846 research outputs found

    Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems

    Get PDF
    Data-driven and computational approaches are showing significant promise in solving several challenging problems in various fields such as bioinformatics, finance and many branches of engineering. In this dissertation, we explore the potential of these approaches, specifically statistical data models and optimization algorithms, for solving several challenging problems in computer vision. In doing so, we contribute to the literatures of both statistical data models and computer vision. In the context of statistical data models, we propose principled approaches for solving robust regression problems, both linear and kernel, and missing data matrix factorization problem. In computer vision, we propose statistically optimal and efficient algorithms for solving the remote face recognition and structure from motion (SfM) problems. The goal of robust regression is to estimate the functional relation between two variables from a given data set which might be contaminated with outliers. Under the reasonable assumption that there are fewer outliers than inliers in a data set, we formulate the robust linear regression problem as a sparse learning problem, which can be solved using efficient polynomial-time algorithms. We also provide sufficient conditions under which the proposed algorithms correctly solve the robust regression problem. We then extend our robust formulation to the case of kernel regression, specifically to propose a robust version for relevance vector machine (RVM) regression. Matrix factorization is used for finding a low-dimensional representation for data embedded in a high-dimensional space. Singular value decomposition is the standard algorithm for solving this problem. However, when the matrix has many missing elements this is a hard problem to solve. We formulate the missing data matrix factorization problem as a low-rank semidefinite programming problem (essentially a rank constrained SDP), which allows us to find accurate and efficient solutions for large-scale factorization problems. Face recognition from remotely acquired images is a challenging problem because of variations due to blur and illumination. Using the convolution model for blur, we show that the set of all images obtained by blurring a given image forms a convex set. We then use convex optimization techniques to find the distances between a given blurred (probe) image and the gallery images to find the best match. Further, using a low-dimensional linear subspace model for illumination variations, we extend our theory in a similar fashion to recognize blurred and poorly illuminated faces. Bundle adjustment is the final optimization step of the SfM problem where the goal is to obtain the 3-D structure of the observed scene and the camera parameters from multiple images of the scene. The traditional bundle adjustment algorithm, based on minimizing the l_2 norm of the image re-projection error, has cubic complexity in the number of unknowns. We propose an algorithm, based on minimizing the l_infinity norm of the re-projection error, that has quadratic complexity in the number of unknowns. This is achieved by reducing the large-scale optimization problem into many small scale sub-problems each of which can be solved using second-order cone programming

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Towards Reliable and Accurate Global Structure-from-Motion

    Get PDF
    Reconstruction of objects or scenes from sparse point detections across multiple views is one of the most tackled problems in computer vision. Given the coordinates of 2D points tracked in multiple images, the problem consists of estimating the corresponding 3D points and cameras\u27 calibrations (intrinsic and pose), and can be solved by minimizing reprojection errors using bundle adjustment. However, given bundle adjustment\u27s nonlinear objective function and iterative nature, a good starting guess is required to converge to global minima. Global and Incremental Structure-from-Motion methods appear as ways to provide good initializations to bundle adjustment, each with different properties. While Global Structure-from-Motion has been shown to result in more accurate reconstructions compared to Incremental Structure-from-Motion, the latter has better scalability by starting with a small subset of images and sequentially adding new views, allowing reconstruction of sequences with millions of images. Additionally, both Global and Incremental Structure-from-Motion methods rely on accurate models of the scene or object, and under noisy conditions or high model uncertainty might result in poor initializations for bundle adjustment. Recently pOSE, a class of matrix factorization methods, has been proposed as an alternative to conventional Global SfM methods. These methods use VarPro - a second-order optimization method - to minimize a linear combination of an approximation of reprojection errors and a regularization term based on an affine camera model, and have been shown to converge to global minima with a high rate even when starting from random camera calibration estimations.This thesis aims at improving the reliability and accuracy of global SfM through different approaches. First, by studying conditions for global optimality of point set registration, a point cloud averaging method that can be used when (incomplete) 3D point clouds of the same scene in different coordinate systems are available. Second, by extending pOSE methods to different Structure-from-Motion problem instances, such as Non-Rigid SfM or radial distortion invariant SfM. Third and finally, by replacing the regularization term of pOSE methods with an exponential regularization on the projective depth of the 3D point estimations, resulting in a loss that achieves reconstructions with accuracy close to bundle adjustment

    Scalable 3D Surface Reconstruction by Local Stochastic Fusion of Disparity Maps

    Get PDF
    Digital three-dimensional (3D) models are of significant interest to many application fields, such as medicine, engineering, simulation, and entertainment. Manual creation of 3D models is extremely time-consuming and data acquisition, e.g., through laser sensors, is expensive. In contrast, images captured by cameras mean cheap acquisition and high availability. Significant progress in the field of computer vision already allows for automatic 3D reconstruction using images. Nevertheless, many problems still exist, particularly for big sets of large images. In addition to the complex formulation necessary to solve an ill-posed problem, one has to manage extremely large amounts of data. This thesis targets 3D surface reconstruction using image sets, especially for large-scale, but also for high-accuracy applications. To this end, a processing chain for dense scalable 3D surface reconstruction using large image sets is defined consisting of image registration, disparity estimation, disparity map fusion, and triangulation of point clouds. The main focus of this thesis lies on the fusion and filtering of disparity maps, obtained by Semi-Global Matching, to create accurate 3D point clouds. For unlimited scalability, a Divide and Conquer method is presented that allows for parallel processing of subspaces of the 3D reconstruction space. The method for fusing disparity maps employs local optimization of spatial data. By this means, it avoids complex fusion strategies when merging subspaces. Although the focus is on scalable reconstruction, a high surface quality is obtained by several extensions to state-of-the-art local optimization methods. To this end, the seminal local volumetric optimization method by Curless and Levoy (1996) is interpreted from a probabilistic perspective. From this perspective, the method is extended through Bayesian fusion of spatial measurements with Gaussian uncertainty. Additionally to the generation of an optimal surface, this probabilistic perspective allows for the estimation of surface probabilities. They are used for filtering outliers in 3D space by means of geometric consistency checks. A further improvement of the quality is obtained based on the analysis of the disparity uncertainty. To this end, Total Variation (TV)-based feature classes are defined that are highly correlated with the disparity uncertainty. The correlation function is learned from ground-truth data by means of an Expectation Maximization (EM) approach. Because of the consideration of a statistically estimated disparity error in a probabilistic framework for fusion of spatial data, this can be regarded as a stochastic fusion of disparity maps. In addition, the influence of image registration and polygonization for volumetric fusion is analyzed and used to extend the method. Finally, a multi-resolution strategy is presented that allows for the generation of surfaces from spatial data with a largely varying quality. This method extends state-of-the-art methods by considering the spatial uncertainty of 3D points from stereo data. The evaluation of several well-known and novel datasets demonstrates the potential of the scalable stochastic fusion method. The strength and the weakness of the method are discussed and direction for future research is given.Digitale dreidimensionale (3D) Modelle sind in vielen Anwendungsfeldern, wie Medizin, Ingenieurswesen, Simulation und Unterhaltung von signifikantem Interesse. Eine manuelle Erstellung von 3D-Modellen ist äußerst zeitaufwendig und die Erfassung der Daten, z.B. durch Lasersensoren, ist teuer. Kamerabilder ermöglichen hingegen preiswerte Aufnahmen und sind gut verfügbar. Der rasante Fortschritt im Forschungsfeld Computer Vision ermöglicht bereits eine automatische 3D-Rekonstruktion aus Bilddaten. Dennoch besteht weiterhin eine Vielzahl von Problemen, insbesondere bei der Verarbeitung von großen Mengen hochauflösender Bilder. Zusätzlich zur komplexen Formulierung, die zur Lösung eines schlecht gestellten Problems notwendig ist, besteht die Herausforderung darin, äußerst große Datenmengen zu verwalten. Diese Arbeit befasst sich mit dem Problem der 3D-Oberflächenrekonstruktion aus Bilddaten, insbesondere für sehr große Modelle, aber auch Anwendungen mit hohem Genauigkeitsanforderungen. Zu diesem Zweck wird eine Prozesskette zur dichten skalierbaren 3D-Oberflächenrekonstruktion für große Bildmengen definiert, bestehend aus Bildregistrierung, Disparitätsschätzung, Fusion von Disparitätskarten und Triangulation von Punktwolken. Der Schwerpunkt dieser Arbeit liegt auf der Fusion und Filterung von durch Semi-Global Matching generierten Disparitätskarten zur Bestimmung von genauen 3D-Punktwolken. Für eine unbegrenzte Skalierbarkeit wird eine Divide and Conquer Methode vorgestellt, welche eine parallele Verarbeitung von Teilräumen des 3D-Rekonstruktionsraums ermöglicht. Die Methode zur Fusion von Disparitätskarten basiert auf lokaler Optimierung von 3D Daten. Damit kann eine komplizierte Fusionsstrategie für die Unterräume vermieden werden. Obwohl der Fokus auf der skalierbaren Rekonstruktion liegt, wird eine hohe Oberflächenqualität durch mehrere Erweiterungen von lokalen Optimierungsmodellen erzielt, die dem Stand der Forschung entsprechen. Dazu wird die wegweisende lokale volumetrische Optimierungsmethode von Curless and Levoy (1996) aus einer probabilistischen Perspektive interpretiert. Aus dieser Perspektive wird die Methode durch eine Bayes Fusion von räumlichen Messungen mit Gaußscher Unsicherheit erweitert. Zusätzlich zur Bestimmung einer optimalen Oberfläche ermöglicht diese probabilistische Fusion die Extraktion von Oberflächenwahrscheinlichkeiten. Diese werden wiederum zur Filterung von Ausreißern mittels geometrischer Konsistenzprüfungen im 3D-Raum verwendet. Eine weitere Verbesserung der Qualität wird basierend auf der Analyse der Disparitätsunsicherheit erzielt. Dazu werden Gesamtvariation-basierte Merkmalsklassen definiert, welche stark mit der Disparitätsunsicherheit korrelieren. Die Korrelationsfunktion wird aus ground-truth Daten mittels eines Expectation Maximization (EM) Ansatzes gelernt. Aufgrund der Berücksichtigung eines statistisch geschätzten Disparitätsfehlers in einem probabilistischem Grundgerüst für die Fusion von räumlichen Daten, kann dies als eine stochastische Fusion von Disparitätskarten betrachtet werden. Außerdem wird der Einfluss der Bildregistrierung und Polygonisierung auf die volumetrische Fusion analysiert und verwendet, um die Methode zu erweitern. Schließlich wird eine Multi-Resolution Strategie präsentiert, welche die Generierung von Oberflächen aus räumlichen Daten mit unterschiedlichster Qualität ermöglicht. Diese Methode erweitert Methoden, die den Stand der Forschung darstellen, durch die Berücksichtigung der räumlichen Unsicherheit von 3D-Punkten aus Stereo Daten. Die Evaluierung von mehreren bekannten und neuen Datensätzen zeigt das Potential der skalierbaren stochastischen Fusionsmethode auf. Stärken und Schwächen der Methode werden diskutiert und es wird eine Empfehlung für zukünftige Forschung gegeben

    Why do we optimize what we optimize in multiple view geometry?

    Get PDF
    Para que un computador sea capaz de entender la geometría 3D de su entorno, necesitamos derivar las relaciones geométricas entre las imágenes 2D y el mundo 3D.La geometría de múltiples vistas es el área de investigación que estudia este problema.La mayor parte de métodos existentes resuelve pequeñas partes de este gran problema minimizando una determinada función objetivo.Estas funciones normalmente se componen de errores algebraicos o geométricos que representan las desviaciones con respecto al modelo de observación.En resumen, en general tratamos de recuperar la estructura 3D del mundo y el movimiento de la cámara encontrando el modelo que minimiza la discrepancia con respecto a las observaciones.El enfoque de esta tesis se centra principalmente en dos aspectos de los problemas de reconstrucción multivista:los criterios de error y la robustez.Primero, estudiamos los criterios de error usados en varios problemas geométricos y nos preguntamos`¿Por qué optimizamos lo que optimizamos?'Específicamente, analizamos sus pros y sus contras y proponemos métodos novedosos que combinan los criterios existentes o adoptan una mejor alternativa.En segundo lugar, tratamos de alcanzar el estado del arte en robustez frente a valores atípicos y escenarios desafiantes, que a menudo se encuentran en la práctica.Para ello, proponemos múltiples ideas novedosas que pueden ser incorporadas en los métodos basados en optimización.Específicamente, estudiamos los siguientes problemas: SLAM monocular, triangulación a partir de dos y de múltiples vistas, promedio de rotaciones únicas y múltiples, ajuste de haces únicamente con rotaciones de cámara, promedio robusto de números y evaluación cuantitativa de estimación de trayectoria.Para SLAM monocular, proponemos un enfoque híbrido novedoso que combina las fortalezas de los métodos directos y los basados en características.Los métodos directos minimizan los errores fotométricos entre los píxeles correspondientes en varias imágenes, mientras que los métodos basados en características minimizan los errores de reproyección.Nuestro método combina de manera débilmente acoplada la odometría directa y el SLAM basado en características, y demostramos que mejora la robustez en escenarios desafiantes, así como la precisión cuando el movimiento de la cámara realiza frecuentes revisitas.Para la triangulación de dos vistas, proponemos métodos óptimos que minimizan los errores de reproyección angular en forma cerrada.Dado que el error angular es rotacionalmente invariante, estos métodos se pueden utilizar para cámaras perspectivas, lentes de ojo de pez u omnidireccionales.Además, son mucho más rápidos que los métodos óptimos existentes en la literatura.Otro método de triangulación de dos vistas que proponemos adopta un enfoque completamente diferente:Modificamos ligeramente el método clásico del punto medio y demostramos que proporciona un equilibrio superior de precisión 2D y 3D, aunque no es óptimo.Para la triangulación multivista, proponemos un método robusto y eficiente utilizando RANSAC de dos vistas.Presentamos varios criterios de finalización temprana para RANSAC de dos vistas utilizando el método de punto medio y mostramos que mejora la eficiencia cuando la proporción de medidas espúreas es alta.Además, mostramos que la incertidumbre de un punto triangulado se puede modelar en función de tres factores: el número de cámaras, el error medio de reproyección y el ángulo de paralaje máximo.Al aprender este modelo, la incertidumbre se puede interpolar para cada caso.Para promediar una sola rotación, proponemos un método robusto basado en el algoritmo de Weiszfeld.La idea principal es comenzar con una inicialización robusta y realizar un esquema de rechazo de valores espúreos implícito dentro del algoritmo de Weiszfeld para aumentar aún más la robustez.Además, usamos una aproximación de la mediana cordal en SO(3)SO(3) que proporciona una aceleración significativa del método. Para promediar rotaciones múltiples proponemos HARA, un enfoque novedoso que inicializa de manera incremental el grafo de rotaciones basado en una jerarquía de compatibilidad con tripletas.Esencialmente, construimos un árbol de expansión priorizando los enlaces con muchos soportes triples fuertes y agregando gradualmente aquellos con menos soportes y más débiles.Como resultado, reducimos el riesgo de agregar valores atípicos en la solución inicial, lo que nos permite filtrar los valores atípicos antes de la optimización no lineal.Además, mostramos que podemos mejorar los resultados usando la función suavizada L0+ en el paso de refinamiento local.A continuación, proponemos el ajuste de haces únicamente con rotaciones, un método novedoso para estimar las rotaciones absolutas de múltiples vistas independientemente de las traslaciones y la estructura de la escena.La clave es minimizar una función de coste especialmente diseñada basada en el error epipolar normalizado, que está estrechamente relacionado con el error de reproyección angular óptimo L1 entre otras cantidades geométricas.Nuestro enfoque brinda múltiples beneficios, como inmunidad total a translaciones y triangulaciones imprecisas, robustez frente a rotaciones puras y escenas planas, y la mejora de la precisión cuando se usa tras el promedio de promedio de rotaciones explicado anteriormente.También proponemos RODIAN, un método robusto para promediar un conjunto de números contaminados por una gran proporción de valores atípicos.En nuestro método, asumimos que los valores atípicos se distribuyen uniformemente dentro del rango de los datos y buscamos la región que es menos probable que contenga solo valores atípicos.Luego tomamos la mediana de los datos dentro de esta región.Nuestro método es rápido, robusto y determinista, y no se basa en un límite de error interno conocido.Finalmente, para la evaluación cuantitativa de la trayectoria, señalamos la debilidad del Error de Trayectoria Absoluta (ATE) comúnmente utilizado y proponemos una alternativa novedosa llamada Error de Trayectoria Discernible (DTE).En presencia de solo unos pocos valores espúreos, el ATE pierde su sensibilidad respecto al error de trayectoria de los valores típicos y respecto al número de datos atípicos o espúreos.El DTE supera esta debilidad al alinear la trayectoria estimada con la verdadera (ground truth) utilizando un método robusto basado en varios tipos diferentes de medianas.Usando ideas similares, también proponemos una métrica de solo rotación, llamada Error de Rotación Discernible (DRE).Además, proponemos un método simple para calibrar la rotación de cámara a marcador, que es un requisito previo para el cálculo de DTE y DRE.<br /

    Stable Camera Motion Estimation Using Convex Programming

    Full text link
    We study the inverse problem of estimating n locations t1,...,tnt_1, ..., t_n (up to global scale, translation and negation) in RdR^d from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of ±(titj)/titj\pm (t_i - t_j)/\|t_i - t_j\| for some pairs (i,j) (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the tit_i's represent camera locations in R3R^3. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially for large, irregular collections of images. In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and stable location recovery results. We also formulate an alternating direction method to solve the resulting semidefinite program, and provide a distributed version of our formulation for large numbers of locations. Specifically for the camera location estimation problem, we formulate a pairwise line estimation method based on robust camera orientation and subspace estimation. Lastly, we demonstrate the utility of our algorithm through experiments on real images.Comment: 40 pages, 12 figures, 6 tables; notation and some unclear parts updated, some typos correcte

    Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC

    Full text link
    We introduce Tempered Geodesic Markov Chain Monte Carlo (TG-MCMC) algorithm for initializing pose graph optimization problems, arising in various scenarios such as SFM (structure from motion) or SLAM (simultaneous localization and mapping). TG-MCMC is first of its kind as it unites asymptotically global non-convex optimization on the spherical manifold of quaternions with posterior sampling, in order to provide both reliable initial poses and uncertainty estimates that are informative about the quality of individual solutions. We devise rigorous theoretical convergence guarantees for our method and extensively evaluate it on synthetic and real benchmark datasets. Besides its elegance in formulation and theory, we show that our method is robust to missing data, noise and the estimated uncertainties capture intuitive properties of the data.Comment: Published at NeurIPS 2018, 25 pages with supplement
    corecore