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Generalized Point Set Registration with the Kent Distribution
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Abstract—Point set registration (PSR) is an essential prob-
lem in communities of computer vision, medical robotics and
biomedical engineering. This paper is motivated by considering
the anisotropic characteristics of the error values in estimating
both the positional and orientational vectors from the PSs to
be registered. To do this, the multi-variate Gaussian and Kent
distributions are utilized to model the positional and orientational
uncertainties, respectively. Our contributions of this paper are
three-folds: (i) the registration problem using the normal vectors
is formulated as a maximum likelihood problem, where the
anisotropic characteristics in both positional and normal vectors
are considered; (ii) the matrix forms of the objective function and
its associated gradients with respect to the desired parameters
are provided, which can facilitate the computational process;
(iii) two approaches of computing the normalizing constant in
the Kent distribution are compared. We verify our proposed
registration method on various pre-operative and intra-operative
PSs (pelvis and femur bones) in computer-assisted surgery (CAS).
Extensive experimental results demonstrate that our proposed
method outperforms the state-of-the-art methods in terms of the
registration accuracy and the robustness.

I. INTRODUCTION

Registration is a common and fundamental problem in
computer vision, computer graphics, robotics and biomedical
engineering communities [1]–[4], [8]. The objective of reg-
istration is to accurately estimate the spatial transformation
(rigid or non-rigid) and to recover the point correspondences
between two spaces [10]–[15]. The two spaces can be rep-
resented with volumetric images or distinctive features (e.g.
points). In medical image analysis, registration technique is
adopted to align multiple images of the same organs (either
from one or two patients) into one common coordinate frame.
For example, the pre-operative rigid registration of different
imaging modalities, such as Magnetic Resonance Imaging
(MRI) and computed tomography (CT), provides the robust
fusion of soft tissue information with accurate bone delineation
for neurosurgical planning [5]. As indicated in [6], over the
past 30 years, we have seen the significant emergence of
systems that incorporate imaging, robots, and other technolo-
gies to enhance patient care. Computer-assisted interventions
(CAIs) or computer-assisted surgery (CAS) provides surgeons
with additional information of the patient [7], [8]. Before
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surgery, the patient usually goes for a CT or MRI scanning to
acquire a patient specific 3D model [9]. During surgery, the
information together with the pre-operative patient model has
to be combined with the intra-operative images, video cameras
or robots.

Among the existing various registration methods, iterative
closest point (ICP) is perhaps the most well known one. ICP
is an iterative algorithm that first finds the best correspondence
and then updates the transformation with current updated
correspondences. Euclidean distance is used as the measure
metrics in both correspondence and registration steps. Notably,
in ICP, one-to-one hard correspondence strategy is adopted.
The performance of ICP is susceptible to initial transformation
and outliers, and easily converges to a local minima while
it proves to be accurate and fast in many cases. Built upon
the ICP method and the branch-and-bound (BnB) technique
that can search the 3D motion space SE(3) efficiently, Yang
et al. have proposed the Go-ICP method that can find the
globally optimal solution [16]. On the other hand, to make
ICP robust to noise and outliers, different variants of ICP
have been developed [17].

In this paper, the positional and orientational error vectors
are modelled using multi-variate Gaussian and Kent distri-
butions, respectively. Different from the usual point set regis-
tration methods that only utilize the positional information, our
proposed method also adopts the orientational information (i.e.
normal vectors). Different from the prior registration methods
that additionally consider normal vectors, we generalize the
noise assumption of the normal vectors to anisotropic cases.
Similar to most registration algorithms under the expectation
maximization (EM) framework, among the two point sets to be
registered, one is considered as model point set while the other
as data point set. In the E step, the probability of one specific
point in data point set corresponding to one point in model
point set is computed. In the M-step, the rigid transformation
matrix is updated using posterior probabilities in the E-step.
The E and M steps will iterate until convergence.

This paper is organized as follows: Section II reviews the
related registration algorithms; Section III describes the moti-
vation and contributions of this paper; Section IV formulates
the registration problem; Section V presents the details of the
expectation maximization procedures; Section VI introduces
the implementation details; Section VII describes the experi-
mental results; Section VIII concludes the paper.

II. RELATED WORK

We briefly review the rigid registration methods based on
the Gaussian Mixture Models (GMMs). The main idea of
probabilistic methods is to represent one point set by a density
function and minimize some ‘distance’ of the densities. The



other key idea of GMM-based registration methods is that the
multiply-link correspondence strategy is usually used between
two point sets. More specifically, each point in the data point
set can be interpreted as being generated by some Gaussian
with a specific isotropic covariance. Each point in the mode
point set, on the other hand, is considered as the mixture
mean. Under the probabilistic framework, the iterations of
finding correspondences and updating transformations in the
ICP method are reconsidered as a type of EM procedure. In
E-step, the expectation over latent correspondence variables
is calculated. In M-step, under the current correspondences,
maximization of complete log-liklihood is conducted over
the registration parameters. The two steps iterate until the
algorithm converges or a maximum number of iterations is
reached.

In the Coherent Point Drift (CPD) algorithm [18], the
registration of two point sets is formulated as a probability
density estimation problem. With the assumption of isotropic
covariance in the data point set, the optimal rotation matrix
can be solved in a closed-form solution in M-step. Expecta-
tion Conditional Maximization Point Registration (ECMPR)
[19] extends the CPD’s isotropic covariance to anisotropic
covariance matrix. In the ECM steps, each M-step in the CPD
method is replaced by a sequence of conditional maximization
steps or CM-steps. More specifically, during each CM-step,
one registration parameter is optimized conditioned by that
the other parameters are constants. Estimating the current
rigid transformation matrix in CM-steps is reformulated as
a quadratic optimization problem and solved using semidef-
inite relaxation technique. Motivated by enabling mapping
and navigation for the robots in dark, complex, unstructured
environments such as caves and mines, Tabib et al. have pro-
posed the GMM-based registration method that minimizes the
L2-norm between two distributions through an on-manifold
parameterization of the objective function [20]. Their results in
the cluttered environments demonstrate superior performance
compared to the state of the art methods [20].

Joint Registration of Multiple Point Sets (JRMPC)[21] was
proposed to eliminate the bias towards one point set in the
pair-wise registration problem. In JRMPC, each point set
is assumed to be a realization of a common GMM. The
joint registration of multiple point sets is formulated as a
probabilistic clustering problem. Using the EM scheme, both
the GMM parameters and the rigid transformations that relate
each individual point set with underlying reference set are
estimated. As a by-product, the noise-free underlying reference
point cloud (model data) is acquired afterwards. JRMPC
algorithm outperforms all the other state-of-the-art registration
methods with respect to different percentages of outliers. It
should be noted that the covariance matrix is still considered
to be isotropic in the JRMPC algorithm. Various registration
methods have been proposed to enhance the registration’s
robustness to noise and outliers [22]–[24]. For example, Yang
et al. have proposed a novel registration method that is very
robust to a large amount of outliers in a polynomial time [22].

Deep learning methods first learn to encode PSs with high-
dimensional features, and then match keypoints to generate
correspondence and optimize over the space of rigid transfor-

mations [25]–[28]. PointNetLK uses PointNet to learn feature
representation and iteratively align the features representa-
tions [29]. DeepGMR leverages a probabilistic registration
paradigm, within which a neural network that extracts cor-
respondences between raw PSs and GMM parameters, and
two blocks that estimates the optimal parameters from the
GMM parameters [30]. However, current deep-learning based
methods fail to produce acceptable inlier rates [31].

More recently, we have proposed the normal-assisted rigid
point set registration method under the EM framework [32]–
[34]. The isotropic error in determining the normal vectors is
assumed in [32], [33]. There are also normal-based registration
methods under the ICP framework, and thus is not very robust
to outliers [35], [36]. In this paper, the normal-assisted regis-
tration problem is solved under the EM framework while both
the positional error and the orientational error are assumed
to be anisotropic in 3D space. In other words, we utilize
the multi-variate Gaussian and Kent distribution to model
positional and orientational error.

III. MOTIVATIONS AND CONTRIBUTIONS

Our presented work is motivated by improving the regis-
tration’s robustness to noise and outliers by (i) incorporating
the orientational information (i.e., normal vectors) associated
with each point into the registration; (2) considering the
anisotropic charactersitics in both the positional and normal
vectors. Orientational information at each point in both point
sets can be readily acquired in various ways at different stages
of surgery. Pre-operatively, the normal vector at a certain point
can be estimated through Principal Component Analysis
(PCA) techniques using surrounding points. Intra-operatively
(i.e., during surgery), the normal vectors could be also mea-
sured using a tracked probe equipped with a force sensor.
Ranging imaging (e.g., stereo-vision based system) typically
has relatively higher uncertainty in the depth direction than
those in the other two directions. This motivates us to take
the anisotropic positional error model into consideration. In
addition, in this work, the localization error associated with
the normal vectors is generalized to be anisotropic.

Our contributions in this paper can be summarized as fol-
lows: (1) The generalized rigid point set registration problem
is formulated as a maximum likelihood (ML) problem, where
the positional and orientational error values are modelled using
multi-variate Gaussian and Kent distributions, respectively.
(2) The gradients of the objective function with respect to the
desired parameters are computed and provided. In addition,
we present the compact matrix form of the objective function
to be minimized in the maximization step. (3) We evaluate
with extensive experiments the two methods of computing the
normalizing constants involved in the Kent distribution, one
is the exact form while the other is the approximate one.

IV. PROBLEM FORMULATION

This paper obeys the following notation conventions: As-
sume xn, ym ∈ R3(n,m ∈ N+) are two arbitrary points from
the two point sets and the unit vectors x̂n, ŷm ∈ R3 are the as-
sociated normal directions (orientation vectors), where |x̂n| =



1 and |ŷm| = 1. The points in Y = [y1, ...,ym, ...,yM ] ∈
R3×M are considered as the GMM centroids, then the points in
X = [x1, ...,xn, ...,xN ] ∈ R3×N are generated by the GMM.
The vectors in Ŷ = [ŷ1, ..., ŷm, ..., ŷM ] ∈ R3×M represent
the mean directions of the kent mixture model (KMMs),
while the vectors in X̂ = [x̂1, ..., x̂n, ..., x̂N ] ∈ R3×M are
normal vectors generated from KMMs. Briefly speaking, the
generalized (rigid) point set registration is to estimate the
rigid transformation matrix given the two generalized point
sets Dx = [X, X̂] ∈ R6×N and Dy = [Y, Ŷ]6×M . The
probability density function of the mixed model is p(dn) =∑M+1
m=1 P (m)p(dn|zn = m), where dn = [xT

n, x̂
T
n]T ∈ R6 is

the six-dimensional directional vector in the data point set and

p(dn|zn = m) =

1

(2π)
3
2 |Σ| 12

e−
1
2

(
xn−(Rym+t)

)T
Σ−1

(
xn−(Rym+t)

)
︸ ︷︷ ︸

Positional Part

1

c(κ, β)
e
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(Rγ̂1m)Tx̂n

)2
−((Rγ̂2m)Tx̂n)2
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Orientational Part

(1)

where c(κ, β) ∈ R is the normalizing constant of the com-
mon Kent distribution [37], Σ ∈ S3 denotes the positional
covariance matrix. To account for the noises and outliers
existing in the data point set, an additional uniform distri-
bution p(dn|zn = M + 1) = 1

N is added to the original
model p(dn). Equal membership probabilities P (m) = 1

M
are assumed for all remainder GMM (and KMM) components
(m = 1, · · · ,M ). Then the equation of the mixture model is:

p(dn) = w
1

N
+ (1− w)

M∑
m=1

1

M
p(dn|zn = m) (2)

where 0 ≤ w ≤ 1 denotes the weight of the uniform
distribution, the correpondence variable zn ∈ N+. To find
the optimal estimation of the probability density function of
the two-part mixture model is to minimized the accumulative
negative log-likelihood function listed as follows,

E(R, t, κ, β,Σ, γ̂1m, γ̂2m) = −
N∑
n=1

log
M+1∑
m=1

P (m)p(dn|m)

(3)

The correspondence probability between two generalized
points [yT

m, ŷ
T
m]T and [xT

n, x̂
T
n]

T

is defined as the posterior
probability of the GMMs’ centroid and KMMs’ mean direction
given the data PS.

V. EM-BASED REGISTRATION FRAMEWORK

Expectation Maximization (EM) algorithm is adopted to
find the parameters Θ = {R, t, κ,Σ, β, γ̂1m, γ̂2m} iteratively.
As indicated in [18], the idea of EM is to first guess the
values of parameters and then use Bayes’ theorem to compute
a posterior probability distributions P old(m|dn) of mixture
components, which is the expectation or E-step of the algorith-
m. The new parameter values are then found by minimizing the

expectation of the total negative log-likelihood function[38]:

Q(Θ) =

−
N∑
n=1

M+1∑
m=1

P old(m|dn) log
(
Pnew(m)pnew(dn|m)

) (4)

with respect to the “new” parameters, which is called the
maximization or M-step of the algorithm. The Q (i.e. the
objective function) is the upper bound of the negative log-
likelihood function in (3). The GMM centroids and KMM
mean directions are transformed by rotation and translation
parameters R, t. Ignoring the constants independent of Θ =
{R, t, κ, β,Σ, γ̂1m, γ̂2m}, we can rewrite Q(Θ) in (4) as

Q(R, t, κ, β,Σ, γ̂1m, γ̂2m) =
N∑
n=1

M∑
m=1

pmn
1

2

(
xn − (Rym + t)

)T
Σ−1

(
xn − (Rym + t)

)
− β

N∑
n=1

M∑
m=1

pmn(γ̂T
1mRTx̂n)2 + β

N∑
n=1

M∑
m=1

pmn(γ̂T
2mRTx̂n)2

− κ
N∑
n=1

M∑
m=1

pmn(Rŷm)Tx̂n +Nplogc(κ, β) +
1

2
NP log|Σ|

(5)

where pmn = P old(zn = m|dn), Np =
∑N
n=1

∑M
m=1 pmn.

Expectation Step The posterior possibility P old(m|dn) =
pmn is a soft assignment that indicates to what degree
[xT
n, x̂

T
n]T corresponds to [yT

m, ŷ
T
m]T and can be calculated by

applying Bayes’ rule:

pqmn =
P (m)p(dn|zn = m)

p(dn)
(6)

where the terms p(dn|zn = m) and p(dn) are defined in
(1) and (2) respectively, q ∈ N is the index of iteration.
Afterwards, the sum of the posterior probabilities after the
q-th step is computed as follows, Nq

p =
∑N
n=1

∑M
m=1 p

q
mn.

Maximization Step The objective function is further modified
by substituting the terms R with dRRq−1, where dR ∈
SO(3) denotes the incremental rigid transformation while
Rq−1 ∈ SO(3) represents the rigid transformation in the last
EM step.

Q(dR, dt, κ, β,Σ, γ̂1m, γ̂2m) =
N∑
n=1

M∑
m=1

pqmn
1

2
zTmnΣ−1zmn︸ ︷︷ ︸
CP,mn

+Nq
p logc(κ, β) +

1

2
Nq
P log|Σ|−

N,M∑
n,m

βpqmn

(
(γ̂T

1m(dRRq−1)Tx̂n)2 − (γ̂T
2m(dRRq−1)Tx̂n)2︸ ︷︷ ︸

CO,mn1∈R

)

−
N∑
n=1

M∑
m=1

κpqmn(dRRq−1ŷm)Tx̂n︸ ︷︷ ︸
CO,mn2∈R

(7)

where zmn = xn − dR(Rq−1ym + tq−1)− dt.
M Rigid Transformation Step For clarity, we retain the terms



that are related with dR and dt in (7), which is the following,

Q(dR, dt) =

N∑
n=1

M∑
m=1

(
CP,mn + CO,mn1 + CO,mn2

)
(8)

With the Rodrigues formula for representing a rotation matrix,
i.e., dR = R(x(1 : 3)) and dt = x(4 : 6), we can
use a six-dimensional vector x to represent the incremental
rigid transformation matrix. The unconstrained optimization
problem is presented as the following:

min
x

N∑
n=1

M∑
m=1

(CP,mn + CO,mn)︸ ︷︷ ︸
C

(9)

where CO,mn = CO,mn1 + CO,mn2 represents the part that
is related with the normal vectors in the objective function. In
this way we convert the constrained optimization problem of
(dR, dt) into an unconstrianed optimization one of x. In what
follows, we present the gradients of the objective function C.
The Gradient of the Objective Function Let ∇C denote the
gradient of C in (9) with respect to x, i.e. ∂C

∂x . We can now
write ∇C as

∇C =

N∑
n=1

M∑
m=1

(
∇CP,mn +∇CO,mn

)
(10)

where CP,mn =
[
JCP,mn,dθ,JCP,mn,dt

]T
and CO,mn =[

JCO,mn,dθ,01×3

]T
, with which JCP,mn,dθ and JCP,mn,dt

denote the Jacobian vector of CP,mn with respect to dθ and
dt: 

JCP,mn,dθ =

[
∂CP,mn

∂dθ1
,
∂CP,mn

∂dθ2
,
∂CP,mn

∂dθ3

]

JCP,mn,dt =

[
∂CP,mn

∂dt1
,
∂CP,mn

∂dt2
,
∂CP,mn

∂dt3

] (11)

We now derive the expression of ∂CP,mn

∂dθi
(i = 1, 2, 3)

∂CP,mn

∂dθi
= trace

((∂CP,mn

∂dR

)T ∂dR
∂dθi

)
(12)

where ∂CP,mn

∂dR ∈ R3×3 is given in the Jacobian style, trace()̇
is the operation to compute the trace of a matrix. The readers
are noted that the detailed expressions of ∂dR

∂dθi
(i = 1, 2, 3) are

presented in our prior work [39]. On the other hand, with the
chain rule of matrix derivative, we can have:

∂CP,mn

∂dti
= trace

((∂CP,mn

∂dt

)T ∂dt
∂dti

)
. (13)

Derivation of ∂CP,mn

∂dR The expression of ∂CP,mn

∂dR is ∂CP,mn

∂dR =

−pqmn(Σq−1)−1
(
xn(Rq−1ym + tq−1)T + dR(Rq−1ym +

tq−1)(Rq−1ym + tq−1)T + dt(Rq−1ym + tq−1)T
)

.

Derivation of ∂CP,mn

∂dt The expression of ∂CP,mn

∂dt is
−pqmn(Σq−1)−1

(
xn + dt + dR(Rq−1ym + tq−1)

)
.

Derivation of ∂CO,mn1

∂∂dR The expression of ∂CO,mn1

∂∂dR

is 2βpqmn

(
x̂nx̂T

ndRRq−1γ̂1mγ̂
T
1m(Rq−1)T-

x̂nx̂T
ndRRq−1γ̂1mγ̂

T
1m(Rq−1)T

)
.

Derivation of ∂CO,mn2

∂∂dθj
The expression of ∂CO,mn2

∂∂dθj
is

∂CO,mn2

∂dθj
= pqmnκ

q−1trace
(
Rq−1ŷmx̂T

n
∂dR
∂dθj

)
.

By substituting ∂CP,mn

∂dR in (12), we can compute ∂CP,mn

∂dθi
. With

∂CP,mn

∂dθi
in (12), we can further compute JCP,mn,dθ in (11).

On the other hand, by substituting ∂CP,mn

∂dt into (13), we can
get the expression of ∂CP,mn

∂dti
. With ∂CP,mn

∂dti
in (13), we can

get JCP,mn,dt in (11). The updated rigid transformation Rq, tq

are computed as follows, Rq = dRRq−1, tq = dRtq−1 + dt.
M Covariance Step By solving ∂Q

∂Σ = 0 in
(7), we can update the new covariance matrix
Σq , Σq =

∑N
n=1

∑M
m=1 p

q
mnzq

mn(zq
mn)T

Nq
p

, where

Nq
p =

∑N
n=1

∑M
m=1 p

q
mn and zqmn = Rqym + tq − xn.

The compact matrix form of the updated positional
covariance matrix Σq is presented as follows,(
Xdiag

(
PTe

)
XT−XPTe(tq)T−tqeTPXT+RqYPe(tq)T

+ (tq)eTPTYT(Rq)T −RqYPXT −XPTYT(Rq)T

+ tq(tq)TNq
P + RqYdiag(Pe)YPT(Rq)T

)
/Nq

P.
M-κ Step The expression that is related with κ in the
objective function in (7) is presented as following,

Q(κ) = −κ
N∑
n=1

M∑
m=1

pqmn(Rqŷm)Tx̂n +Nq
p logc(κ, β) (14)

whose gradient vector ∂Q(κ)
∂κ is ∂Q(κ)

∂κ =

−
∑N
n=1

∑M
m=1 p

q
mn(Rqŷm)Tx̂n + Nq

p
∂c(κ,β)
∂κ . To compute

∂c(κ,β)
∂κ , we use the approximate version of c(κ, β)

as c(κ, β) = 2πeκ[κ2 − 4β2]−
1
2 , whose gradient is

∂c(κ,β)
∂κ = 1 − (κ2 − 4β2)−1κ. By solving the equation

∂c(κ,β)
∂κ = 0 with the fixed-point scheme, we can get κq .

M-β step The expression that is related with β in the objective
function in (7), Q(β), is presented as follows, Q(β) =
β
∑N
n=1

∑M
m=1 p

q
mn((γ̂T

2m(Rq)Tx̂n)2 − (γ̂T
1m(Rq)Tx̂n)2)

+ Nplogc(κ, β) whose gradient with respect to β is as
follows, ∂Q(β)

∂β =
∑N
n=1

∑M
m=1 pmn

(
(γ̂T

2m(Rq)Tx̂n)2 −

(γ̂T
1m(Rq)Tx̂n)2

)
+ Nq

p
1

c(κ,β)
∂c(κ,β)
∂β , where ∂c(κ,β)

∂β =

4β(κ2 − 4β2)−1. Thus, until now, we get the updated βq by
solving ∂Q(β)

∂β = 0.

VI. IMPLEMENTATION DETAILS

The exact formular for calculating the normalizing con-
stant c(κ, β) in the Kent distribution is: c(κ, β) =

2π
∑∞
j=0

Γ(j+ 1
2 )

Γ(j+1) β
2j
(

1
2κ
)−2j− 1

2 I2j+ 1
2
(κ), where Γ and Iv(κ)

represent the Gamma and modified Bessel function of first
kind, respectively. In real engineering implementations, people
cannot sum the terms with the index from j = 0 to ∞. We
empirically sum the terms from j = 0 to 99. The approximate
formula of calculating c(κ, β) as the following [37]: c(κ, β) ∼=
2πeκ[(κ − 2β)(κ + 2β)]−

1
2 . Fig. 1 shows the percentage

differences of the normalizing constants using the above two
methods. As it is shown in Fig. 1, the percentage differences
between the two constants will converge to zero as κ becomes
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Fig. 1. The percentage differences of the normalizing constants’ values
computed with the two approaches. Three different cases are tested: e = 0.25,
e = 0.5, e = 0.75.
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(a) Rotational error, κ=3200,
e=0.25.
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(b) Translation error, κ=3200,
e=0.25.
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(c) Rotational error, κ=3200,
e=0.5.
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(d) Translation error, κ=3200,
e=0.5.
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(e) Rotational error, κ=3200,
e=0.75.

kappa=3200, e=0.75

10% 30% 50% 70% 90%
Pecentages of Outliers

0

0.5

1

1.5

2

2.5

3

T
ra

ns
la

tio
na

l E
rr

or
 (

m
m

) ECMPR
ICP
JRMPC
HMM(iso)
Ours

(f) Translation error, κ=3200,
e=0.75.

Fig. 2. The registration error results on the femur point set, kappa =3200.
The first column is the rotational error statistics while the second stores the
translational error values.

larger and e becomes smaller. The eccentricity e takes values
on the interval [0, 1) and controls the ellipticity parameter
β as β = eκ2 . In this paper, we choose to use the second
approximated method of computing c(κ, β). We initialize the
rigid transformation matrix as: R0 = I3×3, t0 = 03×1, the
positional covariance matrices Σ0 is initialized to be large (e.g.
Σ0 = diag([100, 100, 100])); the concentration parameters κ0

to be small (e.g. κ0 = 10 which means large variances in

normal vectors); the ellipticity parameter β0 is initialized to
be zero, which means the orientation vectors are considered
to be isotropic at the beginning of the algorithm.
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(a)Rotational error, κ=800,
e=0.25.
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(b)Translation error, κ=800,
e=0.25.
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(c)Rotational error, κ=800,
e=0.5.
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(d)Translation error, κ=800,
e=0.5.
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(e) Rotational error, κ=800,
e=0.75.
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(f) Translation error, κ=800,
e=0.75.

Fig. 3. The registration error results on the femur point set, kappa =800.
The first column is the rotational error statistics while the second stores the
translational error values.

VII. EXPERIMENTS

To verify the effectiveness, robustness and accuracy of
our proposed algorithm, we validate our algorithm on two
data sets: pelvis and femur data sets in the background of
computer-assisted orthopedic surgery (CAOS) [32], [33]. In
this scenario, the preoperative model acts as the model point
set Dy while the intra-operative data acts as the data point
set Dx. The number of points in Dy is M = 1568 while
the number of inlier points in Dx is Ninliers = 100. In all the
experiments, between Dx and Dy , the rotational degrees of
Rtrue lie in [10, 20]◦ and the translation vectors’ magnitudes lie
in [10, 20]mm as those settings in [33]. We compare several
state-of-the-art registration methods with our proposed one:
ICP [40], ECMPR [19], JRMPC [21], HMM(Isotropic) [32],
[33]. The first three registration methods utilize only the
positional information X and Y while HMM(Isotropic) and
our method utilize Dx and Dy . In HMM(Isotropic), both the
positional and orientational uncertainties are isotropic.

To test and verify the registration method’s robustness to
noise and outliers, noise and different percentages of outliers
are injected into Dx. The covariance matrix is set to be
Σ = diag([ 1

11 ,
1
11 ,

9
11 ]). In each test case with specific noise,
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(a) Rotational error, κ=800,
e=0.25.
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(b) Translation error, κ=800,
e=0.25.
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(c) Rotational error, κ=800,
e=0.5.
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(d) Translation error, κ=800,
e=0.5.
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(e) Rotational error, κ=800,
e=0.75.
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(f) Translation error, κ=800,
e=0.75.

Fig. 4. The registration error results on the pelvis point set, kappa=800.
The first column is the rotational error statistics while the second stores the
translational error values.

five cases of outliers are tested: 10%, 30%, 50%, 70% and
90%. More specifically, for example, there are N = 100 +
100×0.1 = 110 points in Dx when 10% outliers are injected.
In addition, we test the registration methods’ under different
cases of orientational error under different magnitudes and
anisotropies (a) κ = 800, e = 0.25, 0.5, 0.75; (b) κ = 3200,
e = 0.25, 0.5, 0.75. As indicated in [35], on one hand,
κ = 3200 corresponds to 1◦ standard deviation, while κ = 800
corresponds to 2◦ standard deviation. On the other hand, larger
values of β (i.e., larger e = 2βκ ) indicates larger anisotropy
associated with the normal vectors X̂. For each test case
with specific noise and outliers, Ntrial = 1000 registration
trials are tested. The rotational error in degree is computed

as θdegerr =
arccos[

trace(RtrueR
T
err)−1

2 ]

π × 180◦ and the translation error
in milimeter is computed as terr = ||tcal − ttrue|| . The mean
and standard deviation of both rotational and translation error
values are computed and plotted.

Fig. 2 and Fig. 3 show the rotational and translational error
values when κ = 3200 and κ = 800 respectively, where
the femur point set is used. Fig. 5 and Fig. 4 show the
rotational and translational error values when κ = 3200 and
κ = 800 respectively, where the pelvis point set is used. Two
pieces of information are conveyed from the above results:
our proposed algorithm (1) is able to achieve the lowest
rotational and translation vector values among the compared
methods in almost all cases; (2) is very robust to noise and
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(a) Rotational error, κ=3200,
e=0.25.
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(b) Translation error, κ=3200,
e=0.25.
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(c) Rotational error, κ=3200,
e=0.5.
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(d) Translation error, κ=3200,
e=0.5.
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(e) Rotational error, κ=3200,
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(f) Translation error, κ=3200,
e=0.75.

Fig. 5. The registration error results with different registration algorithms
on the pelvis point set, kappa= 3200. The first column is the rotational error
statistics while the second stores the translational error values.

outliers. It should be noted that HMM (Isotropic) method and
our presented algorithm outperform the other three methods
because that more information (i.e. the normal vectors) is
utilized. By considering the anisotropic characteristic in both
the positional and normal vectors, our proposed method owns
superior performance compared to HMM(Isotropic). By com-
paring the results in Fig. 5 with those in Fig. 4, we conclude
that both HMM(Isotropic) and our method achieves larger
registration error values with larger error values in normal
vectors (i.e. smaller κ). The same conclusion can be drawn
by comparing the results in Fig. 2 and Fig. 3.

VIII. CONCLUSIONS

A novel, robust and accurate probabilistic rigid point set reg-
istration algorithm for computer assisted orthopaedic surgery
(CAOS) is presented in this paper. The novelty lies in consider-
ing the anisotropy in both the positional and orientational error.
Experimental results have demonstrated the effectiveness and
significantly improved performances of our approach over the
state-of-the-art methods.
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