803 research outputs found

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    Linear mappings: semantic transfer from transformer models for cognate detection and coreference resolution

    Get PDF
    Includes bibliographical references.2022 Fall.Embeddings or vector representations of language and their properties are useful for understanding how Natural Language Processing technology works. The usefulness of embeddings, however, depends on how contextualized or information-rich such embeddings are. In this work, I apply a novel affine (linear) mapping technique first established in the field of computer vision to embeddings generated from large Transformer-based language models. In particular, I study its use in two challenging linguistic tasks: cross-lingual cognate detection and cross-document coreference resolution. Cognate detection for two Low-Resource Languages (LRL), Assamese and Bengali, is framed as a binary classification problem using semantic (embedding-based), articulatory, and phonetic features. Linear maps for this task are extrinsically evaluated on the extent of transfer of semantic information between monolingual as well as multi-lingual models including those specialized for low-resourced Indian languages. For cross-document coreference resolution, whole-document contextual representations are generated for event and entity mentions from cross- document language models like CDLM and other BERT-variants and then linearly mapped to form coreferring clusters based on their cosine similarities. I evaluate my results on gold output based on established coreference metrics like BCUB and MUC. My findings reveal that linearly transforming vectors from one model's embedding space to another carries certain semantic information with high fidelity thereby revealing the existence of a canonical embedding space and its geometric properties for language models. Interestingly, even for a much more challenging task like coreference resolution, linear maps are able to transfer semantic information between "lighter" models or less contextual models and "larger" models with near-equivalent performance or even improved results in some cases
    • …
    corecore