the feasibility of the miscalibration detection protocol in clinical setups. Image-to-world registration is one of the main issues during image-guided applications where the field of interest and/or the number of possible anatomical localizations is large, such as IOERT. In the second part of this dissertation, a registration algorithm for image-guided surgery based on lineshaped fiducials (line-based registration) is proposed and validated. Line-based registration decreases acquisition time during surgery and enables better registration accuracy than other published algorithms. In the third part of this dissertation, we integrate a commercial low-cost ultrasound transducer and a cone beam CT C-arm with an optical tracker for image-guided interventions to enable surgical navigation and explore image based registration techniques for both modalities. In the fourth part of the dissertation, a navigation system based on optical tracking for the docking of the mobile linear accelerator to the radiation applicator is assessed. This system improves safety and reduces procedure time. The system tracks the prescribed collimator location to solve the movements that the linear accelerator should perform to reach the docking position and warns the user about potentially unachievable arrangements before the actual procedure. A software application was implemented to use this system in the OR, where it was also evaluated to assess the improvement in docking speed. Finally, in the last part of the dissertation, we present and assess the installation setup for a navigation system in a dedicated IOERT OR, determine the steps necessary for the IOERT process, identify workflow limitations and evaluate the feasibility of the integration of the system in a real OR. The navigation system safeguards the sterile conditions of the OR, clears the space available for surgeons and is suitable for any similar dedicated IOERT OR.La Radioterapia Intraoperatoria por electrones (RIO) consiste en la aplicación de radiación de alta energía directamente sobre el lecho tumoral, accesible durante la cirugía, evitando radiar los tejidos sanos. Hoy en día, avances como los sistemas de planificación (TPS) y la aparición de aceleradores lineales móviles permiten optimizar el procedimiento, minimizar el estrés clínico en el entorno quirúrgico y evitar el desplazamiento del paciente durante la cirugía a otra sala para ser radiado. La aplicación de la radiación se realiza mediante un colimador del haz de radiación (aplicador) que se coloca sobre el lecho tumoral de forma manual por el oncólogo radioterápico. Sin embargo, para asegurar una correcta deposición de la dosis prescrita y planificada en el TPS, es necesaria una adecuada validación de la colocación del colimador. En esta Tesis se abordan tres limitaciones conocidas del procedimiento RIO: el correcto posicionamiento del aplicador sobre el lecho tumoral, acoplamiento del acelerador lineal con el aplicador y validación de la dosis de radiación prescrita. Esta Tesis demuestra que estas limitaciones pueden ser abordadas mediante el posicionamiento del aplicador de radiación en relación con la anatomía del paciente. El objetivo principal de este trabajo es la evaluación de alternativas tecnológicas y procedimentales para la mejora de la práctica de la RIO y resolver los problemas de incertidumbre descritos anteriormente. Concretamente se revisan en el contexto de la radioterapia intraoperatoria los siguientes temas: el registro de la imagen y el paciente, sistemas de posicionamiento multicámara, técnicas de imagen multimodal y el acoplamiento del acelerador lineal móvil. El entorno complejo y multidisciplinar de la RIO precisa de necesidades especiales para el empleo de sistemas de posicionamiento como una alta precisión y un volumen de trabajo grande y propenso a las oclusiones de los sensores de posición. La primera parte de esta Tesis presenta una exhaustiva evaluación de un sistema de posicionamiento óptico multicámara comercial. Estudiamos la precisión del sistema, su sensibilidad a errores cometidos en la calibración, robustez frente a posibles oclusiones de las cámaras y precisión en el seguimiento de herramientas en un entorno quirúrgico real. Además, proponemos un protocolo para la detección automática de errores por calibración que satisface los requisitos de automaticidad y velocidad para la RIO demostrando la viabilidad del empleo de este sistema para la navegación en RIO. Uno de los problemas principales de la cirugía guiada por imagen es el correcto registro de la imagen médica y la anatomía del paciente en el quirófano. En el caso de la RIO, donde el número de posibles localizaciones anatómicas es bastante amplio, así como el campo de trabajo es grande se hace necesario abordar este problema para una correcta navegación. Por ello, en la segunda parte de esta Tesis, proponemos y validamos un nuevo algoritmo de registro (LBR) para la cirugía guiada por imagen basado en marcadores lineales. El método propuesto reduce el tiempo de la adquisición de la posición de los marcadores durante la cirugía y supera en precisión a otros algoritmos de registro establecidos y estudiados en la literatura. En la tercera parte de esta tesis, integramos un transductor de ultrasonido comercial de bajo coste, un arco en C de rayos X con haz cónico y un sistema de posicionamiento óptico para intervenciones guiadas por imagen que permite la navegación quirúrgica y exploramos técnicas de registro de imagen para ambas modalidades. En la cuarta parte de esta tesis se evalúa un navegador basado en el sistema de posicionamiento óptico para el acoplamiento del acelerador lineal móvil con aplicador de radiación, mejorando la seguridad y reduciendo el tiempo del propio acoplamiento. El sistema es capaz de localizar el colimador en el espacio y proporcionar los movimientos que el acelerador lineal debe realizar para alcanzar la posición de acoplamiento. El sistema propuesto es capaz de advertir al usuario de aquellos casos donde la posición de acoplamiento sea inalcanzable. El sistema propuesto de ayuda para el acoplamiento se integró en una aplicación software que fue evaluada para su uso final en quirófano demostrando su viabilidad y la reducción de tiempo de acoplamiento mediante su uso. Por último, presentamos y evaluamos la instalación de un sistema de navegación en un quirófano RIO dedicado, determinamos las necesidades desde el punto de vista procedimental, identificamos las limitaciones en el flujo de trabajo y evaluamos la viabilidad de la integración del sistema en un entorno quirúrgico real. El sistema propuesto demuestra ser apto para el entorno RIO manteniendo las condiciones de esterilidad y dejando despejado el campo quirúrgico además de ser adaptable a cualquier quirófano similar.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Raúl San José Estépar.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Carlos Ferrer Albiac

    Novel Methods for Multi-Shape Analysis

    Get PDF
    Multi-shape analysis has the objective to recognise, classify, or quantify morphological patterns or regularities within a set of shapes of a particular object class in order to better understand the object class of interest. One important aspect of multi-shape analysis are Statistical Shape Models (SSMs), where a collection of shapes is analysed and modelled within a statistical framework. SSMs can be used as (statistical) prior that describes which shapes are more likely and which shapes are less likely to be plausible instances of the object class of interest. Assuming that the object class of interest is known, such a prior can for example be used in order to reconstruct a three-dimensional surface from only a few known surface points. One relevant application of this surface reconstruction is 3D image segmentation in medical imaging, where the anatomical structure of interest is known a-priori and the surface points are obtained (either automatically or manually) from images. Frequently, Point Distribution Models (PDMs) are used to represent the distribution of shapes, where each shape is discretised and represented as labelled point set. With that, a shape can be interpreted as an element of a vector space, the so-called shape space, and the shape distribution in shape space can be estimated from a collection of given shape samples. One crucial aspect for the creation of PDMs that is tackled in this thesis is how to establish (bijective) correspondences across the collection of training shapes. Evaluated on brain shapes, the proposed method results in an improved model quality compared to existing approaches whilst at the same time being superior with respect to runtime. The second aspect considered in this work is how to learn a low-dimensional subspace of the shape space that is close to the training shapes, where all factors spanning this subspace have local support. Compared to previous work, the proposed method models the local support regions implicitly, such that no initialisation of the size and location of these regions is necessary, which is advantageous in scenarios where this information is not available. The third topic covered in this thesis is how to use an SSM in order to reconstruct a surface from only few surface points. By using a Gaussian Mixture Model (GMM) with anisotropic covariance matrices, which are oriented according to the surface normals, a more surface-oriented fitting is achieved compared to a purely point-based fitting when using the common Iterative Closest Point (ICP) algorithm. In comparison to ICP we find that the GMM-based approach gives superior accuracy and robustness on sparse data. Furthermore, this work covers the transformation synchronisation method, which is a procedure for removing noise that accounts for transitive inconsistency in the set of pairwise linear transformations. One interesting application of this methodology that is relevant in the context of multi-shape analysis is to solve the multi-alignment problem in an unbiased/reference-free manner. Moreover, by introducing an improvement of the numerical stability, the methodology can be used to solve the (affine) multi-image registration problem from pairwise registrations. Compared to reference-based multi-image registration, the proposed approach leads to an improved registration accuracy and is unbiased/reference-free, which makes it ideal for statistical analyses

    Shape-aware surface reconstruction from sparse 3D point-clouds.

    Get PDF
    The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data
    corecore