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ABSTRACT

LINEAR MAPPINGS: SEMANTIC TRANSFER FROM TRANSFORMER MODELS FOR

COGNATE DETECTION AND COREFERENCE RESOLUTION

Embeddings or vector representations of language and their properties are useful for under-

standing how Natural Language Processing technology works. The usefulness of embeddings,

however, depends on how contextualized or information-rich such embeddings are. In this work,

I apply a novel affine (linear) mapping technique first established in the field of computer vision

to embeddings generated from large Transformer-based language models. In particular, I study

its use in two challenging linguistic tasks: cross-lingual cognate detection and cross-document

coreference resolution. Cognate detection for two Low-Resource Languages (LRL), Assamese

and Bengali, is framed as a binary classification problem using semantic (embedding-based), artic-

ulatory, and phonetic features. Linear maps for this task are extrinsically evaluated on the extent of

transfer of semantic information between monolingual as well as multi-lingual models including

those specialized for low-resourced Indian languages. For cross-document coreference resolution,

whole-document contextual representations are generated for event and entity mentions from cross-

document language models like CDLM and other BERT-variants and then linearly mapped to form

coreferring clusters based on their cosine similarities. I evaluate my results on gold output based

on established coreference metrics like BCUB and MUC.

My findings reveal that linearly transforming vectors from one model’s embedding space to

another carries certain semantic information with high fidelity thereby revealing the existence of a

canonical embedding space and its geometric properties for language-models. Interestingly, even

for a much more challenging task like coreference resolution, linear maps are able to transfer

semantic information between "lighter" models or less contextual models and "larger" models with

near-equivalent performance or even improved results in some cases.
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Chapter 1

INTRODUCTION

1.1 Language Models

Language is a temporal phenomenon that is linguistic meaning (semantics) is a consequence

of an ordered arrangement of words. A sequence of words in a sentence "makes sense" because

of where they are placed and their relative positions in the sequence. In other words, their po-

sitional characteristics are directly related to the semantic meaning and grammatical correctness

of a sentence. Therefore, in Natural Language Processing (NLP), a language model is a proba-

bilistic model that uses probabilistic constraints and assumptions to determine the probability of a

word given its surrounding words. For instance, early language models like the N-gram [Jurafsky,

2000] use the "memoryless" Markov assumption [Markov, 1954] to approximate the probability of

a sample word given its history or surrounding words.

However, N-gram models are based on words and are very literal. Such models robustness is

also heavily dependent, or tend to be overfitted [Everitt and Skrondal, 2010], on the training corpus.

In other words, N-gram probability matrices, often represented as one-hot encodings1, are incred-

ibly sparse. Take a vocabulary V with N samples or words. The total combinations of unique

bigrams (two-word sequence of words) alone are N -squared without considering any higher or-

der n-grams like tri-grams. This makes it difficult for such models to learn coherent sentences or

"context" unless the vocabulary is huge which is not always the case depending on the task. Apart

from this sparsity, they also have a closed vocabulary meaning they have difficulty approximating

probabilities for unknown or Out-Of-Vocabulary (OOV) words especially at inference time. The

sparsity problem and the concomitant curse of dimensionality [Verleysen and François, 2005] as

well as the limited vocabulary related problems were mitigated to some extent by the advent of neu-

1One-hot encodings are sparse and do not preserve similarity across dimensions thereby making them limited in their
information content.
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ral networks. This is because words were now represented in a continuous parameter space in the

form of mathematical vectors or embeddings.2 Neural frameworks provided enough "learnable"

parameters to not only map a majority of the unique combinations of words in the vocabulary but

also mitigated the problem of unknown (OOV) words by making such unknown word-embeddings

"learnable". Moreover, a sliding window approach to learning word probabilities offered more

flexibility in "context" for neural networks than simple N-gram models.

There was still an underlying problem. As it turns out, there is a crucial issue in these methods:

the case of a limited context, before as well as after the word being learned as an embedding. Lan-

guage being inherently temporal requires an artificially-intelligent system to have a greater context

for it to learn efficiently. This problem was relatively alleviated by Recurrent Neural Networks

(RNNs) and more so with the Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber,

1997]. These networks, in general, saw architectural inventions like memory gates which allowed

selective sequential processing of linguistic-information. For instance, LSTMs typically had a for-

get gate that let only relevant information to be learned while ignoring superfluous information.

In other words, they could now peek into a relatively long history of prior words in a text to uti-

lize the temporality of language. However, the solution itself (its architecture) became a problem

even though increasing RNN layers should have ideally let us look even further behind in the text.

Widespread machine learning (ML) hacks such as stacking RNN layers for chasing the state-of-the-

art also led to problems like the vanishing gradient3 with significant loss of information. Moreover,

since each step needed recurrent processing and simultaneous processing of steps was not possible,

parallelizing the training process was difficult [Jurafsky and Martin, 2009].

There was another problem with RNNs. That is, they typically allowed a one-directional se-

quence processing of language. That is, a word coming after has no effect on the word being

2Although historically borrowed from Information Retrieval theory, an embedding in NLP is usually a real-valued
representation of a word for text analysis. In most cases, it encodes word-semantics or meanings. As such, words
that are closer in the vector space are expected to be similar in meaning. Note that sentences or whole-documents can
also be expressed as embeddings.

3Imagine multiplying a number (<< 1) a hundred times. You effectively end up with a very small number almost
close to zero which nullifies the gradient-flow during back propagation of weights. LSTMs were relatively immune
to this problem than simple RNNs, but not entirely even if they were designed to solve this problem.
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processed. This was non-intuitive from a human understanding or "semantic" perspective since

we usually understand the meaning of a text by reading the entire text in context. The impor-

tance of word-semantics to capture the "context" of texts led to the emergence of the classic NLP

word-embeddings like Word2Vec [Mikolov et al., 2013], Glove [Pennington et al., 2014]. These

neural models represent words as real-valued, fixed dimensional dense vectors while preserving

similarity between similar words. They were crucial for NLP advances in the early part of the last

decade especially for tasks like synonym detection, finding analogies etc., that required semantic

information. The catch was, they still could not tackle semantic polysemy. In other words, these

static4 embeddings typically cannot differentiate between similar-looking words that mean differ-

ent things in different contexts. For instance, "bank" as a financial institution vs "bank" of the

river.

The advent of Transformers [Vaswani et al., 2017] brought forth the idea of using "contexu-

alized" embeddings for NLP tasks instead of the static variants. Transformers are unique in that

they do not rely on recurrent connections for sequence processing but they are somewhat similar

to feedforward networks, only more layered. A crucial tool in their arsenal, the "self-attention

mechanism", is a clever way to extract and use information from arbitrarily large contexts without

the need to feed it through recurrent connections. In other words, computations in a sequence for a

word are now independent of similar computations for the rest of the words. Without getting into

the technical details, this allows the network to learn from the "context" of a word in a sequence

in a parallelized fashion. The latter characteristic was quite conducive for training with Graphics

Processing Units. State-of-the-art language models like the BERT [Devlin et al., 2018] use Trans-

former encoders to learn a contextualized representation of language. BERT variants come in all

shapes and sizes with even task-specific variants. However, one common trend of exploration is

whether and to what extent semantic information is encoded in such models embedding space.

4These models learn a single vector embedding for each unique word w in the vocabulary without considering the
semantic-context of the word.
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In this thesis, I explore to what extent semantic information is captured in large language mod-

els (LLMs), including those focused on certain specific Indian languages as well as task-specific

or "more contextualized" variants. More specifically, I explore whether such semantic information

can be transferred by an affine-mapping procedure between native and derived (affine-mapped)

embedding spaces. I evaluate using an extrinsic [Jurafsky, 2000] method of evaluation on two

downstream tasks: cognate detection and cross document coreference resolution.

1.2 Semantic Encoding and Transfer

The research question about Transformer-based language models learning the "semantics" or

"meaning" of a text has become very popular [Tenney et al., 2019], [Jawahar et al., 2019a]. It

has also been approached from a geometric angle with vector-space related explorations in works

such as [Ethayarajh, 2019a]. Assuming large language models do capture task-based semantics,

my thesis addresses the question of how geometric techniques can be used to transfer semantic in-

formation between language models with a high fidelity. In other words, can semantic information

be transferred between models using a linear transformation and if so, what does this tell us about

the geometric properties of the embedding spaces of the native and mapped models?

1.3 Framing the Problem

We chose an affine (linear) mapping technique between embeddings from our selected mod-

els because linear transformations are homomorphic i.e., they preserve spatial structure between

the points that represent the embedding. The idea is that if two embedding spaces capture se-

mantic information equivalently, a "structure-preserving" unsupervised linear mapping5 should be

5Non-linear maps could still encode similar features from both spaces as a consequence of correlation but they will
not share a representation i.e., non-linear transformations which are not homomorphic or structure preserving, will
naturally perturb the chances of embedding vectors encoding semantic information in a distinct space [McNeely-
White, 2020]. Also, introducing non-linear maps in case of language model embeddings is trickier than image-based
CNN embeddings since such models are huge in their parameter space (>350M for BERT-LARGE vs. 25.6M for
ResNet-50) with resulting GPU-related complexities. Even though our model space includes smaller monolingual
models where a non-linear mapping experiment might sound more feasible, our aim is focused more on how much
semantic information is robustly transferred while keeping the linearity of maps consistent.
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able to transfer such information between embeddings notwithstanding the non-linear fashion in

which the embeddings were originally learned in the language model. If V i
s and V

j
t represent the

source and the target embedding spaces, we carry out a least-square-based optimization method

or ridge-regression [Hoerl and Kennard, 1970] between those spaces where i and j represent indi-

vidual samples in our task-specific datasets while assuming λ=1. Here, β represents the L2-norm

regularization parameter. Mathematically,

Minimize((V j
t − V i

s β)
T (V j

t − V i
s β) + λβTβ)

At inference time, we ensure consistency by evaluating the affine maps between the source

and the target space using the same classifier (cognate task) or clustering method (CDCR) for

each of the mappings. This ensures that no outside-information or information-mixing occurs

during our experiments. Our hypothesis is that, similar or equivalent performance using native

or mapped embedding spaces along with the consistency of using the same inference tools (same

parameters) should help us verify the nature and extent of semantic information transfer between

the embedding spaces. Also, since the language models we have selected differ in their architecture,

training corpora, hyperparameters as well as their objective (loss) functions, such semantic transfer

will help us understand the nature of the distinct semantic space within which such information

lies. It will also reveal insights into whether such semantic space is task-specific or agnostic and

how dispersed they are in the high-dimensional vector space [Ethayarajh, 2019a]. This is because

the selected language models were trained for a more generalized task of mask-word prediction

[Devlin et al., 2018] while our extrinsic evaluation is conducted on two tasks that are relatively

different from the masked word prediction based training.6

6Prior works such as [McNeely-White et al., 2022], [McNeely-White, 2020] that have inspired this work studied image
or face embeddings from models that were trained as well as evaluated (with affine maps) on the same task that the
chosen models were trained on i.e., their methodology was relatively more supervised than this language-model
based work. This point of difference is important as it has consequences on the generalizability and task-agnosticity
of language representation models.
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Chapter 2

RELATED WORKS

In this section I briefly discuss the previous works in the field of i) cognate detection, ii) cross

document coreference resolution for event and entities, iii) works associated with the affine map-

ping technique for linguistic as well as image-based embeddings as well as how our work adds in

to the recent developments.

2.1 Cognate Detection

There have been many different approaches for detecting cognates within the NLP community.

In most previous works, researchers have utilized some form of string-distance or similarity metric

based on phonetic, orthographic, language-specific sound changes or semantic or a combination of

all to detect cognates. For instance, a major early work by [Kondrak, 2001] identifies cognates in

Algonquian using phonetic and semantic similarity, the latter using lexical resources like WordNet

[Miller, 1995]. [Mulloni and Pekar, 2006] infer orthographic changes resulting from inheritance of

words in languages and uses an orthographic distance metric to detect cognates. This is a step-up

since this circumvented the need for lexical resources like bi-lingual dictionaries.

Later works such as [Jäger, 2018] evaluates Pointwise Mutual Information (PMI) and Support

Vector Machine (SVM)-based methods in cognate detection over the Automated Similarity Judg-

ment Project (ASJP) database [Brown et al., 2008]. [List, 2014] finds relationships between factors

like data size and genetic relatedness in automated cognate detection between English, German,

Dutch, and French while also creating a gold-standard cognate dataset in those languages. [Blood-

good and Strauss, 2017] explore using global constraints and re-ranking of score matrices to im-

prove such detection. Works such as [Dellert, 2018] explores sequence alignment and phonetic

correspondence features for Northern European languages, two feature types that are very relevant

to our work. Slightly different but related works such as [Rama et al., 2018] and [Rama and List,

2019] turn the problem around and explore the direct applicability of automated cognate detection

6



methods to phylogenetic reconstruction and inference. Lexical resources like WordNet make a

comeback in this field in [Kanojia et al., 2021a] where they perform orthographic similarity-based

cognate detection in various Indian languages, but notably not Assamese (one of the languages I

investigate in this thesis).

More related to the articulatory feartures that we use for our experiments are works like

[Bharadwaj et al., 2016] and [Rijhwani et al., 2019] that suggest that phonologically-aware ar-

ticulatory representations from PanPhon [Mortensen et al., 2016] can either be used natively as

embeddings or as features in attention-based neural models for downstream NLP tasks such as

Named Entity Recognition (NER) or entity linking for low-resource languages. [Labat and Lefever,

2019] and [Lefever et al., 2020] add semantic information to orthographic features for cognate de-

tection to get substantial improvement in resource-rich languages like English and Dutch (90%

F1). Similarly, [Kanojia et al., 2021b] explores mixing large multilingual model embeddings to

cognitive features like gaze improves cognate detection in low-resource languages like Hindi and

Marathi (86% F1). For the hybrid approach to similarity metrics, work in translation lexicons

(e.g., [Schafer and Yarowsky, 2002]) offers newer perspectives to cognate detection related fea-

tures.

For my thesis, I primarily explore the contributions of semantically-mapped features while

touching on the non-semantic features i.e., phonetic, orthographic, and articulatory alignment to

the task of cognate detection between Assamese and Bengali (low-resourced Indian languages). I

use a comparative method topped with ablation-based experiments.

2.2 Cross Document Coreference Resolution (CDCR)

Although the task of coreference resolution has been historically studied for resolving both

events and entities, their respective trajectories of evolution sometimes align and at times diverge

due to either the 1) the differing difficulty of one from the other (event coreference resolution

being more difficult [Humphreys et al., 1997]), 2) the availability of annotated datasets for both

or individually, 3) the differing availability of lexical, semantic as well as neural resources or
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pretrained models for entities and events. In this section, we provide a rough overview of the

related works in both event coreference as well as entities while also including works that cater

to their joint resolution. Moreover, in a purely chronological sense, within-document (WDCR)

coreference (considered to be easier than cross-document [Zhukova et al., 2021]) has been actively

tackled by the community earlier than the cross document (CDCR) variety because the latter is not

only computationally harder due to a larger search space but also conceptually more tricky as such

task-based models require an understanding of multiple articles and their dependencies.

2.2.1 Entities

Early works such as [Soon et al., 2001], [Ng and Cardie, 2002], [Rahman and Ng, 2011]

applied machine learning approaches to coreference resolution but they mostly focused on hand-

engineered features such as relying on noun phrases and pronouns while not catering to events or

entities in general. Later works such as [Denis and Baldridge, 2007], [Durrett and Klein, 2013]

and [Björkelund and Kuhn, 2014] used some form of neural mention-ranking models or cluster-

ranking models. For instance, [Durrett and Klein, 2013] suggested lessening the use of heuristics

(hand-engineered features) for capturing syntactic, discourse-related and semantic properties of

language. Instead, they extended their feature set to include shallow linguistic properties of core-

ferring mentions like head word, string-lemma matching as well as spatial properties like sentence-

distance between mentions. However, even if their model could do well when capturing syntactics

and discourse, their model does not capture linguistic semantics very well. Similarly, [Björkelund

and Kuhn, 2014] experimented with approximate beam search algorithms on perceptron layers

that take in "non-local" features such as the linear shape of the mention, mention-syntactics (i.e.,

whether they appear as objects or subjects) as well as the recency [Jurafsky, 2000] of mentions.

They also include previously popular syntactic and lexical features which they call as "local". Their

evaluation on three languages i.e., Arabic, Chinese and English led them to achieve significant im-

provement over their baselines on CoNLL 2012 Shared Task.
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With the advent of using semantic information from word-embeddings brought forth by [Mikolov

et al., 2013], entity-based coreference resolution work [Clark and Manning, 2016] suggested a

neural clustering system. This was based on a distributed representation of mentions that involves

word embeddings, additional positional features of mentions, document genre, and speaker-based

features. Their model further outperformed the prevailing state-of-the-art on the English and Chi-

nese portions of the CoNLL 2012 Shared Task dataset.

2.2.2 Events

When it comes to event coreference resolution things start to get a little more complicated.

Resolving events is more difficult than entities due to the complexities involved in the appearance

and structure of event mentions. Technically, entities are mostly noun phrases while events may

consist of a verbal predicate ("acquire") or a nominalization ("acquisition") while simultaneously

being attached to arguments such as event participants and spatio-temporal information, and more

[Barhom et al., 2019]. Moreover, event coreference is more complex because it is secondary to

entity (or object) coreference. That is, two events are usually coreferential due to two entities being

coreferential for that actual event pair [Humphreys et al., 1997].

Early works such as [Humphreys et al., 1997], [Bagga and Baldwin, 1999], [Chen and Ji, 2009]

in event conference used supervised training based on lexical and linguistic features. For instance,

the parts-of-speech tags, phrasal-matching or structural features like aligned arguments. These

works compute some form of a reliable distance between the event mentions based on vector space

models including VSM-Disambiguate module [Salton, 1989] and thereby used different forms

of graph-clustering techniques to form coreference cluster-links. Perhaps one of the first papers

to approach joint neural modeling of both events and entities in a cross-document setting, [Lee

et al., 2012] uses linear regression to control the flow of information between entity and event

clusters. This was based on the hypothesis that resolving coreference for events should benefit

from information coming from their arguments (or entities) and vice versa. They were able to

improve previous baselines by over 3 CoNLL F1 points.
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Later works such as [Bejan and Harabagiu, 2014], [Yang et al., 2015] explored various forms

of nonparametric Bayesian models using lexical features such as head-word and their lemmas,

their context, class-based linguistic features such as parts-of-speech (POS), word-class features

based on TimeML specification language [Pustejovsky et al., 2003], WordNet-based features, as

well as semantic features from PropBank [Palmer et al., 2005], Word2Vec [Mikolov et al., 2013]

etc. [Kenyon-Dean et al., 2018] used neural models trained on customized objective (loss) functions

to generate richer represenations of mention-pairs using features such as contextual Word2Vec

embeddings, document level features such as TF-IDF as well as comparative features between

mentions like mention-recency, word overlap, and lemma overlap etc. Their primary contribution

was the new objective function called CORE which essentially punishes the model for differing

coreference clusters of mentions (events, not entities) and awards it for similar clusters using co-

sine distance as the function. They improved upon the the results of Cybulska and Vossen (2015)

on ECB+ corpus. Another interesting piece of work that caters to both events and entities fol-

lowing [Lee et al., 2012] is [Barhom et al., 2019] where they experimented with joint-modeling

of events and entities by jointly-clustering events mentions with their related entity clusters by

using predicate-argument structure. Their disjoint model improved the previous state of the art

of [Kenyon-Dean et al., 2018] by 9.5 F1 points using the CoNLL scorer whereas their joint model

improved upon the disjoint model by 1.2 points for entities and 1 point for events.

Most recent works in cross-document event coreference like [Yu et al., 2022], [Caciularu et al.,

2021], [Cattan et al., 2021a] and [Zeng et al., 2020] suggest use of representation learning models.

These methods use distributed and contextually-enriched vector representations of mentions for

both within a sentence or the whole document. Such representations are usually from large lan-

guage models like various BERT-variants to calculate supervised pairwise scores for those event

mentions. Thereafter, they use some form of incremental or agglomerative clustering techniques

to form predicted coreference links and evaluate their chains based on popular coreference metrics

like BCUB, MUC scores. More specific to our research is the CDLM model [Caciularu et al.,

2021], which uses a combination of enhanced pretraining using the global attention mechanism
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inspired by [Beltagy et al., 2020] as well as finetuning on a task-specific dataset using pretrained

special tokens to generate more semantically-enhanced embeddings for mentions. While it has

been useful for downstream NLP task like CDCR, question-answering etc, we intend to compare

how our linear mapping technique fares for CDCR when using embeddings from the CDLM model

and three BERT variants. Task-specific details for CDCR are in chapter dedicated to CDCR.

2.3 Equivalence of Embedding Spaces

Most prior works to compare and contrast neural networks in the domain of computer vision

have applied a black box method of evaluation where various CNNs are sampled and evaluated

against common benchmark datasets like ILSVRC20127. While this comparative method is very

popular in domains like NLP as well, one of its disadvantages is that not only does it, at times,

lead to a blind chase for the state of the art [Church and Kordoni, 2022] by focusing on little

incremental gains in performance but also fails to provide a deeper comparison of models when

their performance is very similar [McNeely-White et al., 2020a].

Previous works that use mapping between embedding spaces such as [Lenc and Vedaldi, 2015]

suggest that affine transformation between intermediate-layer embedding spaces of popular CNNs

expose properties like equivalence and equivariance. However, their method is supervised since

they use labels in training their affine transformations thereby creating newly trained networks and

the concomitant increase in the observation and evaluation space for parameters.

Later works in the field of computer vision take it further by carrying out unsupervised affine

mappings between CNN models penultimate layer embedding. For instance, [McNeely-White

et al., 2020a] suggests that there are canonical and task-based similarities between the features

extracted by two convolutional neural network (CNN)-based models like Inception [Szegedy et al.,

2015] and ResNet [He et al., 2016] despite the difference in architectures and hyperparameters of

the two models. They provide empirical evidence that affine (linear) transformation across embed-

ding spaces of these two models transfer similar task-specific information which is proven by the

7https://www.image-net.org/challenges/LSVRC/2012/
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minimal performance penalty across image classification tasks. Similar works by [McNeely-White

et al., 2022, McNeely-White et al., 2020b] further buttress their results that CNN feature spaces

are interchangeable since they discover similar task-specific features and can be exposed by linear

transformations. They also extend their equivalence of CNN embeddings spaces to face embed-

dings and suggest critical security-centric implications if such equivalence holds true. However,

they mostly extract features from the penultimate, non-classification layers of their chosen CNNs

and while their results are promising, their method does not explore if such equivalence exists

between earlier or intermediate layers of CNNs.

Not much work has been done in embedding space equivalence or semantic transfer for lan-

guage models especially those for low resource languages. Works such as [Ganesan et al., 2021]

and [Artetxe et al., 2018a, Artetxe et al., 2018b] improve bilingual lexical induction using either

linear or non-linear word embedding maps, but they use non-contextual "static" embeddings like

fastText8 or Word2Vec. In my thesis, I extend the previous works done in the computer vision

domain such as [McNeely-White, 2020, McNeely-White et al., 2022] to language models to study

semantic encoding and transfer using contextual word embeddings from Transformers, unlike the

static embedding work done previously.

8https://fasttext.cc/
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Chapter 3

COGNATE DETECTION

The contents of this chapter were presented in [Nath et al., 2022] at the Ninth International

Workshop on NLP for Similar Languages, Varieties, and Dialects (Vardial 2022, ACL). In this

thesis, I extend the presented work to emphasize the relative contribution of semantic features

compared to non-semantic features for cognate detection while also exploring the semantic encod-

ing and transfer property between the embedding spaces of native and affine-mapped versions.

3.1 Background

Linguistically, cognates are words that are inherited by direct descent from a common etymo-

logical ancestor in a common parent language [Crystal, 2011]. The parent Latin term "cognatus"

that they derive from means "blood relative" [Ammer, 2013]. Within a bi-lingual framework, a

cognate pair is a pair of words in the individual languages that are both inherited from the same

word in the same parent language.

Naturally, some quintessential qualities of cognates are their semantic affinity, phonetic affinity

or pronunciation overlaps. However, they do not necessarily need to carry the same meaning

because of historical sound changes and usage in a specific language. For instance, English "starve"

and Dutch "sterven" ("to die") all derive from the same Proto-Germanic root, *sterbaną ("die")9.

Interestingly, they do not always need to have similar phonetics either. For example, English "two"

is cognate with Armenian erku, as both are descended from Proto-Indo-European *dwóh1, with

*dw->>tw- and *dw->>erk- being regular, if non-intuitive, parallel sound changes. Also, since

cognates are inherited and not borrowed from a separate language like loanwords are, they are

necessarily subject to diachronic sound change.

9https://en.wikipedia.org/wiki/Cognate
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Due to the above characteristics of cognates including phonetic and semantic shifts, detecting

cognates is quite challenging. A necessary first step could be to distinguish cognates from other

classes of words like ordinary translations or words that share a trivial phonetic affinity. However,

if such detection is possible, it can be used to discern the evolutionary paths of related languages

thereby making them very useful for historical linguists. In this part (cognate-detection task) of

my thesis, I include as well as extend the work from my paper [Nath et al., 2022] while focusing

more on the semantic encoding and transfer related aspects.

Our task is cognate detection between two closely-related languages: Bengali (ISO code bn)

and Assamese (ISO code as). Bengali (262 million speakers) and Assamese (15 million speakers)

are two major languages of eastern India and Bangladesh. From a scriptural perspective, they

share a common descent from Early Indo-Aryan via Magadhi Prakrit, both being written using

Bengali or Eastern Nagari script. The reason for choosing these two languages is two-fold: firstly,

they are both low-resource languages (LRL), Assamese a tad more than Bengali. Secondly, even

though this language pair has a lot of scripture-based and phonetic similarities, the challenge is

to have a classification system that is good enough to overcome the important differences in their

sound patterns. For example, both the languages share certain grammatical features like classifying

affixes (e.g., Asm. -zOn, Beng. -dZOn, referring to persons), as well as certain common phonetic

innovations (such as the evolution of Sanskrit /@/→/O/). Similarly, there are differences primarily

in the pronunciation of consonants. For instance, /s/ in Sanskrit is lenited to /x/ in Assamese

whereas Bengali palatalized it to /S/. Table 3.1 shows a few examples of such transformations.

Assamese Bengali

s,s,z,z tC,tCh,dý,dýH

t,th,d,dH ú/t”,úh/t”h,ã/d”,ãH/d”H

x,ô S,r

Table 3.1: Assamese-Bengali sound correspondences.
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3.2 Assamese-Bengali Cognate Datasets

3.2.1 Designing the Wiktionary Scraper for gold standards

For our purpose of constructing a gold-standard cognate dataset, we stick to the linguistic

definition of cognates that treats cognates and loanwords (borrowed words) as distinct and not

subsumed (e.g., [Kondrak, 2001]). Even if there might be overlaps i.e., our cognate gold standard

might contain samples that are in reality loanwords, this is effectively negligible to the best of our

knowledge. Cognates in Bengali and Assamese must share a common descent from an ancestor

language and the best-documented is Sanskrit.10 However, many descendants of Sanskrit that

could be potential cognates make scholarly reborrowings from classical Sanskrit (tatsama). These

are fully reincorporated Sanskrit forms adapted to fit the modern phonology. On the other hand,

tadbhava words, that exist alongside with the former, are inherited from Old Indo-Aryan with

concomitant sound changes in the Middle Indo-Aryan phase.

Wiktionary turned out to be accessible and well-resourced for this data collection process. Cat-

egories of the form [Descendant]_terms_derived_from_Sanskrit were scraped for

each of the two descendants.11. Thereafter, we did a union operation of these two sets and then took

the subset12 of the union where both the Assamese and Bengali forms had the same documented

Sanskrit ancestor. Table 3.2 shows the number of cognates retrieved for each language.

Descendant Ancestor # Cognates

Assamese Sanskrit 205
Bengali Sanskrit 335

Table 3.2: Cognate pair counts per language.

10The transitory vernacular "Apabhram. śa" could have been an alternative parent language for our task since it spans
the period between the 6th and 13th centuries CE. However, annotated resources for this are hard to come by on the
web.

11e.g., https://en.wiktionary.org/wiki/Category:Assamese_terms_derived_from_Sanskrit

12Note that despite the union-intersection operations being symmetrical, the dataset sizes differ for the two languages
by a small number of entries; because the count of overall entries for Bengali are comparatively higher in the English
Wiktionary, there are more cases where multiple Bengali words have the same ancestor as a single documented
Assamese word.
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Every word in every pair was then converted to its phonetic representation in the International

Phonetic Alphabet (IPA) using the Epitran package [Mortensen et al., 2018]. The IPA is a stan-

dardized representation of phonetic notationăwritten primarily in Latin script. In NLP and speech

processing, such standardized representations for lexical, as well as prosodic elements of sound,

help in extracting language or speaker-specific distinctiveness in the feature engineering process.

The available Epitran distribution does not support certain low-resourced languages, among them

Assamese, but the format is easily extensible. We wrote an Epitran graph-to-phoneme mapping for

Assamese using resources like Omniglot13 and Wikiwand/Assamese14, as well as native speaker

guidance for verification.

In order to make the process of evaluating our classifiers more rigorous we also gather word

pairs that are not cognates including adversarial samples such as phonetic neighbors. More specifi-

cally, these are: i) hard negatives: phonetically similar non-cognates; ii) synonyms: semantically

similar words, like ordinary non-cognate translations; iii) randoms: pairs where the two words

have no discernible phonetic or semantic relationship.

In order to source hard negative examples, the PanPhon package [Mortensen et al., 2016] was

leveraged to calculate six different edit distances between the IPA transcription of every gathered

cognate in one language, and the IPA transcription for every lemma in the other language (the

list of lemmas was also scraped from Wiktionary). Lemmas help leverage the phonetic similarity

between the actual cognate word and its reduced inflectional forms to create phonetically similar

but non-cognate adversarial examples. For each edit distance metric, we select the word that has

the lowest edit distance to the cognate in question. This results in up to six hard negatives per

cognate. However, it could be less if more than one edit distance metric returns the same nearest

neighbor. Example IPA forms of hard-negatives in the respective languages: Asm. কথা (/kOtha/)

“word”, Beng. কটা (/kOúa/) “how many”.

13https://omniglot.com/writing/assamese.htm

14https://www.wikiwand.com/en/Help:IPA/Assamese
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Synonyms or words with similar meaning can also act as adversarial samples in cognate de-

tection. As such, we scraped Wiktionary metadata and retrieved synonyms for each word in the

collected cognates list where available. Example IPA representations of synonyms in each lan-

guage: Asm. কুটুম (/kutum/) “family”, Beng. িরশতাদার (/riSt”ad”ar/) “relatives.”

Since any decent classifier needs to disambiguate random correlation between samples in their

decision boundaries, we created the randoms pairings by pairing each cognate with a random word

in the other language. We also ensured that any intersections among these three negative samples

and between these and the cognates dataset were eliminated as and when it occurred.

In order to create sentence-sensitive embeddings for testing semantic transfer between source

and target model spaces, we also manually create simple sentences including the cognate words

in our dataset. In doing this, we ensured parts of speech consistency and correctness while also

keeping the meaning of the cognate word consistent with the sentence. Including a native speaker

verification process helped us in this task. (See Sec. 3.3.4 for more details.)

These subsets were then joined to create two language pair-specific dataset and one bidirec-

tional dataset. 1) Assamese-Bengali15, where the Assamese word is the baseline comparand

to which the Bengali word is compared. 2) Bengali-Assamese, where we reverse the case.16

3) All-languages. This one is a simple concatenation of the above two and bidirectional. The

idea is to allow the final classifier to learn from similarity metrics that flow in both directions.

Table 3.3 gives breakdown of the Assamese-Bengali and Bengali-Assamese Train and Test

splits based on their labels. As we have used the linguistic definition of cognates as being distinct

from loanwords, the latter may exist in the other categories. Since loanwords are usually phoneti-

cally similar to their sources, where loanwords do exist in our data, they are overwhelmingly likely

to be in the hard negative category.

15For ablation tests, we also create subsets from a training and inference perspective for Assamese-Bengali
and Bengali-Assamese which are herein denoted in tables and charts with an asterisk (*) or additional label
train_ev.

16Since the order of words are flipped here, the edit distances are naturally symmetric but our alignment scoring is
done for randomized splits of the data and attends to directional articulatory flow. As such, alignment scores will
differ upon the reversal of word pairs.

17



as-bn bn-as

train test train test

Cog. 306 303 306 300
HN 776 769 721 716
Syn. 329 327 317 316
Rnd. 304 301 304 299
Total 1715 1700 1648 1631

Table 3.3: Number of Hard-Negatives (HN), Synonyms (Syn.), Cognates (Cog.), and Random pairs (Rnd.)
in Assamese-Bengali and Bengali-Assamese train/test sets.

3.3 Semantic Similarity

Calculating semantic similarity for word-embeddings has been approached from many angles

in the literature. However, one of the most popular methods to compute such semantic similar-

ity or semantic distance has been the cosine function17 between two vectors. Since the dawn of

word-embeddings as distributed representations in low dimensional continuous space [Mikolov

et al., 2013], research works in NLP have consistently resorted to the cosine metric to cluster

words based on semantics. Whether such embeddings are "non-contextualized" i.e., learnt through

simpler neural networks [Pennington et al., 2014] or "contextualized" by bidirectional attention

mechanisms [Devlin et al., 2018], works such as [vor der Brück and Pouly, 2019], [Ethayarajh,

2019b] have shown the fidelity of the cosine similarity metric to gauge textual similarities thereby

allowing relationships between texts or words to be expressed geometrically.

3.3.1 The Cosine Function

The cosine similarity function for calculating the semantic similarity between vector embed-

dings is mathematically defined as follows:

Similarity(p,q) = cos(θ) =
p · q

|p| · |q|
=

∑n

i=1
piqi

√
∑n

i=1
(pi)2

√
∑n

i=1
(qi)2

17Note that that embeddings we generate from Transformer models, whether in their native state or affine mapped, are
not normalized. Therefore, to maintain consistency as well as to focus on the directional aspects of the embedding
vectors, we chose to not use Euclidean distance to measure semantic similarity.
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Here, p and q represents our word and sentence embedding vectors and in the case of our sec-

ond task of cross-document coreference resolution, even document vectors. For example, most

language model embeddings for the task of cognate detection from models such as MBERT or

Indic-BERT are 768 dimensional except for XLM-R which are 1280 dimensional. We have not

resorted to any dimensionality reduction techniques like Singular Value Decomposition (SVD) or

Principal Component Analysis (PCA) since our problem is one of supervised learning with sam-

ple sizes small enough to run classification models without needing excessive compute power on

GPUs but large enough to avoid the problem of curse of dimensionality [Verleysen and François,

2005] in higher dimensional embeddings.18 Moreover, our intention was to study the semantic-

transfer related properties of embeddings in their native state without injecting any perturbations

arising from such dimensionality reduction methods.

3.3.2 Selection of Transformer-based BERT Variants

Even though cognates do not need to have similar meaning, many do share a semantic affin-

ity [Kanojia et al., 2021b]. Work such as [Turton et al., 2021] suggest that contextual semantic

information at the word level can be extracted from BERT and variants as embeddings. As such,

we extract semantic information from both word-level and sentence-level embeddings from large

multilingual Transformer-based models such as XLM-R [Conneau et al., 2020] and MBERT [De-

vlin et al., 2018], as well as from some smaller models, Indian language-focused models: In-

dicBERT [Kakwani et al., 2020] and Muril [Khanuja et al., 2021].

Below is a brief description of the five models we have selected. Our aim was to select a set

of larger multilingual models like XLM and MBERT that supports the two target languages along

with many other world languages as well as a set of smaller Indian-Language specific models. To

support our hypothesis on semantic transfer from a mono-lingual model, we have also included a

18Our future experiments might involve such techniques to reduce dimensions when using pairwise scoring methods.
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self-trained19 language model called AxomiyaBERTA. Their architectural details as well as their

proven advantages as as follows:

MBERT MBERT is the multilingual version of BERT that supports 104 languages20 with a

proven capacity for semantic knowledge transfer on downstream tasks [Pires et al., 2019]. While

the general masked language modeling (MLM) and next-sentence prediction objective function in

its training overlaps with classic BERT [Devlin et al., 2018] model, it has some differences: i) it

includes parallel multilingual sentences in batch-wise training with MLM, and ii) its vocabulary

is larger but shared among all languages and tokenized with WordPiece from its entire corpora.

[Pires et al., 2019] show that MBERT’s ability to transfer is due to a multilingual representation,

which enables it to manage transfer across different scripts. Its contextualized embeddings share a

common subspace that contains linguistic information and is language-agnostic.

XLM-R XLM-R is a cross-lingual (100-languages) pretrained model which extends the previous

MLM loss function with a Translation Language Modeling (TLM) objective and Causal Language

Modeling objectives. It has demonstrated success in unsupervised machine translation tasks [Con-

neau and Lample, 2019]. XLM uses byte-pair encoding subword tokenization [Sennrich et al.,

2016] which includes the most frequent symbol pairs when creating the token vocabulary. This

makes it suitable for encoding tokens common in morphologically-rich and relatively agglutinat-

ing low-resourced languages (LRL) like Bengali and Assamese. This also alleviates bias towards

high-resource languages, by reducing tokenization of LRL words at the character level. Moreover,

this improves the alignment of embedding spaces of languages that share either the same alphabet

or proper nouns [Smith et al., 2017], both of which can characterize the cognates in our datasets.

19This language model was trained at the Department of Computer Science, CSU and we intend to make it open-source
in the future.

20MBERT includes Bengali in its training data but not Assamese whereas XLM-R was trained with data from both
languages but the Assamese training data size is significantly smaller with 5 million tokens. Bengali training data is
over 100 times larger and the training data of a well-resourced language like English is 100 times larger still.
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IndicBERT and MuRIL IndicBERT and MuRIL are focused on Indian languages and so have

a larger relative training data size for languages like Assamese and Bengali. They also outperform

XLM and MBERT against several semantic downstream NLP task benchmarks like IndicGLUE

[Kakwani et al., 2020], cross-lingual XTREME [Hu et al., 2020], etc.

3.3.3 AxomiyaBERTA

For more enriched contextualized representations of Assamese semantics, and to investigate

how much information a much smaller monolingual Transformer model might be able to trans-

fer, we trained a "light" ALBERT (albert-base-v2) model for 305,700 steps with a vocab-

ulary size of 32,000 on four publicly-available Assamese datasets: Assamese Wikidumps21, OS-

CAR [Suárez et al., 2019]22, PMIndia [Haddow and Kirefu, 2020]23 and the Common Crawl

(CC10024 ) Assamese corpus [Conneau et al., 2020](in total, after preprocessing, around 14 mil-

lion25 Assamese tokens) with the BERT Masked Language Model [Devlin et al., 2018] loss func-

tion.

We have used the SentencePiece tokenizer [Kudo and Richardson, 2018] for sub-word tokeniza-

tion since it is language-agnostic and is known to work well for low-resource languages. Table 3.4

gives configuration details of the monolingual Assamese Transformer model that we trained for

this research. AxomiyaBERTA derives its name from "Axomiya" which is the native form of

pronunciation for "Assamese" while "BERTA" derives from Assamese "barta" meaning "conversa-

21https://archive.org/details/aswiki-20220120

22https://oscar-corpus.com

23https://paperswithcode.com/dataset/pmindia

24https://paperswithcode.com/dataset/cc100

25In resource-scarce computational environments and especially for low-resource languages such as Assamese, it is
challenging to find a huge monolingual corpus to train a Transformer model. For instance, the XLM-R which is a
large language model was pretrained on about 2395 GB (164.0 billion tokens) out of which only 5M were Assamese
tokens(iso code as). However, as suggested by [Ogueji et al., 2021], smaller datasets for low-resource languages can
still work better than joint training with high-resource parallel corpora and we intend to explore if this is true for our
AxomiyaBERTA model.
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tion". Despite the name, AxomiyaBERTA is an ALBERT variant, not a RoBERTa variant, but also

recalls the name Asom Barta26, the official newsletter of Government of Assam.

Parameters Config

architecture AlbertForMaskedLM
attention_probs_dropout_prob 0.1
bos_token_id 2
classifier_dropout_prob 0.1
embedding_size 128
eos_token_id 3
hidden_act gelu

hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
inner_group_num 1
intermediate_size 3072
layer_norm_eps 1e-05
max_position_embeddings 514
num_attention_heads 12
num_hidden_groups 1
num_hidden_layers 6
position_embedding_type “absolute"
transformers_version “4.18.0"
vocab_size 32001

Table 3.4: AxomiyaBERTA Model configuration trained on a monolingual Assamese corpus.

3.3.4 Word and Sentence Embeddings

Sentence-sensitive embeddings: For generating the sentence-sensitive embeddings27 from cog-

nates, we used the manually created sentences as described in Sec. 3.2.1 for further data process-

ing. Our intention was to generate contextualized representations specific to the cognate word

but within the context of the sentence in which it is present. We added two additional special to-

kens (<m> and </m>) to the models’ vocabularies. Before getting the sentence embeddings, the

26https://asombarta.com/

27Sentence-sensitive embeddings were generated only from MBERT and the AxomiyaBERTA, as the other models all
have at least some support for Assamese already.
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Figure 3.1: Sample equivalent sentences with cognate words (and English translations) underlined.

cognate words (underlined in Fig. 3.1) were surrounded by these tokens to account for subword

tokenization potentially breaking up the cognate words. This allows us to create binary vectors

for the cognates using the indices of the special tokens in the sentence. Our model attends to

these binary maps by an element-wise tensor multiplication in the forward function and outputs a

contextualized representation of the word.

Word-level embeddings For each of the five models, we input a "sentence" formatted as

[CLS]<word>[SEP] and use the [CLS] token’s last_hidden_state to get representa-

tions for each token in each sequence of the batch from the last layer of the model which often

encodes more semantic information [Jawahar et al., 2019b]. The [CLS] token here serves the

same purpose as the <m> tokens in the sentence-sensitive embeddings: to account for potential

subword tokenization effects.

After extracting the embeddings from each model, we carry out the affine mapping (see below)

of native embeddings in the form of a cartesian product combination between the various models.28

Thereafter, we use the cosine similarity metric (defined in Sec. 3.3.1) to calculate semantic similar-

ities between the word and sentence embeddings. These cosine similarities are input features into

the final evaluation.

28We create two labels i.e., source and target to map the native models. While word embeddings from a model
are affine mapped to every other model, sentence embeddings are only mapped from MBERT to AxomiyaBERTA.
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3.3.5 Affine Transformations Between Embedding Spaces

Only embeddings retrieved from the same model architecture are guaranteed to be directly

comparable. In other words, a distinct word embedding preserves similarity relations across its

dimensions only within that specific embedding space. Moreover, differences in training corpora,

objective functions, optimization routines and model architecture mean that embeddings retrieved

from different models are likely to be orthogonal in most dimensions.

However, recent work in the vision community [McNeely-White et al., 2020b,McNeely-White

et al., 2022] has demonstrated that by fitting affine matrices MS→T and MT→S between paired fea-

tures denoting equivalent samples extracted from a source model S and a target model T , features

from one embedding space can be transformed to another embedding space with a high level of

fidelity. This requires solving for a mapping function f(x;W ) where W ∈ R
dS × R

dT , between

equivalent information samples (i.e., paired embedding vectors) from two models, using a ridge

regressor. The aforementioned work has been applied to CNN architectures, and here we use this

task to explore the potential applicability of similar principles to Transformer architectures.

Affine mapping procedure Native model embeddings are often independently useful down-

stream NLP tasks, but their utility may be degraded when the language model does not robustly

support the language in question. For instance, MBERT does not support Assamese and as such,

many Assamese words may be subject to irregular sub-tokenization that do not capture the seman-

tics of the original word. Therefore, we explore if and how linearly mapping one set of embeddings

from its native space to a target model space can still transfer semantic information that is reflected

in the classifier performance for the cognate detection task.

To construct the mapping, we take the word or sentence embeddings from one model as in-

puts, and equivalent word or sentence embeddings from another model as outputs, and fit them

to each other using scikit-learn’s Ridge regressor. The resulting dS × dT transformation matrix29

computed from a set of paired vectors serves as a bridge or transformation from one embedding

29All embeddings used here are 768 dimensions, except embeddings from XLM-R, which are 1,280 dimensions.
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Figure 3.2: Cross-embedding space mapping pipeline resulting in directly comparable vector representa-
tions (MBERT→AxomiyaBERTA used as example).

space to another by minimizing the distance between paired points in R
dS ×R

dT feature space that

share equivalent semantics. Multiplying a source embedding by this precomputed bridge matrix

should result in approximately the same semantics in the target embedding space, meaning that a

transformed embedding and one native to the target (or source) embedding space are now directly

comparable using metrics like cosine similarity. Fig. 3.2 shows this procedure.

3.3.6 Semantic Feature Exploration: A Sanity Check!

In order to understand whether and to what extent semantic information gets encoded in na-

tive model embeddings as well as affine-mapped embeddings, we now conduct a data exploration

experiment with Kernel Density Estimation or KDE and Pair Plots to explore their relative con-

tributions. KDE Plots are an amazing visualization tool that maps our cosine similarity-based

features into a smooth probability density function. Since our data is continuous, this allows us to

understand how various samples are encoded in either distinct or overlapping semantic spaces. On

the other hand, Pair Plots help us visualize bi-variate pairwise analysis of the cosine similarities

while their diagonals represents the univariate marginal distribution of all the models (native or

mapped) involved.

Native Embedding Spaces: Encoding We get native word (not sentence) cosine similarity KDE

Plots and Pair Plots for all the four models except AxomiyaBERTA since the latter does not support

Bengali.
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These plots give us an interesting insight into how semantic information is encoded for the

four types of samples (cognates, synonyms, hard-negatives and random pairs). On average, all the

native model embeddings capture or encode semantic information consistent with our assumptions

of sample types. For instance, we assume cognates and synonyms to have high semantic similarity

compared to hard-negatives and randoms. Most native models encode cognates and synonyms in a

distinct semantic space more toward a value of cosine similarity of 1 as shown in Fig. 3.3 while the

other samples probability distribution falls to the left of the plots. Interestingly, cognates are en-

coded in a still more distinct semantic space compared to synonyms even if both are assumed to be

similar in meaning. This suggests that language models in their native state differentiate between

apparently similar meaning word pairs perhaps because a contextualized attention mechanism sees

more cognates paired with other cognates in its training samples. In other words, BERT-type en-

coders in their native state can more effectively "space out" cognates than synonyms while still

encoding semantic information for both.

Another interesting trend is that larger multilingual models like XLM-R and MBERT are more

effective in the former phenomenon i.e., at "dispersing" vectors in the space more than smaller

models like Indic-BERT or MuRIL as shown in Fig. 3.3. This observation is similar to [Etha-

yarajh, 2019a] which suggests that larger multilingual models encode semantics in a relatively

more isotropic "wider" space than the smaller models. On the other hand, the smaller models tend

to capture semantics in a "tighter" high dimensional cone for the last hidden layer. The latter phe-

nomenon for the smaller Indian-language specific models is unexplored and interesting because

not only does this hint at differences in relative semantic information encoding capacity between

models but also is a potential opportunity to try other loss functions for smaller models’ training

to widen this space to allow cross-lingual semantic information transfer. The Pair Plots (Fig. 3.4)

with diagonal histograms as well as the bivariate pairing in the respective axes for the larger mod-

els substantiate the above observations. In the next paragraph, we will talk about how this affects

semantic transfer between source and target models.
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Figure 3.3: Kernel Density Estimation Plot for semantic similarity between word pairs generated as native
embeddings from each of the four models, colored by pair type.

Affine Mapped Embeddings: Transfer Linear maps30 from native models to target embed-

ding spaces for words and sentences help us further distinguish the extent of semantic information

transfer between the specific models in question. On average, as seen in Fig. 3.5, cognate prob-

ability distribution still lies more towards a higher cosine similarity indicating semantic transfer

for cognates between certain specific models. The rest of the models clearly do not show such

semantic transfer. We observe that affine maps between larger multilingual models like XLM-R

and MBERT still encode cognates in a distinct space with higher cosine similarities. For instance,

MBERT→XLM and vice versa as shown in the top-left of Fig. 3.5 helps us visualize this phe-

nomenon. Interestingly, maps from large models (source) to smaller models (target) display this

effect too but to a lesser degree except for when AxomiyaBERTA is the target space. In this case,

the cognate cosine similarity falls in the middle of the kernel density distribution without a distinct

semantic separation. However, the reverse case for AxomiyaBERTA (AxomiyaBERTA→XLM,

30We use right arrow → to signify affine-maps from source to target embedding spaces.
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Figure 3.4: Pairwise Plots for semantic similarity between word pairs generated as native embeddings from
each of the four models, colored by pair type.
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Figure 3.5: Kernel Density Estimation Plot for affine-mapped Word and Sentence Embeddings. Note:
AxomiyaBERTA has been shown as AXBerta to fit the subplot legend.

where it acts as the source space) indicates a total volte-face. In this case, the extent of a distinct

semantic space for cognates revealing a high cosine similarity is almost equal to native embeddings

for the large models, slightly more so for XLM than MBERT. A little more digging reveals that

since AxomiyaBERTA is monolingual, the native model encodes richer semantics at a word level

without any cross-lingual perturbation while still transferring comparatively more semantic infor-

mation to XLM since XLM already supports Assamese while MBERT does not. Similar trends

can be observed from the corresponding Pair Plots (Fig. 3.6) for all mappings.

29



Figure 3.6: Pairwise Plot for affine-mapped Word and Sentence Embeddings. Note: AxomiyaBERTA has
been shown as AXBerta to fit the subplot legend.

3.4 Non-semantic features

Although the primary focus of my thesis is the relative contribution of semantic features for

this task, I also explore the contribution of non-semantic features (articulatory, orthographic and

phonetic) to be able to gauge the relative importance of the former. In this section I briefly dis-

cuss the methodology of getting the non-semantic features as well as the resources and the neural

network models used in the generating these features.
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3.4.1 Articulartory features: Alignment Network

From a linguistic perspective, Assamese and Bengali have crucial differences in phonotactics,

epenthesis, elision, and metathesis. Such differences naturally lead to differences in articulation

between the two. Therefore, we build a model to align phonemes in the pair to capture articulatory

characteristics native to a language but more importantly, one that attends to the directional flow of

articulation between a pair. We hypothesize that this will provide a more informative measure than

phonetic features like edit distances. [Mortensen et al., 2016] show that information-rich phono-

logical representations do better than character-based models or one-hot encodings in NER tasks.

PanPhon31 was used to convert the IPA transcriptions to 21 subsegmental articulatory features.

These features include place and manner of articulation, voicing, etc., and the feature vectors were

padded with zeroes to the maximum length of a vector in the cognate pair. The individual padded

vectors were then concatenated for input to the alignment-scoring network.32 One point of note is

that the alignment network is not to predict cognate status directly, since we do not include any

semantic information at this step. However, the label acts as a rough indicator of how phonetically

aligned the word pairs are. We only use the pre-softmax logits from this network for feature ex-

traction. We hypothesize that there should be a positive correlation between the pre-softmax logit

scores that we generate from this network at inference time to how strongly the sample word pairs

are phonetically aligned.

3.4.2 Orthographic and Phonetic Edit Distances

Orthographic similarity is simply the Levenshtein edit distance [Levenshtein et al., 1966] be-

tween two strings. Since Assamese and Bengali use the same scripts with small modifications,

we want to explore the importance of a simple string similarity metric as a feature in our classifi-

31PanPhon does not contain suprasegmental or tonal information but both Bengali and Assamese are non-tonal lan-
guages. So, we are safe here!

32A two-layer deep feedforward neural network with 512 neurons in each layer, all with ReLU activation and followed
by 10% dropout. We trained for 5,000 epochs on the aforementioned concatenated features of the All-languages
dataset (see Sec. 3.2), using a 80:20 Train/Validation split. The network was trained against the cognate/non-cognate
binary label.
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cation task. This has been a oft-used feature in previous works in cognate detection and for our

ablation studies, it also serves as a good baseline feature to compare the importance of semantic

features. Notwithstanding the orthographic overlaps, for a balanced feature set, we need to ex-

tend our feature set to include some phonetic features too. As such, we calculate 6 different edit

distances from PanPhon over the IPA transcriptions of the word pairs in our datasets. These edit

distances are: Fast Levenshtein Distance, Dolgo Prime Distance, Feature Edit Distance, Hamming

Feature Distance, Weighted Feature Distance, Partial Hamming Feature Distance, all normalized

by the maximum length of the two words in the pair. We hypothesize that these distance metrics

collectively capture some important information about phonetic similarity between Assamese and

Bengali cognate pairs. The Fig. 3.7 shows the entire pipeline including all the feature types used

for the task of cognate-detection.

Figure 3.7: Entire Pipeline for Cognate Detection Task with Phonetic, Articulatory and Semantic Features
Note that the Alignment Network and the 3 Layer DNN are two separate neural networks, the former being
used for getting alignment scores while the latter for classfication.
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3.5 Evaluation and Analysis

3.5.1 Classifer Models and Feature Abbreviations

With the variety of phonetic, semantic, and articulatory alignment metrics that we have ex-

tracted for all the paired words in our datasets, we now train classifier models on these features to

discriminate cognates from non-cognates in the data, using these features. We train two types of

classification models: a Logistic Regressor (LR)33 and a Neural Network (NN). The NN consists

of 3 layers of 512, 256, and 128 hidden units respectively, all with ReLU activation and followed

by 10% dropout, and a final sigmoid activation, and is trained for 5,000 epochs with Adam opti-

mization and BCE loss.

More specifically, we train three versions for each classifier: one trained on the All-languages

dataset, and evaluated on the test splits of that dataset and of the Assamese-Bengali and

Bengali-Assamese datasets; and one each trained and evaluated only on the Assamese

-Bengali/ Bengali-Assamese datasets. We call the latter as pair-specific models which

are hereafter denoted in tables and charts with an asterisk (*) or additional label train_ev). We

trained all classifiers multiple times using different feature combinations to assess the contribution

of different types of features. Table 3.5 shows the feature abbreviations we use in the following

discussion for the different classes of features.

3.5.2 Influence of Features

I build the case for the importance of semantic features by first establishing non-semantic

baselines. These baselines could be an orthographic, phonetic or even a subset of the semantic

feature space so that we can compare this baseline with the semantic feature that is being ablated

against. We have also included the overall best performance results and its feature set details to

compare and contrast. Our method is one of error analysis i.e., we evaluate the results and then

check for misclassified samples in our ablation studies to understand whether and to what extent

33The LR is more interpretable since it allows us to easily analyze its regressor weights but the NN is better performing.
Therefore, we mostly use the NN to compare and contrast various feature based results while the LR helps us analyze
how much each feature is contributing to that result.
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Abbr. Features

ped Phonetic Edit distances (PED)
dl DNN logits (alignment score)
ed PED with textual Levenstein dist.
b All native MLMs (BERT variants)
m All mappings w/o native MLMs
ab-am All MLMs w/ word-level maps
ab-sm All MLMs with sentence maps
sm Sentence maps

Table 3.5: Abbreviations for feature combinations.
∗sm - sentence maps from MBERT to AxomiyaBERTA space.
∗b - includes native MLM embeddings but does not include any cross-embedding space mappings (word or
sentence). Note that MLMs here mean multilingual language models and not the masked-language model loss
previously mentioned with the same abbreviation in this thesis.
∗ab-am - includes native MLM embeddings along with word embedding maps without sentence maps.

semantic encoding and transfer results from our affine mapping technique between embedding

spaces. We also add a layer of interpretability to the results by cross-checking against the weights

assigned to the different features by the LR classifier.

Overall Best Case

Table 3.6 shows positive Precision, Recall, and F1 for the neural network (NN) classifier using

a combination of all the features (ed-dl-ab-am). We achieve high overall performance on

cognate detection, with 94% F1, 93% recall, and 95% precision. We can also see that the classifier

performs very slightly better using Bengali as the baseline language than using Assamese. Similar

results hold for other feature subsets: using the "bidirectional" All-languages model, feature

sets ed-dl-am, ped-dl-ab-am, and ed-dl-ab all show 94% F1(+) for Bengali-Assamese

but 93% F1(+) for Assamese-Bengali.34 We also see that the model trained on the bidirectional

data outperforms in each direction models trained on that direction alone.

The NN classifier outperforms the LR by ∼4% in all metrics. This suggests that for detecting

bilingual cognates using multiple feature types, the non-linear decision boundary of a multi-layer

perceptron system is better-suited to this task than the linear decision boundary of the LR.

34One possible reason for this is that Bengali forms are on average somewhat more conservative, tending to preserve
consonant clusters more than Assamese. In fact if we look at the false negatives for this result, we find many cases
where one cognate has a consonant cluster and the other does not (see Table 3.7). Another possible reason may be
the slightly higher number of Bengali baseline pairs in the dataset (see Sec. 3.2).
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all bn-as as-bn bn-as* as-bn*

P(+) 95 97 94 90 90

R(+) 93 94 92 88 87

F1(+) 94 95 93 89 88

Table 3.6: NN classifier results (as %) for the ed-dl-ab-am feature combination (full feature set).

Bengali Assamese

সাঁঝ (/SãdýH/) সি য়া (/xOndHija/)
িশক্ষা (/Sikkha/) িশেকাৱা (/xikUwa/)
িমি (/miSúi/) িমঠা (/mitha/)

Table 3.7: Sample false negatives.

Alignment Features

The alignment score (dl) is the clear winner among all feature types since it increases perfor-

mance by most, on average. (Table 3.8). Adding alignment scores to just edit distances (ed) causes

performance to rise approximately 17%. The Logistic Regressor for the ed-dl feature set gives

the alignment score feature a weight of ∼3.2, making it strongly correlated with cognate status. It

also performs best using the bidirectional data; with addition of alignment score, the pair-specific

models perform about 4-6% lower.

Feat. all bn-as as-bn bn-as* as-bn*

ed 76 76 76 76 76
ed-dl 93 93 92 86 88

ped 43 43 43 42 51

Table 3.8: F1(+) as % with and without alignment score (dl) and Levenshtein distance features for NN

model

Phonetic vs. Orthographic Features

When using only phonetic edit distances (ped), performance drops to 43% F1 in most evalua-

tions (51% on the Assamese-Bengali pair-specific model). This is because many times Assamese-

Bengali cognates are pronounced differently even if spelled similarly. Adding a textual Leven-

shtein distance metric (ed) can identify correspondence where phonetic edit distance struggles.
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Figure 3.8: Influence of different semantic feature sets compared to phonetic edit distance baseline (ped).

The ed LR classifier gives textual Levenshtein distance a weight of ∼-2.7, a strong inverse corre-

lation.

Semantic Features

Our experiments show that while semantic features on average are not the top performing fea-

ture type, they do add much more nuance to the results. We find that semantic transfer between

embedding spaces can be accomplished with affine maps and we substantiate it by studying indi-

vidual word and sentence maps. To sum up, we find that adding semantic features by affine transfer

helps classifiers like NN and LR to disambiguate false-positives and false-negatives thereby giving

slight boosts to performance. For instance, addition of all the available semantic features to the

ed-dl feature set results in a performance boost of only a few percentage points (cf. Tables 3.6

and 3.8). Nonetheless, by conducting further ablation tests, we can show where the semantic fea-

tures actually provide important information.
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Fig. 3.8 shows the effects of different subsets of semantic features—cosine similarities between

native MLM embeddings, and between embeddings mapped from AxomiyaBERTA to each MLM

embedding space at the word and sentence level—compared to the lowest performing feature set,

phonetic edit distances.

Adding any semantic information to phonetic features alone substantially improves perfor-

mance of the NN classifier on cognate detection. For instance, adding cosine similarities from

the different pretrained MLMs (ped-b) brings performance back up to ∼76%, or on par with

the inclusion of textual Levenshtein distance. For this feature set, XLM cosine similarity has the

highest weight: ∼1.0, while MBERT cosine similarity is next: ∼0.4 (MuRIL: ∼0.3; IndicBERT:

∼0.06).

Semantic Encoding in Native Models In terms of overall performance metrics, adding seman-

tic similarly to phonetic edit distance is as good as adding textual edit distance, but the specific

misclassified examples in each case are quite different. This is important because this answers

the question of how do we really know that native model semantic information is crucial for the

NN classifer. Table 3.9 shows the breakdown of false positives by type of negative example using

these two different feature sets. We see that feature set ed has a much higher false positive rate,

and also that in most cases when semantic information is used instead of textual edit distance, the

proportion of false positives that are synonyms goes down, suggesting that including semantic in-

formation from MLMs improves cognate detection by mitigating misclassification of synonyms.35

Semantic Transfer in Word-level Mappings Adding cosine similarities taken after affine map-

ping AxomiyaBERTA word-level embeddings into the embedding spaces of the MLMs

(AxomiyaBERTA→MLMs, represented as ped-m feature set) also improves performance. How-

ever, the effect is more nuanced than when using native cosine similarities. For most data splits,

the performance boost is not as pronounced (e.g., an appreciable but modest increase from 43%

35The exception to this is in the ped-b feature set for the Assamese-Bengali pair-specific model (as-bn*), where
60% of false positives are synonyms, pointing to the relative weakness of Assamese semantic representations in the
MLMs.
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all bn-as* as-bn*

ed ped-b ed ped-b ed ped-b

HN 18 12 12 11 6 4
Syn. 18 5 8 1 5 6
Rnd. 4 1 2 0 1 0

Table 3.9: Number of false positives using ed vs. ped-b feature sets broken down by negative example
type (hard negative, synonym, random). Bidirectional and pair-specific models shown.

to 54% F1 on the bidirectional model evaluated against Bengali-Assamese data), but a dramatic

increase in performance is seen on the Assamese-Bengali pair-specific model, where positive F1

rises to 76%, equaling the performance of the same model using the native MLM similarities.

When we examine the LR weights of these features for interpretability, we see that the weight

assigned to cosine similarities between the mapped AxomiyaBERTA embeddings and Bengali

XLM embeddings (AxomiyaBERTA→XLM) is ∼1.0 while the equivalent weight for

(AxomiyaBERTA→MBERT) is ∼0.4. These weights are nearly the same as those assigned to

the native XLM and MBERT cosine similarities. When we carefully compare this observation

with the semantic transfer through KDE Plot visualization (Fig. 3.5), we see that cognate-related

semantics are indeed usefully transferred for the LR classifier to rely on. This and the similar

NN performance indicate that these affine mappings are contributing the nearly the same level of

information as native embeddings.

However, weights assigned to AxomiyaBERTA→IndicBERT and AxomiyaBERTA→MuRIL

space are both close to 0. This may be due to the larger size of the MBERT and XLM training

corpora. The resultant embedding vectors in MBERT/XLM space are more dispersed36 or "spaced-

out", and perhaps closer to isotropic [Ethayarajh, 2019a], whereas IndicBERT and MuRIL vectors

appear to be clustered in a tight high-dimensional cone. This means there is more "space" in

MBERT and XLM to transfer useful semantic information through techniques like affine mapping.

This is particularly interesting in the case of MBERT, which did not train on Assamese data, yet

36See Fig. 3.5 for a visual understanding through a cosine-similarity based KDE distribution.
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the embedding space appears able to accommodate meaningful information from Assamese em-

beddings.

Semantic Transfer in Sentence-level Mappings In the case of using sentence-based affine

maps, we see the implications of adding richer monolingual semantic information. One inspir-

ing insight we get here is that smaller monolingual models like AxomiyaBERTA can transfer

language-specific semantics. This helps in detecting cognates of that specific language in a pair

which in this case is Assamese. How do we know that? Because MBERT→AxomiyaBERTA

(ped-m-sm) shows a drastic decrease of misclassified hard-negatives (almost by one thirds) for

Assamese-Bengali pair-specific model while the trend for Bengali-Assamese model is the reverse!

Since hard negatives are semantically distant from their phonetic-neighbor cognates and are strong

adversarial samples, the introduction of Assamese semantic information helps disambiguate the

cognates from hard negatives based on language-specific semantics. One trend that sort of weak-

ens our argument for language-specific semantic transfer is the slightly increased synonym false

positives for Assamese-Bengali vs Bengali-Assamese, but overall, the NN classifier compensates

this by eliminating random false positives, and further reducing false negatives. Table 3.10 and

Table 3.11 below show the breakdown of false positives and false negatives by type of negative

example for ped, ped-m and ped-m-sm.

From a performance perspective, there is also a slight boost in performance of the NN model

when sentence-maps are included. The Assamese-Bengali pair-specific model reaches 77% F1.

Adding sentence-level mappings alone to phonetic edit distances increases performance over ped

by only ∼6%; the combination of word and sentence-level mappings is what provides this final

small boost to the Assamese-Bengali pair-specific models. When we add sentence mappings to

ped-b (ped-ab-sm), we see that this time the two pair-specific models see an appreciable im-

provement from 76% to 78% (Assamese-Bengali_train_ev) and 79%

(Bengali-Assamese_train_ev), suggesting that similarities computed after sentence-level

mappings can help language-specific models more than language-agnostic or multilingual ones.
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bn-as* as-bn*

ped pm psm ped pm psm

HN 31 48 45 47 10 15
Syn. 0 4 4 6 8 6
Rnd. 0 7 2 0 2 0

Table 3.10: Number of false positives in pair-specific model outputs using ped, ped-m (pm), and
ped-m-sm (psm) feature sets broken down by negative example type (hard negative, synonym, random).

bn-as* as-bn*

ped pm psm ped pm psm

FN 212 140 138 182 106 100

Table 3.11: Number of false negatives (undetected cognates) in pair-specific model outputs using ped,
ped-m (pm) and ped-m-sm (psm) feature sets.

To sum up, the trends in Tables 3.9–3.11 show that using native cosine similarities from mod-

els with relatively strong support for Bengali helps Bengali-Assamese performance, while adding

mapped word and sentence-level embedding similarities help Assamese-Bengali performance by

bringing in more Assamese-specific information through affine transformation. In other words, se-

mantic encoding in native model embeddings and useful semantic transfer through affine mapping:

both occur.

It is to be noted that our approach for detecting cognates in the two similar languages is surely

not without limitations. Since a major part of feature extraction criteria/process (phonetic, articu-

lartory and semantic) was targeted to suit our task for two similar languages, we might get very

different results for two relatively different languages. For instance, we expect that the interchange-

ability of feature types could work less well for two languages that are quite distantly-related like,

for instance, English and Assamese. While cognates in such distantly-related languages might still

exhibit semantic affinity, they might not display immediate phonetic affinity or articulatory align-

ment for our current method to work as it is. For instance, the Assamese word (IPA notation) for

wheel is /sOka/ which is cognate with the English word "wheel". They are semantically similar but

phonetically quite different. In such cases, our method needs to be enhanced by either weighing the

various feature types according to their importance for that language-pair (such weighing parame-
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ters can be learned) or we might have to experiment with individual feature sets first before trying

a combination of all the three feature types. Such experiments with distantly-related languages can

surely be a way to test the robustness of our method for detecting cognates.
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Chapter 4

CROSS DOCUMENT COREFERENCE

RESOLUTION (CDCR)

4.1 Background

Look at these two compound sentences below:

[Victoria Chen]1, CFO of [Megabucks Banking]2, saw [her]1[pay]3 jump to dollar 2.3 mil-

lion, as the [38-year-old]1 became the [company]2 s president. It is widely known that [she]1

came to [Megabucks]2 from rival [Lotsabucks]4
37.

The bold-faced words or phrases refer to some real-world entity, organization, person or an

event. In the discourse of coreference [Jurafsky, 2000], each of the colored words is called a "men-

tion". In NLP, coreference resolution is the task of determining whether two mentions "corefer" i.e.,

they refer to the same entity in the discourse model or a text. For instance, in the sentence shown

above, words or phrases with the same numbered subscripts are coreferring. The set of coreferring

expressions is often called a "coreference chain" or a "cluster". Therefore, the mentions38 in each

same subscripted set represents those coreferring mentions that need to be "linked" in a cluster.

Coreference Resolution (CR) Problem: Given a text T or a set of Documents D39, a CR system

or algorithm has to find all the entities and the coreference links between them. Task performance

is evaluated by comparing the links predicted in the system with those in human-created gold

coreference annotations on T or D. In popular coreference evaluation systems, the input to the

system is the raw text of articles, and systems must detect mentions and then link them into clusters,

a technique we apply in our experiments too. However, in this thesis, I apply a cosine similarity

37https://web.stanford.edu/ jurafsky/slp3/21.pdf

38The word Lotsabucks colored in violet is a singleton mention since it only occurs once.

39Coreference Resolution for a set of documents is usually known as the Cross-Document Coreference Resolution
(CDCR) problem. Our experiments are on this task.
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metric to score the set of documents in a pairwise fashion and then cluster the scores using an

affinity matrix.

4.2 LDC Phase 1 Dataset and Knowledge Graphs

Figure 4.1: Example showing coreferring and non-coreferring links for events in LDC Phase 1 Dataset.

For our experiments, we use the LDC Phase 1 Dataset. The Linguistic Data Consortium (LDC)

Phase 1 Dataset [Cieri et al., 2020] for events and entity and their common relations was created

and released as a part of the DARPA AIDA (Active Interpretation of Disparate Alternatives) pro-

gram. This project funds NLP and artificial intelligence-based research for developing semantic

engines to distinguish between alternative interpretations of situations, events, and patterns while

focusing more on unstructured data sources to gain insights into such data in noisy or deceptive

conditions. For the purpose of this thesis, we evaluated our affine (linear) mapping-based CDCR

(Cross Document Coreference Resolution) system using solely text-based data (including English,

Russian, and Ukrainian languages) describing a specific set of annotated events and entities around
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the 2014 Ukrainian war discourse. Most of the initial annotated data, as well as source data, were

highly structured data. They were relatively uniform XML files with token-level information about

the events and entities, along with meta-data about sentence separations, token types, etc., such that

its structure can be mapped to its original text on the websites from which the event and entity data

were extracted.

The gold annotations that contains the actual coreferring links were manually annotated as a

part of the DARPA AIDA project. They are available as source files that can be used to map each

event or entity to its respective gold cluster identification number. As such, if two mentions have

the same gold cluster identification number (ID), they are coreferring. Some feature-based details

and distribution events and entity links of the LDC dataset are shown in the Table 4.1 below. Note

that the total number of entities are more than four times as that of events.

Features Events Entities

Total docs 69 70
Total mentions 847 3796

Unique gold clusters 271 1216
Max. cluster mentions 76 188

Unique lexical 405 1590
Singletons 198 685

Table 4.1: Table showing distribution of various features of the LDC dataset for events and entities. Note
that the label "Unique lexical" represents lexically unique mentions. For instance, if "murdered" as an event
mention occurs twice in the entire dataset and they do not corefer, then their respective gold cluster IDs
will be different. Also, in that case, "murdered" will only be counted once in the "Unique lexicals" feature.
Similarly, if a gold cluster occurs twice, it is only counted once in the Unique gold clusters label.

In order to get a better idea of how these features are represented, Figure 4.1 shows a set

of four events from the LDC Phase 1 dataset, with their respective gold cluster IDs, Document

IDs, the sentence text that contains the coreferring or non-coreferring mention text as well as the

special tokens40 (<m> and </m>) that surround the event mention text. We can see from our

understanding of language that the three event mentions (in yellow surrounded by special tokens)

40More details of our data-preprocessing steps and the role of the special token in the section on Transformer-based
Bi-encoders.
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within the sentences actually refer to the same real world event i.e., the death or the killing of the

Ukrainian political-activist named "Kalashnikov". Things that help us identify or link this include

political phrases like "Ukrainian MP", "opponent", "government officials" that are part of the three

texts pieces involved. Proper nouns such as "Kalashnikov" further narrows our cognitive search

space for identification while phrases like "flat", "apartment" or "house" help us reasonable identify

the place or location of the event and thereby conclude that those three events to be coreferring.

The same cannot be said about the fourth event on "investigation" which per se does not signify

that specific death of the political activist.

Intuitively, for a human to link these three coreferring mentions (or unlink the fourth) requires

a contextual understanding of the text and discourse-based characteristics. In this case, they are

political phrases, proper nouns, places of residence, etc., that help us restrict out search space.

However, such auxiliary context could reside beyond the sentence that spans the mention in a doc-

ument. Therefore, the task of identifying coreferring event mentions (or entities) using artificial

intelligence becomes all the more challenging due to the mentions not only being located at ar-

bitrary positions in the document, sometimes even a few sentences away, but also being located

across documents like in the case of CDCR. Another challenge is that simple lexical overlaps that

might help identify coreferring links within a document cannot be trivially applied across docu-

ments since the lexically identical events or entities might not be coreferring since documents are

authored independently [Cattan et al., 2021b]. Our idea, as such, is to use the context of the tex-

tual information available for each event or entity mention to decipher which ones need linking

or are coreferring. We use Transformer-based language models for encoding such contextual and

semantic information.

Knowledge Graphs Our first task was to extract the tokenized information from the XML files

using XML file parsers like BeautifulSoup41 to create the knowledge graphs. Knowledge Graphs42

41https://pypi.org/project/beautifulsoup4/

42https://www.turing.ac.uk/research/interest-groups/knowledge-graphs
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(KGs) organize data from multiple sources, capture information about entities of interest in a given

domain or task (like people, places, or events), and establish connections between them. In data

science and AI, knowledge graphs are commonly used to: map features in machine learning mod-

els, find links including the depth of various entities or features, and overall, as bridges between

structured data and human understanding such as generating human-decipherable explanations.

In our task, we create two knowledge graphs, the Document-Sentence Map and the Mention

Map, the former a single knowledge graph for both mention types and the latter, one for each

individual mention type. Both of these are ordered nested dictionaries created in Python. The

Document-Sentence Map allows us to correctly map each document with their document identifi-

cation number (DOC_ID) along with the tokenized sentences that are a part of the document. This

map also contains extra meta-data like sentence identification numbers, token-lengths of each to-

ken or word, etc. On the other hand, the Mention Map links event and entity specific information

for each mention in the entire set of documents with their respective documents, Mention_IDs,

start and end character of the mentions, gold cluster information, their topic_IDs etc. More

importantly, for the purpose of our pairwise cosine similarity clustering that uses document level

information for generating embeddings, the Mention Map helps us track down the sentence level

as well as document level context of each mention, for both events and entities. For instance, as

shown in Table 4.1, the 847 event mentions and 3,796 entity mentions can be easily accessed on

a sentence or a document level from the event Mention Map to generate their respective docu-

ment (or sentence) embeddings from a language model. More specifically, as shown in Fig 4.2,

the "bert_doc" dictionary key in the Mention Map contains the document-level textual informa-

tion correctly linked to that specific mention ("gunshot") in our set of documents. Similarly,

"bert_sentence" key gives us the sentence-level textual information for that event mention. In

our experiments, we use document-level textual information instead of sentence-level to get richer

contextualized vector representations of mentions from our selected Transformer-based language

models. The section below provides details of model selection and architecture.
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Figure 4.2: Example showing a Mention Map (events) knowledge graph in LDC Phase 1 Dataset

4.3 CDLM Model and other variant selection

For our experiments, we selected four Transformer-based large language models: CDLM [Caciu-

laru et al., 2021], BERT_BASE_UNCASED43 [Devlin et al., 2018], BERT_LARGE_UNCASED [De-

vlin et al., 2019] and Coref_BERT [Ye et al., 2020]. These large language models more or less

use similar Transformer-based self-attention mechanisms to form a contextualized bidirectional

representation of the languages they were pretrained on using the masked language modelling ap-

proach. In recent years, such models have shown very promising results in several downstream

NLP tasks such as syntactic tasks like span boundary prediction or next-sentence prediction or

semantic tasks like question-answering, Named-Entity Recognition, etc. Even though the four

models were trained in varied settings with different hyperparameters and the concomitant hun-

dreds of millions of trainable parameters, recent research [Cattan et al., 2021a], [Caciularu et al.,

2021] have used similar models in their ablation studies to explore how such encoder-only models

fare in tasks like coreference resolution.

In our case, except for the BERT_LARGE model which encodes texts in 1,024 dimensions, the

other three are 768 dimensional in their embeddings. This allows us to compare how an increase

in dimensions of embeddings may or may not capture the semantic information in texts and to

43Hereafter, both the uncased BERT variants (base and large) will be shortened to BERT_BASE and BERT_LARGE

respectively. We have restricted our model sample space to only uncased versions of these models since we want to
maintain consistency of tokenizers among all the models selected. Also, unlike entity recognition tasks, CDCR does
not explicitly require such case-related constraints.
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what extent, especially post affine-mapping. Moreover, our ablation space was narrowed down

by considering two coreference-specific language models (Coref_BERT and CDLM) while also

including general language models that were not trained specifically to link mentions in texts.

While most of these models are computationally intensive to train since they use multiple GPUs or

TPUs, they are readily available as pretrained or finetuned (to a specific task) on the Huggingface

Library.44 In the section below, we provide a brief outline of the four models chosen for our task,

their specialities and why they were selected. We also provide our definition of "contexuality" for

such language models and rank them according to how contextualized they are.

CDLM CDLM [Caciularu et al., 2021] is our default model and is the most contextualized. It

improves upon the popular masked language modeling objectives of different BERT models by

simulating its pretraining within a cross-document environment, i.e., it is pretrained to learn cross-

document relationships from a large set of related documents. It does it by cleverly utilizing

the local and global attention mechanism from the Longformer Transformer model [Beltagy et al.,

2020]. More specifically, the Longformer model facilitates the encoding of much larger documents

by using global attention to the event and entity mentions as well as the [CLS] token but applying

local attention to the rest of the tokens of the sentence or document. This not only enhances

the semantic localism of contextual embeddings generated for each mention but also reduces the

computational cost by reducing the quadratic time complexity of off-the-shelf Transformer models

to linear in the sequence length.

More specifically, Fig. 4.3 provides an intuitive understanding of the global and local attention

techniques in the Longformer model. Fig. 4.3 (a) shows a typical self-attention mechanism that

usual off-the-shelf transformer blocks use. Its time-complexity is O(n2) if n is the sequence length

of a training sample. Fig. 4.3 (b) and Fig. 4.3 (c) show the Longformer-based sparse-attention

technique that uses a sliding or a dilated sliding window (respectively) approach to self-attention.

In these cases, the time complexity reduces to O(n × w) or O(n × l × d) respectively where

44https://huggingface.co/
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w is the length of the sliding window, d is the length of dilation of that window and l is the

number of encoder layers or the receptive field. All three of these are constant, but their combined

multiplication can be a large value. Therefore, the dilated sliding window can still be very compute

intensive and close to quadratic if the number layers are more. However, as shown in Fig. 4.3 (d),

the Longformer uses the dilated sliding window technique for most of the tokens while using a

full n-squared attention for a few selected tokens like the [CLS] or task-specific tokens. In other

words, it applies global attention to a few task-specific tokens while applying local attention to the

rest. In this way, it reduces its time complexity to almost O(n) since the selected tokens for global

attention are few and independent of the sequence length.

BERT_BASE This is the classic BERT language model [Devlin et al., 2018] that learns bidi-

rectional contextualized representations of the English language by predicting masked words and

next sentences in its training. Unlike CDLM or CorefBERT, this has not been pretrained within

coreference-specific setting which is crucial because it lets us compare embeddings from this

model to our default CDLM model and understand the extent and the nature of semantic trans-

fer. In other words, this is a less-contextualized model and since it only encodes information in 12

layers, it is also relatively smaller than other similar models like BERT_LARGE. As such, this is

our baseline model for comparison.

BERT_LARGE All things remaining equal, this is the big brother of BERT_BASE. In other

words, the training corpora, the training loss functions as well as the hyperparameters are same as

BERT_BASE but it encodes information in 24 encoder layers instead of 12 and with 1024 as the

embedding hidden dimension. Apart from the greater compute power needed to generate embed-

dings from this model, it also allows us to explore the extent of semantic transfer with increased-

dimensionality related perturbations upon affine mapping. While this model is more contextualized

than BERT_BASE, it is still relatively less contextualized than CDLM or CorefBERT with respect

to talks involving coreference resolution.
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Coref_BERT Long distance mentions cannot be effectively learned in off-the-shelf language

models like BERT_BASE where the focus is mostly on the masked word in the sentence (randomly

selected and not focused on event or entity mentions) or the next sentence prediction. Thus, their

attention is mostly semantically or syntactically local. In CorefBERT, long distance connections

between mentions that exist beyond the span boundary of a sentence are learned which helps in

coreference resolution. Keep in mind, that this long distance is around 512 tokens which is still

eight times less than that of CDLM.

In order to understand high-fidelity semantic transfer between relatively more or less contextu-

alized models, we rank the above four models based on their contextualized nature. As such, we

define the extent of contextuality of a model in this decreasing order of importance: 1) whether

the model was pretrained in a cross-document setting using the special tokens, <m> and </m>, 2)

whether the model was simply pretrained to learn to link coreferring mentions, 3) whether addi-

tional finetuning for coreference tasks was carried out and 4) the depth (number of encoder layers)

of the model if other things are consistent. Therefore, the order is as follows: CDLM (default

model) > CorefBERT > BERT_LARGE > BERT_BASE, where ’>’ means more or greater than.

Our analysis of the extent of semantic transfer after affine-mapping is based on the above ranking

of the relative contextuality of the models.

Figure 4.3: Global and Local attention that the CDLM model uses. [Beltagy et al., 2020]
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Figure 4.4: Entire CDCR Pipeline for Entities with details of the linear mapping technique in the segment
below. Same pipeline applies for event mentions.

4.4 Bi-Encoder for Document-level embeddings

In order to create the contextualized source document embeddings for each mention, we sur-

round the specific mentions in the documents with the additional special tokens that the Hugging-

face library for these models allow us to use. This helps the model-specific tokenizers locate the

position IDs of the mentions after the tokenization process. These position IDs (each of <m> and

</m> has a constant value) are made a part of the embedding space45 as well as the vocabulary

for these models. This is for the purpose of applying attention to the specific mentions during the

forward function while getting the model output.

One of the challenges of encoding event or entity mentions with special tokens is that we

have to ensure that the mentions do not occur beyond the maximum token-length of the specific

Transformer model being used after the tokenization step. To solve for this edge case, we had to

find the overflowing indices of the special tokens surrounding the mentions in the tokenized tensors

45CDLM has been pretrained using these special tokens as a part of its embedding space while the other three are not;
this means these special token embeddings are already learned in the case of the former while the rest were randomly
initialized.
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for each batch of documents if and when they lie beyond 512 tokens. Thereafter, for each of those

overflowing indices, we cropped a 512-token span of the tensor46 while ensuring that the special

token indices are within that span for all the edge cases in a batch.

Since Transformer-based language models require inputs to be of a constant length in the last

dimension for a batch of samples, we thereafter padded the overflowing tokenized indices to the

max-length of the batch to avoid any batch-wise processing errors in token length. Our special

attention mechanism then lets us create binary maps for each sample where the mention-specific

indices are encoded as "1" (rest being "0"). We then apply an element-wise multiplication between

the model embedding outputs of each sample with its respective binary map to get an overall

semantic representation of the mentions within that sample document. This allows us to generate

a contextualized embedding from the model as output. We call these embeddings as "native" since

they are generated straight from the language models without any linear transformations applied on

them. For more details about the edge cases and the algorithm being used for the CDCR bi-encoder

we well as clustering, check out Fig.4.5.

Upon generating the contextualized embeddings from the chosen Transformer-based language

models, we also carried out a Principal Component Analysis (PCA) projection of the CDLM em-

beddings to visualize the encoding of semantic information in our default model. This allows us

to project the 768-dimensional embeddings into a 3-dimensional or 2-dimensional space while re-

taining 99 percent of the variation in the samples in the first dimension. This was done to explore

and visualize whether contextualized semantic information relevant to our coreference resolution

problem was natively encoded in our default model that can be amenable to high-fidelity semantic

transfer.

46In the case of CDLM we used its full capacity which is 4096 tokens thus adding more contextuality.

52



Figure 4.5: Cross-document Event/Entity Coref Algorithm.
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Fig. 4.6 (3-D PCA projection figure on the left) shows that event mentions like "protests",

"military operations", "clashes" and "uprisings" are clustered in a relatively distinct space than

events like "murder", "suicide" and "assassination". While the right figure, which is a 2-D PCA

projection, clearly shows that death-like events like "died", "bludgeoned", "gunned-down" and

"killed" are forming a distinct cluster.

Figure 4.6: Principal Component Analysis (PCA) of Event embeddings generated from the default CDLM
model. The left figure is a snapshot of the 3-D PCA while the right figure is a 2-D PCA snapshot. Red
markers point to the visible event clusters.

Similarly, Fig. 4.7 shows that entity mentions describing the place of the event as well as the

entity involved like "Kiev", "Oleg Kalashnikov" and "the entrance to his apartment block" are clus-

tered in a relatively distinct space in the 3-PCA projection figure on the left. While organizational

entities like "Federal Bureau of Investigation", "Central Intelligence Agency" and "foreign Intel

agencies" are forming a distinct cluster in the right figure. These distinct clusters both in 2-D and

3-D suggest that coreference specific semantic information is definitely present in some form in

the default CDLM model embeddings. Whether or not they are amenable to a high-fidelity semantic
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transfer can only be checked after carrying out the affine transformations and verifying the results.

The section below talks about the affine-mapping procedure.

Figure 4.7: Principal Component Analysis of Entity embeddings generated from the default CDLM model.
The left figure is a snapshot of the 3-D PCA while the right figure is a 2-D PCA snapshot.

4.5 Generating Affine Maps

In order to affine-map the source model embeddings to the target model spaces, we map the

source and target space with a cartesian product combination. This leads to 12 Source→Target

model spaces after eliminating the identical maps i.e., from each model to its own. Therefore,

we do not map the latter four combinations and compare them in their native state. The affine

mapping procedure we apply here is identical to the one we do for cognate-detection albeit a little

simpler since we do not map words or sentences separately and instead, each sample is now a

document containing a mention. In short, if V i
s and V

j
t represent the source and the target em-

bedding spaces, we carry out a least-square-based optimization method or ridge-regression [Hoerl

and Kennard, 1970] between those spaces where i and j represent individual sample documents in
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our LDC dataset for events and entities separately and assuming λ=1. β represents the L2-norm

regularization parameter. Mathematically,

Minimize((V j
t − V i

s β)
T (V j

t − V i
s β) + λβTβ),

4.6 Pairwise Clustering and Thresholding

In order to link the coreferring mentions for events as well as entities separately, we treat the

entire clustering process separately for the two mention types. This clustering and scoring of paired

mentions is carried out for each of the 12 affine-mapped embedding sets as well as the 4 native

embedding sets. Fig. 4.5 provides a detailed step-by-step algorithm of our CDCR system with

affine-mapping.

We first create sorted integer indices for all the paired mentions for each mention type. The

number of paired combinations is significantly less than n-squared where n is the number of sam-

ples i.e., events or entities within the set of documents. This is because we ignore the identical

combinations as well as the commutative alternative pair.47 Using those sorted pairwise indices

as rows and columns respectively, we create a square similarity matrix where each i (rows) and

j (columns) represent the cosine similarity between that specific pair, with value of 1 across the

main diagonal. Thereafter we create a sparse48 adjacency matrix from the similarity matrix using

the scipy.sparse csr_matrix package49 using a chosen threshold T i.e., the adjacency matrix will

only have positive links (or values of 1) for those pairs whose cosine similarity is greater than the

chosen threshold. The non-adjacent vertices would be zeroes.

We experiment with three increasing cosine similarity thresholds i.e., 0.6, 0.75 and 0.95, for

events as well as entities. The systems clusters and the labels are generated by finding the con-

47If A and B are two event or entity mentions or their respective embeddings, we only consider A→B for calculating
the cosine similarity while ignoring B→A as well as A→A or B→B. We do this because the cosine metric is
symmetric and to reduce computational costs of huge array-based multiplications.

48Sparse matrices are mostly filled with zeroes and therefore, reduce computational or storage-related costs and are
more amenable to matrix or vector operations.

49https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
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nected components of the adjacency matrix for each of those thresholds while the gold clusters

and labels are already provided from the source LDC annotations. Thereafter, we use the CONLL

perl-script scorer [Pradhan et al., 2014]50 to score our systems clustering labels to our gold input.

This gives us Precision, Recall and F1 scores for standard coreference metrics like BCUB and

MUC.51 See section 4.7 below for a brief idea about coreference resolution evaluation metrics like

BCUB and MUC.

4.7 Coreference Evaluation Metrics

In coreference resolution, the research community has used various metrics to evaluate results

like the MUC, BCUB, CEAF as well as recent entity-linking-based metrics like the LEA [Moosavi

and Strube, 2016]. While all the metrics mentioned above calculate recall, precision, and F1 scores

to evaluate results, each of these metrics uses a different criterion to generate such scores. In gen-

eral, the recall is an indicator52 of the fraction of correct coreference information, i.e., coreference

links or entities, that is resolved in the systems output. In other words, it is the percentage of

elements in a true reference chain (gold annotations) that are in the hypothesized reference chain

(systems output). Similarly, precision is an indicator of the fraction of resolved coreference infor-

mation that is correct. In other words, it is the percentage of elements in a systems cluster output

that is already in the gold reference chain. And lastly, F1 score is the weighted harmonic mean of

recall and precision.

More specific to this thesis is the MUC and the BCUB metric. MUC is one of the earliest

systematic coreference evaluation metrics that was introduced by [Vilain et al., 1995]. It is a

link-based metric as it computes recall based on the minimum number of missing links in the

response entities in comparison to the key entities. It is also the least discriminative since it does

50https://github.com/conll/reference-coreference-scorers

51We do not consider other metrics like CEAF or BLANC for this experiment. We leave them for future experiments.

52In coreference resolution as commonly seen, both recall and precision are size-weighted to the respective cluster
sizes and then averaged to get their final values. Since a coreference-resolution dataset usually contains more than
one cluster, the overall recall, and precision scores act more as indicators instead of conclusive scores.
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not differentiate whether an extra link merges two singletons. On the other hand, BCUB [Bagga

and Baldwin, 1998] is a mention-based metric where the overall recall/precision is computed based

on the recall/precision of the individual mentions. This makes it more sensitive to individual

mentions and if such mentions happen to be singletons, such sensitivity disproportionately affects

the evaluation scores. In our case, the gold annotation of the LDC Phase 1 dataset contains around

20 percent singletons for both events and entities, and since MUC is comparatively less sensitive

to the presence of singletons than BCUB [Kübler and Zhekova, 2011] we have chosen the MUC

metric as our primary evaluation metric.

4.8 Results and Analysis

As a reminder to the reader, our goal of doing CDCR using native and affine-mapped embed-

dings is not intended to reach a state-of-the-art performance but to study the semantic transfer

phenomenon. The LDC Dataset used for evaluation is an on-going annotation process and is not

publicly available for performance comparison with other peer-reviewed work. This thesis only

attempts to answer questions regarding the nature and the extent of semantic encoding and transfer

between the chosen embedding spaces and their affine-mapped spaces. This analysis only reveals

the geometric vector space related properties of the language model embedding spaces that we

have selected for this experiment. Other language models depending on the task may reveal some-

thing very different. The basis for model and baseline selection is how contextualized a model

is, its relative embedding dimensions and computational feasibility. Moreover, for the purpose of

this analysis, we have only considered the MUC coreference scores instead of BCUB since our

gold annotations consist of at least 20 percent singleton mentions that affect BCUB performance

disproportionately while MUC is relatively less affected by the presence of singletons [Kübler and

Zhekova, 2011].

Native Model Performance: Encoding From an overall performance angle and as shown in

Table 4.2 (events) and Table 4.3 (entities) , the default native CDLM model performs the best for
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Model Variant
Cosine Threshold = 0.6 Cosine Threshold = 0.75 Cosine Threshold = 0.95

BCUB MUC BCUB MUC BCUB MUC

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CDLM 6.91 99.64 12.92 67.89 99.47 80.7 6.91 99.64 12.92 67.89 99.47 80.7 6.91 99.64 12.92 67.89 99.47 80.7

B_B 52.01 55.84 53.85 69.19 53.81 60.54 86.42 36.09 50.92 65.12 22.04 32.94 97.63 33.26 49.62 76 9.89 17.51

B_C 56.6 52.38 54.41 69.95 49.3 57.84* 78.61 39.47 52.55 70.54 31.59 43.64 97.63 33.28 49.64 75.34 9.54 16.94

B_L 65.07 47.06 54.62 70.2 42.53 52.97 91.46 35 50.63 72.53 17.88 28.69 97.63 33.26 49.62 76 9.89 17.51

B_B->B_C 54.24 54.53 54.38 70.46 52.6 60.23 50.4 50.06 50.23 60.31 47.22 52.96 83.18 32.46 46.69 12.57 3.47 5.44

B_B->B_L 61.03 50.39 55.2 72.1 47.56 57.32 58.75 40.33 47.83 45.06 29.34 35.54 83.63 32.46 46.77 13.46 3.64 5.73

B_B->CDLM 48.98 58.5 53.32 69.57 56.77 62.52 37.06 64.64 47.11 66.31 65.62 65.96 37.91 64.15 47.66 66.42 64.93 65.67

B_C->B_B 56.51 81.88 54.1 68.96 48.61 57.02 63.29 37.31 46.94 39.05 22.91 28.88 84.49 32.45 46.89 12.92 3.29 5.25

B_C->B_L 66.36 46.8 54.89 72.39 40.97 52.32 64.92 37.7 47.7 41.37 22.91 29.49 84.73 32.45 46.93 13.1 3.29 5.27

B_C->CDLM 53.64 53.86 53.75 68.77 50.86 58.48 42.93 58.06 49.36 64.2 57.29 60.55 43.68 57.31 49.58 64.1 56.42 60.01

B_L->B_B 51.56 56.5 53.92 69.55 54.34 61.01 62.23 34.6 44.47 29.79 18.05 22.48 83.07 32.46 46.68 12.5 3.47 5.43

B_L->B_C 55.38 53.81 54.54 70.54 51.56 59.57 53.27 46.69 49.76 57.54 42.36 48.8 82.62 32.46 46.6 12.26 3.47 5.41

B_L->CDLM 48.98 58.5 53.32 69.57 56.77 62.52 37.59 64.1 47.39 66.37 65.1 65.73 37.68 63.95 47.42 66.31 64.93 65.61

CDLM->B_B 42.29 58.92 49.24 65.08 61.8 63.4 35.52 59.39 44.46 59.49 60.93 60.2 78.35 32.62 46.06 13.52 4.86 7.15

CDLM->B_C 44.37 55.71 49.4 64.21 59.2 61.6 31.69 60.15 41.51 58.29 62.84 60.48 77.53 32.62 45.92 13.08 4.86 7.08

CDLM->B_L 52.4 51.85 52.12 65.66 53.12 58.73 34.59 58.47 43.47 57.92 60.24 59.06 78 32.62 46 13.33 4.86 7.12

Table 4.2: Final BCUB and MUC Scores i.e., Precision (P), Recall (R) and F1-scores (F1) for na-
tive and mapped embeddings on LDC events. CDLM, BERT_BASE(B_B), BERT_LARGE(B_L),
BERT_COREF(B_C) are native models. Their affine-mapped variants are shown as Source→Target in
the Model Variants column.
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all three sub-metrics i.e., F-score, Precision and Recall within the MUC metric for both events

and entities. For example for events, its F-scores, Precision and Recall are 80.7, 67.89 and 99.47

respectively. This is expected since this is the most "contextualized" model with CDCR task-

specific pretraining along with additional finetuning using the special attention tokens (<m> and

</m>). Moreover, this model can support much longer documents (4096 at a maximum) whereas

the rest all have a maximum token length of 512. The native BERT-variants perform relatively

lower53 than native CDLM for smaller cosine thresholds but drastically lower for larger ones. For

instance for events, native BERT-variants get F scores ranging from around 52 to 60 for lower

thresholds while their F scores for higher thresholds are in the range of 17-18.

Among themselves, native BERT-variants perform almost equally well within respective cosine

thresholds while overall losing performance with a higher cosine threshold. Assuming that an

efficient CDCR system that does pairwise scoring and clustering requires semantic encoding of

mentions within documents, the above performance trends suggests that such encoding does, in

fact, occur on average. But, at least for native embedding spaces, its extent is not directly correlated

with how "contextualized" or "large" the native model is. For instance, native BERT_LARGE,

though larger with more encoder layers, consistently perform lower on average (F scores around

15 percent lower) than the other BERT-variants at lower cosine thresholds. For higher cosine

thresholds of 0.95, though, this trend is less pronounced.

Affine-mapped Model Performance: Transfer In the case of exploring semantic transfer

through affine-maps there arise cases where we see drastic enhancement in performance between

native and mapped model spaces as well as between sets with opposite directionality of mapping

(Source→Target). The idea is, if semantic transfer with a high-fidelity does occur after affine-

mapping, it should lead to improved or at least equivalent performance for models like the BERT-

variants post affine-mapping when compared to their native state. To put it differently, since we

know that the CDLM is the most contextualized model and also the best-performing, can affine

53All the performance comparisons in this paragraph and the later ones are based on F1 scores only.
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Model Variant
Cosine Threshold = 0.6 Cosine Threshold = 0.75 Cosine Threshold = 0.95

BCUB MUC BCUB MUC BCUB MUC

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CDLM 2.27 93.43 4.44 67.12 98.68 79.89 2.27 93.43 4.44 67.12 98.68 79.89 2.27 93.43 4.44 67.12 98.68 79.89

B_B 48.79 56.27 52.26 68.16 52.79 59.5 65.41 47.55 55.07 68.83 43.41 53.24 97.61 40.24 56.99 90.76 25.15 39.39

B_C 53.95 52.48 53.2 67.18 46.89 55.23 61.47 49.37 54.76 69.88 43.72 53.79 98.39 39.57 56.44 93.28 23.13 37.08

B_L 50.9 55.27 53 68.55 51.62 58.89 71.75 56.4 46.46 72.1 39.88 51.36 98.95 40.2 57.18 95.85 25.03 39.7

B_B->B_C 53.29 53.57 53.43 68.67 50.03 57.89 61.46 50.87 55.67 72.46 46.82 56.88 98.23 40.29 57.14 93.43 25.38 39.92

B_B->B_L 51.96 54.3 53.1 68.4 50.19 57.9 71.09 46.52 56.24 71.17 38.37 49.86 98.96 40.22 57.2 95.83 24.96 39.6

B_B->CDLM 48.77 55.8 52.05 67.56 52.32 58.97 48.82 55.8 52.08 67.63 52.32 59 49.37 55.56 52.28 67.89 52.05 58.92

B_C->B_B 55.81 51.56 53.6 67.28 45.27 54.12 70.84 46.08 55.84 70.37 36.82 48.34 99.02 39.4 56.37 95.7 22.44 36.35

B_C->B_L 52.29 49.49 53.95 67.11 42.71 52.2 76.44 44.24 56.05 72.08 33.52 45.76 99.06 39.35 56.33 95.99 22.8 36.17

B_C->CDLM 53.79 52.21 52.99 66.61 46.55 54.8 53.82 52.21 53 66.64 46.55 54.81 54.44 51.92 53.15 66.68 46.16 54.55

B_L->B_B 49.37 55.89 53.92 68.3 52.28 59.23 68.71 46.75 55.64 70.2 40.54 51.4 98.33 40.23 57.1 93.63 25.07 39.55

B_L->B_C 54.03 53.45 53.74 68.88 49.76 57.78 62.97 50.02 55.75 72.59 45.58 56 98.44 40.28 57.17 94.37 25.34 39.96

B_L->CDLM 48.71 56.08 52.13 67.81 52.59 59.24 48.86 55.92 52.16 67.75 52.44 59.12 49.22 55.81 52.31 67.89 52.28 59.07

CDLM->B_B 23.57 70.34 35.31 66.58 81.93 73.46 39.46 62.24 48.3 68.02 71 69.48 93.1 46.92 62.39 86.44 43.25 57.65

CDLM->B_C 20.63 71.05 31.97 66.01 83.64 73.79 36.58 63.88 46.52 68.04 73.95 70.87 91.53 46.99 62.1 84.51 44.22 58.06

CDLM->B_L 23.77 69.62 35.44 66.12 81.47 72.99 40.95 61.02 49.01 67.74 70 68.85 93.15 46.88 62.37 86.5 43.21 57.63

Table 4.3: Final BCUB and MUC Scores i.e., Precision(P), Recall(R) and F1-scores(F1)
for native and mapped embeddings on LDC entities. CDLM, BERT_BASE(B_B),
BERT_LARGE(B_L), BERT_COREF(B_C) are native models. Their affine-mapped variants are
shown as Source→Target in the Model Variants column.
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maps to and from CDLM lead to any performance difference, preferably improvement? How does

the answer to this question change between events and entities and what does it tell us about the

vector space related geometric characteristics of the chosen models?

Our observations from Table 4.2 and Table 4.3 answer some of the questions above. For ex-

ample, CDLM in its native state not only tops performance in all three sub-metrics but also remains

constant across all thresholds for both events and entities. This implies, and quite conclusively so,

that more contextualized language models like CDLM encode its semantic information anisotropi-

cally [Ethayarajh, 2019a] i.e., within a narrow cone on its 768 dimensional space. This is surprising

because until now, we saw such anisotropy having a positive correlation with only smaller-sized

models in the cognate-detection section. It seems this is true for more "contextualized" models

too.

Moreover, for events as seen in Table 4.2, the yellow-highlighted cells in red show relatively

improved performance for a cosine threshold of 0.6 but drastic improvement for larger thresholds

when BERT-variants (source) are affine-mapped to the native CDLM (target) compared to native

BERT-variants. For instance, BERT-variants like BERT_LARGE and Coref_BERT when affine-

mapped to the native CDLM (target) show F scores of 62.52 and 58.48 respectively for a threshold

of 0.6 while their native versions showed F scores of 52.97 and 57.84 respectively. Similary,

for BERT_LARGE and Coref_BERT and for a higher threshold of 0.95, such scores improve

drastically to 65.61 and 60.01 while their native model scores were 17.51 and 16.94 respectively.

This implies that less contextualized models like the BERT-variants can benefit from semantic

information transfer from more contextualized models when the latter is the target embedding

space.

Interestingly, this is true regardless of the directionality (Source→Target) of the affine map-

ping but its extent depends on the cosine threshold. For instance, for events (the non-highlighted

cells in red in Table 4.2) and more so for entities (the non-highlighted cells in red in Table 4.3),

we see relatively improved performance for a cosine threshold of 0.6 and drastic improvement

for larger thresholds of 0.75 for CDLM (source) affine-mapped to the BERT-variants (target) when
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compared to native BERT-variants. More specifically for events, in this case of reversed direction-

ality, BERT-variants like BERT_LARGE and Coref_BERT affine-mapped from the native CDLM

(source) show improved F scores of 58.73 and 61.6 respectively for a lower threshold of 0.6 while

their native versions showed F scores of 52.97 and 57.84 respectively. Similarly, for BERT_LARGE

and Coref_BERT and for a higher threshold of 0.75, such scores improve drastically to 59.06 and

60.48 while their native model scores were 28.69 and 43.64 respectively. However, for an even

larger cosine threshold of 0.95, we see a drastic decrease in performance specific to events (but not

for entities) where F scores reduce to almost single digits (around 7) for all BERT-variants. We

discuss this specific trend below in the paragraph on event-specific difficulties in affine-transfer for

BERT-variants.

Another surprising observation is BERT_BASE affine-mapped to BERT_LARGE space out-

performing native BERT_LARGE for events for a threshold of 0.6. This is marked in the non-

highlighted teal colored cell in Table 4.2 for events. For instance, BERT_BASE affine-mapped to

BERT_LARGE shows an F score of 57.32 while native BERT_LARGE gets an F score of 52.97.

Similarly, for entities, BERT_LARGE affine-mapped to BERT_BASE space outperforms native

BERT_LARGE as shown in the non-highlighted teal colored cell in Table 4.3. This is despite

the implicit noisiness in a transformation that goes up in dimensionality since BERT_LARGE em-

beddings are 1024 dimensional. This and the above trends suggest that semantic transfer in lan-

guage models can lead to even improved results depending on the cosine threshold compared to

native models. This is a surprising result when compared vision-specific works [McNeely-White,

2020, McNeely-White et al., 2022].

And now to take a dig at BERT! It appears that BERT-variants have a more difficult time

resolving event mentions than entities for higher cosine thresholds. For instance, in Table 4.2, the

non-highlighted red colored cells show significantly reduced scores for a high cosine threshold of

0.95 for CDLM (source) mapped to BERT-variants (target) when compared to native CDLM. The

scores are actually in single digits for events (around 7) for all three BERT-variants while the

scores for entities for the same threshold and affine-mapping direction are around 58 for all three
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BERT-variants. This trend is important because it is unique to events and we do not see such

drastic reduction (in fact, we see an improvement) in case of entities. This implies that BERT-

variants encode less event-specific semantic information than entity-related even though they are

less-contextualized than CDLM on average. Events are more difficult to resolve within CDCR in

general [Humphreys et al., 1997] and our observations with affine mappings are consistent with

such previous results. Perhaps, the corpora used to train such large language models do not have

enough event-specific information on average compared to entities but this is beyond the scope

of this thesis to explore. Another conjecture could be that BERT-variants encode event-specific

semantic information more anisotropically than that of entities. However, answering this question

would require further geometric analysis of the event or entity-specific embedding spaces. One

way would be to check if this trend is repeated for other affine transformations like shear and

rotation maps.
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Chapter 5

CONCLUSION AND FUTURE WORK

Our observations from both the tasks suggest that a canonical embedding space, that is amenable

to semantic transfer through affine-mapping, perhaps exists for language models as apparently is

the case for image embeddings [McNeely-White et al., 2022]. That all Transformer-based language

models (the ones we selected, in total nine) encode and transfer semantics albeit to a varying ex-

tent despite architectural variations and native-model task-agnosticity (since native models were

not specifically trained for our two tasks) buttresses the argument for the existence of this space.

A conclusive comment on its existence surely warrants more exploration on the intricacies of how

such embedding spaces are "learned" in the pretraining phase. Another way to verify its existence

would be to see how well they generalize to other downstream NLP tasks. Exploring the veracity

of its existence in the case of intermediate encoder layers of such language models is relevant here

too.

Nevertheless, our observations suggest that while it is true that semantic information is trans-

ferred by linear maps on average, the extent to which that happens is model-specific. In other

words, semantic information transfer depends on the source and the target model space. There

is also a strong argument to be made here that the embedding spaces of the native models and

their affine maps are perhaps task-agnostic too, apart from being canonical, since they gener-

alize well. In our case, the models we have selected differ in their training architectures, the

number of parameters in their weight matrices, hyperparameters selected as well the linguistic va-

riety of their respective corpora. Perhaps, Transformer-based bidirectional encoder systems that

rely on the self-attention mechanism encode the semantics of a language that is transferable be-

cause it is task-agnostic. The latter characteristic is interesting because this is unlike what previous

work [McNeely-White et al., 2020a, McNeely-White et al., 2022] had found. Their model sam-

ple space contained CNN models trained specifically for image classification or facial recognition

while their evaluation of linear maps was on the same or a similar task. In our case, our model sam-
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ple space is more varied. For instance, the large language models we had selected were trained for

masked-word prediction and next-sentence prediction primarily, but their embedding-based affine

maps were evaluated on a significantly different tasks like cognate detection and CDCR. Perhaps,

the training regime is what makes such semantic information transferable with high consistency

regardless of the task (as long as the task requires some semantic information for resolution).

In case of the cognate detection task, we observed cases of semantic encoding that robustly

transferred (through affine-mapping) language-specific semantics helpful for cross-lingual tasks.

We also learnt that deep neural networks that have non-linear decision boundaries are our best

bet to effectively use such transferred information in disambiguating negative samples to achieve

better results. Our observations also reveal interesting vector space related geometric properties of

the embedding spaces. That is, larger models are more isotropic and therefore, more responsive

to affine-mapped semantic transfer to smaller monolingual model spaces. For CDCR, we found

that affine-maps deployed on coreference-specific language models encode semantic information

in distinct spaces depending on how contextualized a model space is. For instance, we observed

that a more contextualized model like native CDLM encodes its coreference-specific semantic

information anisotropically i.e., in a tight high dimensional cone while the BERT-variants, whether

native or affine-mapped, does so in a more dispersed manner. Perhaps, the extent of isotropy is not

directly correlated with such semantic transfer since it could be task-specific but it definitely needs

more exploration.

More specifically for CDCR, we also saw the strange case where BERT_BASE affine-mapped

to BERT_LARGE space outperforming native BERT_LARGE for events despite dimensionality-

expansion related perturbations. This could solve an important but often ignored problem in

deploying language models like BERT, the one of computational cost-benefits. If linearly trans-

formed embeddings create spaces that outperform those of native variants, one can visualize ways

to neurally align embeddings generated from less-contextualized models at the fine tuning stage

without additional pretraining. Our final observation that BERT variants are iffy about resolving

event mentions makes us wonder if the problem lies in how representative of events their corpora is.
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It could also be that we just need richer contextual representations for a quintessentially difficult

task. Perhaps, this warrants an exploration of intermediate layer embeddings for a task-specific

richer representation of embeddings.

The above observations pique our curiosity about a few interesting ideas for future work. A

natural extension of this work would be to use affine-mapping in the case of other Transformer-

based language models like the autoregressive or generative models like GPT-2 [Radford et al.,

2019] since we have only used encoder-only language models for this work. This will answer

the question whether a canonical space exists for all Transformer-based language models or just

the masked-word-based representational ones like BERT. Another potential direction could be ex-

ploring the usefulness of semantic transfer for classically syntactic NLP tasks like span bound-

ary prediction or next-sentence prediction. For task-specific future work, exploring the extent of

cross-lingual semantic transfer for low-resource languages (LRLs) could surely help improve rep-

resentation for such languages in the AI/NLP community. In CDCR, since we have only used

MUC for the evaluation, one could try other metrics like LEA or BLANC that are more fair to the

coreference-specific idiosyncrasies of the LDC Dataset. While cosine similarity metrics do help

determine how similar two documents (or two mentions) are for CDCR, a better way to use such

language models would be to get more "contextualized" pairwise representations straight out of the

model before any clustering steps using a cross-encoder architecture [Cattan et al., 2021a]. Lastly,

since affine maps are minimally constrained, other more constrained linear transformations like

shear or a rotation maps may expose more interesting results about the vector spaces of language

models.
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