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Abstract

Reconstruction of objects or scenes from sparse point detections across multiple
views is one of the most tackled problems in computer vision. Given the coordi-
nates of 2D points tracked in multiple images, the problem consists of estimating the
corresponding 3D points and cameras’ calibrations (intrinsic and pose), and can be
solved by minimizing reprojection errors using bundle adjustment. However, given
bundle adjustment’s nonlinear objective function and iterative nature, a good starting
guess is required to converge to global minima.

Global and Incremental Structure-from-Motion methods appear as ways to pro-
vide good initializations to bundle adjustment, each with different properties. While
Global Structure-from-Motion has been shown to result in more accurate reconstruc-
tions compared to Incremental Structure-from-Motion, the latter has better scalabil-
ity by starting with a small subset of images and sequentially adding new views,
allowing reconstruction of sequences with millions of images. Additionally, both
Global and Incremental Structure-from-Motion methods rely on accurate models of
the scene or object, and under noisy conditions or high model uncertainty might re-
sult in poor initializations for bundle adjustment. Recently pOSE, a class of matrix
factorization methods, has been proposed as an alternative to conventional Global
SfM methods. These methods use VarPro - a second-order optimization method - to
minimize a linear combination of an approximation of reprojection errors and a regu-
larization term based on an affine camera model, and have been shown to converge to
global minima with a high rate even when starting from random camera calibration
estimations.

This thesis aims at improving the reliability and accuracy of global SfM through
different approaches. First, by studying conditions for global optimality of point set
registration, a point cloud averaging method that can be used when (incomplete) 3D
point clouds of the same scene in different coordinate systems are available. Second,
by extending pOSE methods to different Structure-from-Motion problem instances,
such as Non-Rigid SfM or radial distortion invariant SfM. Third and finally, by re-
placing the regularization term of pOSE methods with an exponential regularization
on the projective depth of the 3D point estimations, resulting in a loss that achieves
reconstructions with accuracy close to bundle adjustment.

Keywords: Structure-from-Motion, 3D reconstruction, camera calibration, bun-
dle adjustment, global SfM, non-rigid SfM, radial distortion, matrix factorization,
pOSE, point set registration.
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CHAPTER 1

Introduction

Vision is an essential part of the way that we interpret, experience, and navigate the
world. More than any other sense, vision allows us to detect and locate friends or foes
in our proximity, understand our position with respect to reference points, estimate
distances between or to objects, etc.. All this data is captured by our eyes in raw form,
which is then (somehow) processed by our brains into useful information. Given the
richness of vision data, how can we replicate this process in our systems, such as
robots, autonomous cars, or computer applications? Well, the data-capturing part is
quite well solved I would argue. We have camera sensors that very closely replicate
the optical processes in the eye, resulting in images that have as much information
as we can see (perhaps with even higher resolution). The problem is that it’s unclear
what to do with this information since the inner workings of the brain are still pretty
unknown to us. Besides that, camera sensors provide us with digitalized pixel data,
which are very different from the analogical signals our brain processes.

While our knowledge about neuroscience and the brain keeps growing and new
theories emerge, the research community tackled the problem using the tools they
currently master: mathematics and geometry. Computer vision has been a popular
research area since the middle of the last century. From camera models that cap-
ture how 3D points are projected into images, to multiple view tensors that deter-
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Chapter 1 Introduction

mine algebraic relations between projections in different views, concepts from linear
algebra, calculus, matrix and spectral analysis, polynomial algebra, optimization,
and many others have been the preferred tools to solve computer vision problems.
More recently, a new class of solutions emerged with the rise of deep machine learn-
ing and parallel computing. Instead of explicitly defining the functions and heuris-
tics that determine the relations between camera, scene, and images, deep machine
learning methods learn those relations through neural networks with learnable pa-
rameters from (huge amounts of) training data. These learning-based methods have
been extremely successful, in particular in areas like scene understanding, object de-
tection, image segmentation or classification, and more recently image generation,
strongly outperforming conventional methods based on heuristics. However, in re-
gard to problems with strong geometric primitives, like 3D reconstruction or pose
estimation, learning-based methods are still not able to achieve the accuracy of con-
ventional methods. The advantage of conventional methods is that they use exact
relations between variables, and approximating these with neural networks results in
degradation of the obtained reconstruction - at least for now.

Even though learning-based methods are definitely promising and are slowly catch-
ing up, I still believe that a lot more can be squeezed in terms of reliability and per-
formance from conventional methods without the need to learn from large datasets.
Therefore, the focus of this thesis is on 3D reconstruction and camera pose estima-
tion, in which geometrical relations between cameras and the scene structure play an
essential part. In particular, I study the Structure-from-Motion (SfM) problem, which
estimates camera calibrations (both intrinsic calibration and camera poses) and 3D
point coordinates from a set of 2D points tracked along multiple images, captured
from different points of view (see Figure 1.1).

Structure-from-Motion has several applications which have been under society’s
spotlight over the last few years. One of the biggest ones is perhaps autonomous
driving, in which images collected from multiple cameras placed in the vehicle can
be used to localize and/or track its position. The vehicle’s pose estimation from
images can then be combined with other sensor data (e.g. GPS, IMU, Lidar) to in-
crease the accuracy of the estimation. More generally, the problem of estimating
pose based on images is referred to as visual localization and can also include other
applications like robot navigation or augmented reality. Augmented reality headsets
usually have cameras mounted on the front and sides of the device which are used for
scene understanding and pose estimation. Having an accurate headset pose estima-
tion is essential to generate virtual objects over the user’s field of view in a smooth

4



Figure 1.1: Representation of the inputs and outputs of a Structure-from-Motion (SfM) algo-
rithm. (Left) Multiple images are captured from different viewpoints of a certain
object or scene, in which keypoints (in red) are detected and matched along the
images (some of the matches are represented in blue, green and yellow). (Right)
These matches, or correspondences, are then fed as input to a Structure-from-
Motion algorithm, which ultimately estimates the 3D coordinates of the detected
keypoints (in black), along with the camera calibrations position (in blue), rota-
tion (red arrows) and internal calibration.

and realistic way. Failing to do so makes those objects jitter or drift, resulting in a
poor user experience and possibly even nausea. Structure-from-Motion methods are
also frequently used for 3D scanning of objects or scenes. Typically 3D scanners
are laser-based which makes the device expensive and not particularly accessible.
Contrarily, camera sensors are fairly cheap and when combined with Structure-from-
Motion methods provide an affordable alternative to obtain 3D scans - you can easily
get a 3D model of an object of interest with your phone, for instance. Examples of
such use cases include real estate, where virtual tours can be set up by 3D scanning
a house or apartment and making its 3D model available online for interested buyers
to explore remotely. More recently, Structure-from-Motion methods have also been
used to provide training data for deep learning methods. For instance, novel view
synthesis have been a hot topic in computer vision since the release of the NeRF
paper in 2020. Novel view synthesis takes training data images of an object or scene
from several viewpoints along with the corresponding camera calibrations and learns
a neural network model that is able to accurately generate a new image from a new
and unseen viewpoint. In order to learn models that are able to generate realistic
images, the input camera calibrations, both camera poses and internal calibration,
need to be extremely accurate and Structure-from-Motion methods are usually the
preferred way to estimate them if ground-truth calibrations are not available.

One possible way to solve Structure-from-Motion is through the minimization of

5



Chapter 1 Introduction

the so-called reprojection errors. The reprojection error consists of the distance be-
tween the pixel coordinates of the 2D point detected in the image and the 2D point
projected back to the image based on the estimated camera calibration and 3D point
coordinates. If the reprojection error is zero, it means that the estimated model per-
fectly fits the measurements and consequently the reconstruction obtained is accu-
rate. Obtaining zero reprojection error is not realistic since there is always noise in
the input data (e.g. pixel discretization, uncertainty in the exact location of the 2D
points in the images) and as so the problem, denoted bundle adjustment, is formu-
lated as a minimization of reprojection errors, such that the estimated reconstruction
fits as well as possible the multiple 2D points detected over all the images. Bundle
adjustment does not have a closed-form solution so it relies on an iterative optimiza-
tion from a starting guess for the camera calibrations and 3D points. In fact, given
the nonlinearity of the reprojection errors, the starting guess needs to be sufficiently
close to the desired (unknown) camera calibrations and 3D points, otherwise, the
algorithm can converge to local minima. In practice, this means that some other
method is needed to obtain a good enough estimation to initiate bundle adjustment,
and this is where Structure-from-Motion methods come into the picture.

Structure-from-Motion methods are typically divided into two categories: Global
and Incremental SfM. Global methods start by computing relative poses between
pairs of images with an intersecting field of view - for instance, relative pose be-
tween images 1 and 2, 2 and 3, and so on, for all possible pairs. From the pairwise
pose estimations, a global pose averaging method is applied to estimate absolute
camera poses on some (sometimes arbitrary) global coordinate system. At this stage,
the camera calibrations are estimated, so the 3D points can be obtained through tri-
angulation. We will look more into the details of these steps in Section 3. The
camera calibrations from the global pose averaging and 3D point from triangulation
are then used as initialization to bundle adjustment. Incremental methods differ by
starting with a subset of the images, typically just a pair, for which relative poses and
3D points are estimated in a similar way. After that, a new view with intersecting
field of view is added, and the corresponding and already estimated 3D points are
used to estimate the camera calibration of the new view. New 3D points can now be
triangulated using the estimated camera calibrations. This process is repeated until
all images are added. Incremental methods have the advantage to scale much better
than Global methods, since estimating new camera calibrations for given 3D points
and vice-versa can be solved very efficiently compared to global pose averaging.
However, since only a subset of views is used sequentially, it tends to result in less
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1.1 Thesis outline

accurate reconstructions.
An alternative family of Global SfM consists of factorization methods. These

methods build on the fact that based on the camera model equations the 2D point de-
tections in all views can be rearranged into a large matrix with low rank, which can
be decomposed into the product of two matrices with four columns each - one corre-
sponding to the camera calibrations and another to the (transposed) 3D points. More
recently, Hong et al. [1] proposed a new formulation of factorization methods, pOSE
models, that aims at minimizing a linear approximation of reprojection errors plus a
regularization term. The pOSE problem can be efficiently optimized with VarPro, a
variable projection second-order optimization algorithm, that can converge to global
minima with a high success rate even when starting with random guesses for camera
calibrations. Besides that, it also results in good initializations for bundle adjust-
ment, something that was not always the case in practice with previous factorization
methods for Structure-from-Motion.

This thesis aims at improving the understanding and quality of Global Structure-
from-Motion methods. First by analyzing global optimality conditions of one variant
of global pose averaging methods, called point set registration. In point set regis-
tration, several 3D point clouds of the same object or scene are available in each
camera’s local coordinate system, and the goal is to estimate an average 3D point
cloud in a global coordinate system, along with the transformations that map from
the local coordinate systems to the global one. In particular, we study under which
conditions, such as missing data, object spatial distribution, or noise, a candidate so-
lution is globally optimal. Second, by extending pOSE methods to different problem
instances, such as images with radial distortion (radial distortion invariant SfM) and
images in which the object or scene suffers temporal deformations (Non-Rigid SfM).
Additionally, we also explore the use of a different regularization term that penalizes
the reconstructions less than the one proposed in the original pOSE model, ultimately
leading to more accurate reconstructions.

1.1 Thesis outline

The thesis is divided into two parts. Part II contains the included five papers that
consist of the core of this thesis and its contributions. Part I provides the necessary
background in order to be able to more easily follow the content of the papers, and is
itself divided into five Chapters. Chapter 2 provides some basic knowledge regard-
ing projective geometry and camera models, which should be enough for the reader
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Chapter 1 Introduction

to have a clear idea on how cameras and 3D points are represented and related in
geometric computer vision. Chapter 2 finishes with an overview of feature detec-
tion and matching, which combined with camera models and 3D points provides the
groundwork for understanding the Structure-from-Motion problem. Chapter 3 goes
into more detail regarding Structure-from-Motion. In particular, how can the prob-
lem be formulated from the concepts introduced in Chapter 2, and what are the main
approaches to tackle the problem, including their properties, advantages and disad-
vantages. Chapter 4 provides a summary of the five papers in Part II and relates them
to the concepts in Chapter 2 and 3 of Part I. Finally, Chapter 5 concludes the work
with a summary of the contributions and results of this thesis, and follows up with
possible future work, both in terms of extensions of the presented papers and also
what I believe could be new interesting approaches based on recent developments
within the research community.

1.2 Notation

In this section, I will explain the notation used in Part I of the thesis. Scalar variables
are represented as lower or upper case letters e.g. x, y, λ, N, F . N-dimensional vec-
tors are represented as lowercase bold letters, e.g. x, y, z. Matrices are represented
using upper case bold letters, e.g. X, P, H. Sometimes single 3D points, which are
vectors, are represented with uppercase letters as well, e.g. X, but in those cases,
the use of indexes like Xi or Xij or the context of the text should make it clear if
it consists of a vector or a matrix. When referring to only specific rows of a vector
or matrix, a superscript (i : j) is used to select rows i to j of the vector/matrix, e.g.
R(1:2) refers to the first two columns of the matrix R, and z(3) to the third row of
the vector z. For representing points in homogeneous coordinates a bar is added on
top of the bold letter e.g. x̄, X̄. The vector of ordered singular values of a matrix A
is referred to as σ(A), with σ1(A) ≥ σ2(A) ≥ . . ., where σk(A) corresponds to the
kth largest singular value of A.

I conclude this section by noting that the notation used in the five included pa-
pers in Part II might be different from the one defined here and used in all of Part
I. However, the context of each paper should make it easy to follow the notation
nonetheless.
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CHAPTER 2

Background

In this chapter, we will provide the necessary background information to better un-
derstand the content of the five papers presented in the second part of the thesis. In
the next chapter, I will use these concepts to introduce the Structure-from-Motion
problem and the different ways to solve it. The chapter is divided into three parts. In
the first section, I will cover the basics of projective geometry, in particular how 2D
and 3D points are represented, and what type of transformations can be applied to
them. In the second section, I will go through the major camera models used in com-
puter vision, and how effects like lens distortion can be modeled. Finally, I will take
about some of the methods used to detected and track points along multiple views,
something essential for 3D reconstruction and Structure-from-Motion.

2.1 Projective Geometry

Points in 2D and 3D

Let us start by considering a 2D point x described by the coordinates (x, y) ∈ R2.
In many occasions I will represent such point using its homogeneous coordinate
representation [2], i.e. x̄ = (x, y, 1) ∈ P2 (projective space). Using homogeneous
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coordinates allows us to define points up to scale, meaning that x̄ and x̄′ represent
the same point in 2D if x̄ = λx̄′, λ ̸= 0. For instance, let’s consider the 2D point
x = (1, 3). It can be represented in homogeneous coordinates as x̄ = (1, 3, 1),
and any point x̄′ = (λ, 3λ, λ) represents the exact same point in 2D since (x, y)
can be recovered by dividing the first two elements of x̄′ by its third element. This
representation also allows us to represent points at infinity [3] by setting the last
coordinate to zero, e.g. x̄ = (2, 1, 0), a concept useful in many applications in
computer vision such as camera calibration. A 2D point x̄ ∈ P2 has 2 degrees of
freedom (3 variables minus the scale ambiguity).

Similarly, a 3D point X is described using three coordinates (x, y, z) ∈ R3, and
its homogeneous coordinates extension corresponds to X̄ = (x, y, z, 1) ∈ P3. Just
like in the 2D case, points are defined up to scale and X̄ and X̄′ define the same 3D
point if X̄ = λX̄′, λ ̸= 0. This representation will be used throughout this thesis
in order to represent the points in 3D that we would like to reconstruct. A 3D point
X̄ ∈ P3 has 3 degrees of freedom (4 variables minus the scale ambiguity).

Transformations in 2D and 3D

Having defined how to represent a point in 2D and 3D in projective geometry, we
can now introduce the concept of transformation from Pn to Pn that can be applied
to a set of points in this space. Starting with 2D, we define projective transformation
or homography as

x̄′ = Hx̄ =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 x̄. (2.1)

For generic homographies, the only constraint on the elements hij is that H has
to be invertible. A homography has 8 degrees of freedom (9 parameters minus scale
ambiguity), and it preserves some properties of a set of points, such as colinearity [3].
Homographies are very commonly used to model transformations between planar
structures. For instance, consider that we have two images of a chessboard captured
from different views. The relation between all the corners of the chessboard in both
images (say xi and x′

i in images 1 and 2, respectively, for i = 1, . . . , N , where N is
the number of points) can be represented by a homography, i.e., λix̄′

i = Hx̄i,∀i =
1, . . . , N . This is only true since both images and the chessboard itself consist of
planar surfaces.

Adding constraints to the possible values of H will not only reduce the degrees of
freedom of the transformation but also increase the set of properties preserved by it.
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For instance, an affine transformation in 2D is defined as

x̄′ =

h11 h12 h13
h21 h22 h23
0 0 h33

 x̄ (2.2)

where h31 = h32 = 0, meaning that an affine transformation has 6 degrees of free-
dom. In this case, besides colinearity, properties like parallelism, the ratio of areas,
or centroids are equally preserved. The problem can be further constrained by con-
sidering a similarity transformation, defined as

x̄′ =

sr11 sr12 h13
sr21 sr22 h23

0 0 1

 x̄ (2.3)

where the top-left 2 × 2 matrix of H consists of a scaled rotation sR, R ∈ SO(2)
and s ∈ R. This class of transformations additionally preserves the ratio between
lengths and areas, and has 4 degrees of freedom (1 for the rotation, 1 for the scale
s, and two for h13 and h23). For the particular case s = 1, the transformation is
denoted as Euclidean, and it additionally preserves areas and lengths. A Euclidean
transformation consists of rotating and translating points in 2D, and it has 3 degrees
of freedom.

The set of 3D transformations follows a similar hierarchy, with the difference that
H is instead a 4×4 matrix, all the properties concerning lines are extended to planes,
and 2D rotations in the 2D transformations are replaced by 3D rotations. A projective
transformation is then defined as

X̄′ = HX̄ =


h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

 X̄ (2.4)

which has 15 degrees of freedom and preserves coplanarity. The projective trans-
formation is a core concept in Structure-from-Motion since when the intrinsic cali-
bration of the camera is unknown, the reconstruction is estimated up to a projective
transformation (this will be covered in more detail in the next Chapter). An affine
transformation consists of the case in which h41 = h42 = h43 = 0, it has 12 degrees
of freedom and it preserves parallelism between planes. A similarity transformation
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in 3D is defined as

X̄′ =


sr11 sr12 sr13 h14
sr21 sr22 sr23 h24
sr31 sr32 sr33 h34

0 0 0 1

 X̄, (2.5)

where the top-left 3 × 3 matrix of H consists of a scaled rotation sR, R ∈ SO(3)
and s ̸= 0. It has 7 degrees of freedom and additionally preserves ratios between
volumes. When s = 1, it is also denoted as Euclidean transformation in 3D, it has
6 degrees of freedom and it consists of rotating and translating points in 3D, hence
also preserving volumes.

2.2 Camera models

One of the most significant components of multiple view geometry is the camera
model. In general terms, the camera model represents the mapping of 3D points of
an object or scene to points in the 2D image collected with a camera sensor, i.e., a
mapping from P3 to P2. There are many different ways to model this mapping, each
of them corresponding to a different camera model valid under certain assumptions.
In this section, I will cover some of the most common ones, such as pinhole and
affine camera models. In the end, I’ll also briefly explain how concepts like lens
distortion can be added to such models.

Pinhole camera model

The most common way to model camera projections is by using the so-called pinhole
camera model. This model takes an ideal pinhole camera assumption in which the
camera aperture consists of a single point, the camera center, and for which there is
no lens refraction in play, i.e., viewing rays go directly from the camera center to the
3D point (see Figure 2.1). The 2D point in the image corresponds to the intersection
between the viewing ray and the image plane.

The model can be mathematically represented through the following mapping be-
tween the 3D point Xj and the 2D image point xj

λjx̄j = PX̄j (2.6)

where λj ∈ R is usually unknown and referred to as projective depth, and P is a
3 × 4 camera matrix representing the intrinsic and extrinsic camera calibration. For
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2.2 Camera models

Figure 2.1: Visualization of the pinhole (perspective) camera model. The camera center is
located at the origin O and the axis z determines its viewing direction or optical
axis. The image plane (in light blue) is orthogonal to the optical axis and is located
at a distance f (focal length) of the camera center. The ray that passes through the
camera center and the 3D points is referred to as viewing ray, and its intersection
with the image plane determines the 2D coordinates of the 3D point in the image.
Note that any 3D point along the same viewing ray will have identical 2D coordi-
nates.

any given pair of corresponding 2D point xj and 3D point Xj , the camera matrix
is structured as P = K[R t]. The rotation R and the translation t encode the
Euclidean transformation from the world coordinate frame to the camera coordinate
frame (extrinsic), and K is the intrinsics calibration matrix

K =

γf s xc

0 f yc

0 0 1

 (2.7)

that maps points to the image plane. When K is known, we say that the camera is
calibrated. This mapping has the following parameters: principal point (xc, yc) that
translates from the origin of the image plane to the center of the image; aspect ratio
γ which controls the ratio between the height and width of a pixel (for γ = 1 we
get squared pixels); skew s which determines the skewness of the pixel axes; and
focal length f which rescales from cartesian units in the image plane to pixel units.
In modern cameras it’s common to assume that γ = 1 and s = 0, resulting in a
simpler model. A particular case of pinhole cameras in which γ = 1, s = 0 and
(xc, yc) = (0, 0) are denoted as perspective camera model.

Having defined a camera model, we can use a geometric metric to measure how
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well the model fits the data. The most commonly used metric in computer vision
is denoted as reprojection error, which compares the reprojected 3D point according
to the assumed camera model with the 2D image point observed. For the pinhole
camera model, the reprojection error comes down to

r =
∥∥∥∥x− 1

P(3)X̄
P(1:2)X̄

∥∥∥∥ (2.8)

where λ in (2.6) is replaced by P(3)X̄ based on the third equation, allowing to es-
timate a distance metric directly in the pixel space by comparing x with the repro-
jected 1

P(3)X̄ P(1:2)X̄. The vector from the reprojected point to the observed point,
i.e. x − 1

P(3)X̄ P(1:2)X̄, is referred to as residual vector. Different camera models
result in different reprojected 2D points as we will see later.

Even though the pinhole camera seems intuitive and very complete at first glance,
in practice it’s not always the best option to model our cameras. This is mainly due
to two reasons that we will look into next: 1) the presence of the unknown λj in (2.6)
adds complexity to the problem which might be unnecessary in some cases, allowing
a simpler model (affine camera model) to be used instead; and 2) lens distortion are
not considered by the pinhole camera model, limiting its use in real applications.

Affine camera model

An affine camera model consists of an approximation of the pinhole model around a
reference 3D point, usually the centroid of a point cloud. Equivalently, you can also
see the affine camera model as a constrained pinhole model, where the first three
elements of the last row of P are set to zero. Such approximation allows us to go
from the camera equation (2.6) to

x = AX + b (2.9)

where A ∈ R2×3 and b ∈ R2 are unconstrained. A particular case of affine cameras,
denoted weak-perspective, further assumes that the rows of A consist of the first
two rows of a scaled rotation matrix. When that scale is unitary, we denote it as
orthographic camera projection and can be visualized in Figure 2.2. The reprojection
error for an affine camera model simply corresponds to the norm of the residual
vector x− (AX + b), i.e,

r = ∥x− (AX + b)∥ . (2.10)
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2.2 Camera models

Figure 2.2: Visualization of the affine (orthographic) camera model. In this case, the viewing
ray for each 3D point is parallel to the optical axis z, and its intersection with the
image plane determines the 2D coordinates of the point in the image.

The accuracy of an affine camera model is similar to the one of a pinhole camera
model when the distance from the camera center to the 3D points is approximately
the same for all points. This is because the affine camera model assumes that the
camera center is at infinity i.e. all viewing rays are parallel. In such cases where
the pinhole distortion is negligible, the simplicity of the affine camera model, in
particular the absence of the unknown scaling factor, allows us to formulate problems
that have much more desirable properties compared to the pinhole camera model.
Some examples of such properties regarding Structure-from-Motion will be covered
in the following chapter.

Distortion models

As previously stated, the pinhole camera model does not account for lens distortion.
This is a severe limitation for practical applications since most real cameras are af-
fected by such distortions to a certain degree. An example of lens distortion is shown
in Figure 2.3. This lens distortion effect is not always undesired since it can be used
to increase the field of view of a camera sensor, as it usually can be seen in security
cameras or GoPro cameras, allowing a much higher coverage of a scene with a single
image compared to an ideal pinhole camera [4]–[6].

There are two main classes of methods to model lens distortion: distortion mod-
els and undistortion models [8]. Distortion models apply a distortion function to
the reprojected points, allowing direct comparison in the image plane. Undistortion
models assume the inverse relation, i.e., an undistortion function is applied to the
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Figure 2.3: An example of an image from the Kirchenge dataset [7] with radial distortion.
Without distortion, the edge of the wall represented with a red line segment would
be projected to a line in the image. However, due to the presence of radial distor-
tion, the projections (e.g. the red cross) are pushed towards the center of distortion
(in blue). The distortion effect is stronger as you get further away from the center
of the distortion.

image points, allowing comparison between the undistorted image point and the re-
projected point. These models have the advantage that the distortion mapping is a
function of the observed image points and hence independent from the camera matrix
and 3D point, which are unknown in Structure-from-Motion problems.

Lens distortion can be decomposed into two components, radial and tangential
distortion. In modern cameras, tangential distortion can usually be ignored since
radial distortion effects are much more dominant. Radial distortion is frequently
modeled as follows. Let us assume a calibrated camera setup Pc = [R, t]. The
undistortion model decomposes the projection into two parts, one for the undistorted
projection and another for the lens distortion. For the undistorted projection (xu, yu),
the process is similar to the pinhole camera model

xu =
[
xu

yu

]
= 1

P(3)
c X̄

P(1:2)
c X̄. (2.11)

The relation between the normalized distorted image measurement xd = (xd, yd),
with x̄d = K−1x̄, and the undistorted projection (xu, yu) is described by the follow-
ing equation

xu = γ(d)xd (2.12)
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where γ(d) is a rational function function on the magnitude d = ∥xd∥

γ(d) = 1 + c1d2 + c2d4 + c3d6 + . . .

1 + k1d2 + k2d4 + k3d6 + . . .
. (2.13)

The Brown-Conrady model [9], [10] is an example of a radial lens distortion model
using rational functions. The model shown in (2.12) and (2.13) is an undistortion
model. For distortion models, xu and xd are swapped in the equations (2.12) and
(2.13), such that the function γ(d) (and d) depend on xu instead. Besides rational
functions like (2.13), radial distortion is also represented using division models. In
division models, just like the Fitzgibbon model [11], the numerator of (2.13) is 1,
leaving only a polynomial on the denominator

γ(d) = 1
1 + κ(d) = 1

1 + k1d2 + k2d4 + k3d6 + . . .
. (2.14)

which often leads to simpler inference problems.

1D Radial camera model

Instead of explicitly modeling for radial distortion, one can simply derive a camera
model which is invariant to radial distortion [12]. One way to do it is to assume that
the principal point of the camera is known and coincides with the center of distortion.
Under this assumption, the camera equations using the Fitzgibbon [11] undistortion
model become

λ

 x̃

ỹ

1 + κ(d)

 =

fr1 ft1
fr2 ft2
r3 t3

 X̄. (2.15)

where x̃ = x − xc and ỹ = y − yc. Note that the first two equations of (2.15) are
now independent from the third one, and thus are invariant to the effects of radial
distortion. This suggests that one could drop the third equation completely, resulting
in what is referred to as 1D radial camera model

λx̃ = P(1:2)X̄ (2.16)

where P(1:2) = f [R(1:2) t(1:2] is a 2 × 4 matrix. The reason why it’s referred to
as 1D radial camera is because, contrarily to the pinhole camera model which maps
a 3D point to a 2D point, with this model a 3D point is now mapped to a line in 2D -
λx̃ - that passes through the center of the image, as can be seen in Figure 2.4.
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Figure 2.4: Visualization of the 1D radial camera model. As the information regarding the
radial component of the projection is disregarded, each 3D point is mapped to a
line passing through the center of distortion of the image. This line corresponds to
the intersection between the image plane and a plane containing the optical axis z

and the 3D point.

Even though we gained radial invariance by considering such a model, dropping
the third equation in (2.15) means that we are throwing away valuable information
about the scene. For instance, using a pinhole camera model, you need detections in
at least 2 viewpoints in order to be able to triangulate a point in 3D. With a 1D radial
camera model, you need at least 3 viewpoints.

2.3 Feature Extraction and Matching

Having covered how to represent 3D points and camera models, the only main com-
ponent left to be able to formulate a Structure-from-Motion problem is to understand
how to go from captured images from multiple viewpoints to sets of 2D points de-
tected on those same images - the actual inputs to the SfM problem. This procedure
is out-of-the scope of this thesis, but given its importance in the overall problem, I
believe its basics should be explained.

In general terms, the goal is to detect the 2D projections of 3D points across all the
available images. Whenever a point is detected in a pair of images, we say that we
have a match or correspondence. In particular, if x in image 1 (with camera matrix
P) is correctly matched with x′ in image 2 (with camera matrix P′), it means that
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Figure 2.5: Example of sparse correspondences between two viewpoints with intersecting
field-of-view. In this example with images from Skansen Kronan [13], SIFT is
used to detect keypoints (red and blue), and matched keypoints are represented
through the green lines connecting them.

there exists a 3D point X such that

λx = PX, λ′x′ = P′X. (2.17)

This is done for all available images and for as many points as possible. For each
detected point, its 2D coordinates over several images are referred to as point track.
There are several different methods to generate these point tracks (i.e. detect and
find matches) given a set of input images. In this section I divided it into two main
categories based on the input sequence: 1) the images are collected from uncorrelated
viewpoints; and 2) the input images correspond to an ordered sequence of images
with relatively small motion between them, e.g. video-sequence.

The first category consists of detecting points in an image with interesting pho-
tometric features, such as edges or corners. The reason why these points, referred
to as keypoints, are considered interesting is that there are strong image gradients at
their location, which corresponds to the standard feature descriptor used. Given that
images usually contain much more content than just edges and corners, such as low-
texture regions, keypoint features are typically sparse as shown in Figure 2.5. The
most widely used keypoint features include SIFT [14], SURF [15], FAST [16] or
Harris Corner [17]. Each method builds a descriptor for each keypoint based on the
image gradients and/or pixel values at a neighborhood of the keypoint itself. More
recent methods replace the heuristics of hand-crafted methods like SIFT by learning
a good feature space for keypoints from training data. Examples of learning-based
detectors include LIFT [18], SuperPoint [19] or LoFTR [20]. By learning from train-
ing data, learning-based detectors result in descriptors that are less sensitive to pixel
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Figure 2.6: Examples of dense correspondences from video sequences. (Top) Overlaid image
of two consecutive image frames of 4 different sequences in the Sintel dataset [24].
(Bottom) Ground-truth dense flow fields of the two consecutive image frames
depicted above. Each color is mapped to a different flow field direction. Image
adapted from [25].

values and more to the semantic information of the image itself, hence generalizing
better for different light conditions or weather. Once the keypoints in a pair of im-
ages are detected, they are matched typically using nearest neighbors search [21],
[22], i.e., each keypoint in image A is matched to the keypoint in image B with
the most similar descriptor. Learning-based methods for matching sets of keypoint
detections like SuperGlue [23] have also been proposed recently.

The second category consists of densely matching points from one image to an-
other. These are typically referred to as optical flow [26] and usually follow the
assumption that small displacements occur between images, i.e., a 2D point in image
1 can be found in a neighborhood of the same location in image 2 (see Figure 2.6).
Conventional methods consist of hand-crafted optimization problems that minimize
per-pixel photometric errors (corresponding image regions should be similar) with a
regularization term that imposes plausible locations of the pixel on the second im-
age. Just like with sparse detectors, more recently learning-based methods have been
replacing the heuristics that were used in conventional methods with impressive re-
sults. Some examples of optical flow networks are FlowNet [25], [27], RAFT [28]
or PWC-Net [29]. An extensive comparison of different learning-based optical flow
methods can also be found in [30]. The advantage of learning-based flow estima-
tion is the fact that they can generalize better for larger displacements or different
light conditions, just like in the case of sparse detectors. The fact that optical flow
provides dense correspondences can also result in more accurate camera calibration
estimation, at the cost of increased problem size since detections per image can go
from hundreds for sparse detections to thousands or even millions for dense corre-
spondences.
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CHAPTER 3

Structure-from-Motion

In this chapter I will properly formulate the Structure-from-Motion problem and
some of its subproblems, just e.g. triangulation, camera resectioning, and pose av-
eraging, based on the primitives presented in the previous chapter. Besides intro-
ducing the problem, I’ll also discuss bundle adjustment and motivate why global
and incremental Structure-from-Motion methods are valuable, with particular focus
on global factorization-based methods and pOSE formulations given their relevance
to this thesis. At the end of this chapter, I will also briefly extend the problem to
non-rigid cases, i.e., Structure-from-Motion problem instances in which the scene is
deformable over time.

3.1 Multiview Geometry and SfM problems

Let us assume now that we have collected n points tracks across F images using one
of the methods described in Section 2.3. Using (2.6) for a pinhole camera model, we
can write the camera equations for each of the detected point in each view as

λijx̄ij = PiX̄j , i = 1, . . . , F and j = 1, . . . , N (3.1)
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where Pi is the 3× 4 camera matrix of the ith camera, X̄j the homogeneous repre-
sentation of the jth 3D point, x̄ij its projection into the ith camera, and λij is some
scalar.

Generically, the Structure-from-Motion problem [3] consists of jointly estimating
the camera matrices Pi, 3D points Xj and projective depths λij that better fit the
camera model (3.1) (or any other camera model used), for a given set of input 2D
point tracks xij . Given that each camera matrix 1 and 3D point has 11 and 3 degrees
of freedom, respectively, and that we get an extra λij per 2D image point, the total
number of unknown parameters to be estimated is 11F + 3N + NF (assuming all
points are visible in all views). However, as we will see next, the degrees of freedom
of the problem are lower.

Reconstruction Ambiguity and Degrees of Freedom

One thing to consider regarding Structure-from-Motion is the presence of projective
ambiguity in the solutions for Pi and Xj . Let us assume that we know the correct
P∗

i = K∗[R∗ t∗] and X∗
j (along with λ∗

ij) that satisfy (3.1). Then any solution
Pi = P∗

i H and X̄j = H−1X̄∗
j , where H ∈ R4×4 is a projective transformation,

also fits (3.1) since PiX̄j = (P∗
i H)

(
H−1X̄∗

j

)
= P∗

i X̄∗
j . In the case where the

cameras Pi are calibrated, i.e. Ki is known, H is a similarity transformation. This
means that when solving the Structure-from-Motion problem we might obtain any
of the possible solutions Pi (and Xj) but since both P∗

i and H are unknown, there
is no way to directly obtain P∗

i . There are, however, ways to estimate H and go
from a solution Pi to P∗

i by taking advantage of the structure of P∗
i and projective

geometry concepts like the plane at infinity. Such methods are usually referred to
as auto-calibration or self-calibration [3], [31] and deeply depend on the assumed
camera model and prior scene knowledge.

In the more general case with uncalibrated cameras, given that a projective trans-
formation has 15 degrees of freedom, the Structure-from-Motion problem has 11F +
3N + NF − 15 degrees of freedom. Since each 2D point gives us 3 equations as
per (3.1), we can estimate how many cameras/points we need in order to solve the
problem by evaluating 3FN ≥ 11F +3N +NF−15. For instance, for the two-view
problem F = 2, we get that we need N ≥ 7 3D points.

We refer to projective reconstruction as the reconstruction consisting of the esti-
mated sets of Pi and Xj that suffer from projective ambiguity. After performing

1If the intrinsic calibration Ki for each camera is known, then the number of unknown parameters per
camera is reduced to 6.
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3.1 Multiview Geometry and SfM problems

auto-calibration, i.e. obtaining H for an estimated Pi, the desired X̄∗
j = HX̄j and

P∗
i = PiH−1 can be retrieved, along with its intrinsic and extrinsic calibration. This

is referred to as Euclidean reconstruction.

Triangulation and Camera resectioning

In this section, we will look into two subproblems based on (3.1) that can arise when
either the camera matrix or the 3D points are known.

Let us now consider the triangulation problem, in which camera matrices Pi are
known and we want to estimate the 3D points X̄j . By having multiple observations
of a point X̄ in different views, using (3.1) we can build a system of equations such
as 

P1 −x̄1 0 . . . 0
P2 0 −x̄2 . . . 0
...

...
...

. . .
...

PF 0 0 . . . −x̄F




X̄
λ1
λ2
...

λF

 = 0. (3.2)

This problem (or a smaller version of it in which the λi are removed) can be solved
using Direct Linear Transforms (DLT) [3], [32]. Note that there are 4 + F unknowns
and 3 equations per 2D observation, meaning that we need F ≥ 2 in order to be able
to triangulate a 3D point. Additionally, since P∗

i is assumed to be known, there is
no projective ambiguity in the obtained solution, i.e., the estimated 3D point corre-
sponds to the correct X∗ and we obtain a Euclidean reconstruction.

The converse problem, i.e. known 3D points and unknown camera matrix, is re-
ferred to as camera resectioning and can be solved similarly with DLT for the system


D(X̄1) −x̄1 03×1 . . . 03×1
D(X̄2) 03×1 −x̄2 . . . 03×1

...
...

...
. . .

...
D(X̄N ) 03×1 03×1 . . . −x̄N





P(1)T

P(2)T

P(3)T

λ1
λ2
...

λN


= 0. (3.3)
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for a camera P and where

D(X̄j) =

 X̄T
j 01×3 01×3

01×3 X̄T
j 01×3

01×3 01×3 X̄T
j

 . (3.4)

Note that there are 12 + N unknowns and 3 equations per 2D observation, meaning
that we need N ≥ 6 in order to be able to estimate an uncalibrated camera matrix. If
the intrinsic parameters of the cameras are known, instead of the DLT system (3.3),
one can use Perspective-n-Point (PnP) solvers [33], [34] that directly estimate camera
rotations and translations from known 3D points and 2D projections. For both cases,
just like in the triangulation case, since we are assuming that X∗

j are known, there is
no projective/similarity ambiguity.

3.2 Bundle Adjustment

A natural way to try to estimate the camera matrices and 3D points that fit (3.1) is to
minimize reprojection errors [3], [35]. For the pinhole camera model, this results in
the following optimization problem

minimize
P1,...,PF ,X̄1,...,X̄N

F∑
i=1

N∑
j=1

wij

∥∥∥∥∥xij −
1

(P(3)
i X̄j)

P(1:2)
i X̄j

∥∥∥∥∥
2

.

where wij = {0, 1} specifies whether the observation of point j is available in image
i. The optimization , referred to as Bundle Adjustment (BA), consists of a nonlin-
ear least squares problem and is typically solved for camera matrices and 3D points
jointly using Levenberg-Marquardt (LM) [3], [35], an iterative 2nd order optimiza-
tion method that applies a trust region approach to the Gauss-Newton method. Since
the reprojection error is nonlinear, in order to apply LM we need to, in each iteration,
approximate the residual xij − 1

(P(3)
i

X̄j)
P(1:2)

i X̄j by its first order Taylor expansion

around the current cameras and 3D points estimations.
Being a second-order method, it requires a matrix inversion of size (at least)

(11F + 3N) × (11F + 3N) for the uncalibrated case, which given the computa-
tional complexity of matrix inversion, does not scale well with the number of points
and camera views. There are a few ways to circumvent this however, including
1) applying bundle adjustment to a subset of the points/cameras only and calcu-
lating the remaining using triangulation/camera resection; 2) alternate optimization
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between cameras and 3D points, i.e., repetitions of camera resectioning and trian-
gulation starting from an initial guess; and 3) apply sparse matrix methods and take
advantage of the structure of the matrices in the problem to invert smaller matrices
using Schur complement trick [36], for instance.

The major issue of bundle adjustment consists of its sensitivity to initialization.
As previously mentioned, bundle adjustment is an iterative optimization problem,
and as so requires some initial guess of the camera matrices and 3D points. In fact,
in most practical cases it has been long observed that bundle adjustment does not
converge to global minima unless the initial guess is within its close neighborhood.
This narrow basin of convergence can be attributed to the effect of the division by
zij = P(3)

i X̄j on each residual, which results in a non-convex loss and additionally
creates a cost barrier between negative and positive values of zij . Consequently, if
an initialization of camera matrices and 3D points results in negative zij it would be
extremely unlikely for the optimization to recover from it.

Given this undesirable convergence property of the BA, it is necessary to precede
it with some other method (or sequence of methods) that provides a more robust
initialization that can then be refined by BA. For this purpose, there are two main
classes of methods, Global and Incremental SfM, each with different properties and
approaches to the problem of recovering initial guesses for cameras and 3D points.

3.3 Global and Incremental SfM Pipeline

Global Structure-from-Motion

The first class of methods consists of a pipeline of different modules that divide
the overall problem of estimating cameras and 3D points into sub-problems solved
sequentially. The conventional pipeline for Global Structure-from-Motion typically
considers calibrated cameras and can be vaguely described by the following steps:

1. Pairwise camera pose estimation: from the 2D correspondences between two
images, estimate essential matrix and retrieve relative camera poses from it
(up to scale) [3]. This is done for all pairs of images with overlapping 2D
detections. Usually, frameworks like RANSAC and minimal solvers are used
in order to ignore mismatches in the input 2D correspondences;

2. Pose averaging: from the relative/pairwise poses from the previous step, solve
an averaging problem that computes global camera poses. This can be decom-
posed into some subproblem, e.g. rotation averaging, as we will see next;
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3. Triangulation: from the global camera poses and input 2D correspondences,
triangulate 3D points using multi-view geometry;

4. Refine camera poses and 3D points using Bundle Adjustment.

This pipeline can vary depending on the particular problem instance (i.e. constraints
and/or assumed priors), but these steps capture the overall idea. Some of the sub-
problems mentioned here were already briefly introduced before (e.g. triangulation,
bundle adjustment), but pairwise estimations and pose averaging might sound com-
pletely new to some readers, so I will just briefly introduce them as well in the context
of Structure-from-Motion.

Minimal Solvers and RANSAC

A minimal solver consists of a solver that uses the minimum amount of input data
possible to fit a certain model. For instance, let’s consider the case of triangulation
of a 3D point given 2D observations in multiple images. As we covered before, in
order to triangulate a point we need at least 2 views, assuming a pinhole camera
model. This means that a solver would take 2 observations of that point in 2 images
and compute the solution for the 3D point X̄. However, by eliminating the projec-
tive depths in both camera equations and fixing the scale of X̄ (by setting the last
value to 1, for instance), one gets that only 3 equations (one from one view, and two
from the other) are needed to estimate X̄. A solver that only uses these 3 equations
would be considered a minimal solver for the triangulation problem. In the case of
Global Structure-from-Motion, minimal solvers are usually used to estimate essen-
tial/fundamental matrices [3] between a pair of image views. These matrices encode
a geometrical relationship (relative pose) between the images that can be estimated
from point correspondences between them. In the case of calibrated setup, five point
correspondences are needed to estimate the essential matrix [37]. For uncalibrated
cameras, 7 correspondences are needed to estimate the fundamental matrix, however,
the normalized 8-point algorithm [38], which uses 8 correspondences, is often cho-
sen given its simplicity and robustness (in fact, it can also be used to approximate
calibrated cameras, followed by a correction step).

One might wonder why should we use just a subset (minimal set in this case) to
estimate a model instead of all data available. While in theory it would make sense to
do so, in practice it is very common that the input data is contaminated with outliers,
i.e., data that do not fit our model. Hence, by using all data, outliers would be used
to estimate the model, potentially resulting in poor model fitting. To increase the
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method’s robustness to outliers, frameworks like RANSAC [39] are used. In each
iteration of RANSAC, a minimal set is sampled from the input data, and a model is
estimated using the minimal solver. After that, the estimated model is used to count
the number of inliers in all inputs through the use of some metric and a threshold.
This process is repeated multiple times, in which of them a different minimal set is
sampled and the model that resulted in more inliers from all iterations is kept (and
possibly refined). By using a minimal set to estimate the model in each iteration, the
chances of that set containing only inliers are increased.

While minimal solvers and RANSAC are quite useful in the conventional Structure-
from-Motion pipeline, when the complexity of the underlying problem grows, the so-
lutions provided by these methods might not be robust to noise or accurate enough,
resulting in modeling errors that can then propagate to the pose averaging steps and
ultimately lead to a bad initialization to bundle adjustment. Non-rigid Structure-
from-Motion, which we will look into later on, is one example of such problem in-
stances for which is hard to design a minimal solver given the additional complexity
(more degrees of freedom) of non-rigid models.

Pose averaging

Pose averaging consists of estimating global camera poses from pairwise pose esti-
mations (e.g. obtained from essential matrices). This problem is usually represented
as a graph, in which the global poses are nodes and the estimated relative poses
are edges between the nodes of the corresponding camera pairs. In the context of
Structure-from-Motion, there are several ways to solve the problem but most of them
have in common the decomposition into rotation and (some sort of) translation av-
eraging, i.e, estimation of global camera rotations and translations from pairwise
estimations.

The problem of rotation averaging has been widely studied [13], [40]–[44] and is
usually formulated as finding the rotation matrices Ri ∈ SO(3), i = 1, . . . , F such
that fit the model Rj = RijRi, where Rij is the relative rotation found through
epipolar geometry between camera i and j. Local optimization [45] is the preferred
method to solve large-scale rotation averaging, however just like for bundle adjust-
ment, it only guarantees convergence to the nearest local minimum. Other methods
like spectral decomposition [41], [42] and Semidefinite Programming [42], [43], [46]
provide solutions with global optimality guarantees for low levels of noise, at the cost
of higher computational expensiveness [47], [48]. Once global camera rotations are
known, global camera translations (and optionally 3D points) can be estimated using
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Second Order Cone Programming [49], [50] or linear methods [40], [42].
A somehow similar problem to pose averaging is point set registration, in which

(incomplete) point clouds in different local coordinate frames are jointly registered
to a global coordinate frame, along with an average point cloud. This problem is
analogous to pose averaging in situations in which the camera sensor also has a depth
channel. In this case, after creating the 2D point tracks over different views, a 3D
point cloud can be obtained for each image using the depth channel measurements.
The different point clouds can then be “averaged" out through point set registration,
along with the global poses of the cameras.

Incremental Structure-from-Motion

In order to decrease the effect of the dimensionality problem of Global Structure-
from-Motion, in particular of the pose averaging methods, one can instead solve the
so-called Incremental Structure-from-Motion pipeline. As can be deduced from its
name, this consists of an incremental approach to Structure-from-Motion, in which
we start with a small number of views (2 for instance), and incrementally add new
views and points until all views and points are solved for [47]. In general terms, the
method can be described by the following steps:

1. Solve for a subset of the points and cameras (at least two views) using, for
instance, some Global Structure-from-Motion method;

2. Add a new view: find a new image in which a large quantity of the 2D points
has already been triangulated using previous views. This means that 2D-3D
correspondences are available, so the camera matrix for the new view can be
found by solving the camera resectioning problem. RANSAC can be used here
to discard outliers in the 2D-3D correspondences;

3. Triangulate points in the new view: for all the remaining points in the new
view that haven’t been triangulated before, check if there are corresponding
detections on previous views. If yes, triangulate those points using multiview
geometry;

4. Refine camera poses and 3D points using Bundle Adjustment;

5. Repeat steps 2, 3, and 4.

Again, this pipeline may vary depending on the problem priors and constraints.
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The main advantage of this incremental approach is that both camera resectioning
and triangulation can be solved very efficiently, so the method scales much better
than its global counterpart for larger problem sizes. This nice scaling property makes
Incremental Structure-from-Motion the go-to solution in most large-scale state-of-
the-art software for 3D reconstruction from images [51], [52]. On the other hand,
by only using a subset of views in each step, useful information about the scene
might be contained in the unused views, overall resulting in estimations with high
uncertainty. In the worst-case scenario, this high uncertainty might result in a bad
initialization for the bundle adjustment that will not converge to the desired minima
given the properties discussed in Section 3.2. In fact, it has been shown [42], [48]
that global methods outperform incremental methods in terms of accuracy.

3.4 Factorization-based SfM

Given that global methods are able to output more accurate reconstructions than in-
cremental methods, it would be desirable to boost the flexibility and scalability of
the former. This leads us to global factorization optimization problems, which is
a substantial part of this thesis. These methods consist of an alternative approach
to the Global SfM pipeline described in the previous section, i.e., absolute cam-
era poses and 3D points are estimated simultaneously for all images and 2D tracks.
Factorization-based methods for SfM are based on the camera equations (3.1), where
it was observed that measurements of a point in multiple images can be stacked ver-
tically, resulting in 

λ1x̄1
λ2x̄2

...
λF x̄F

 =


P1
P2
...

PF

 X̄. (3.5)

Similarly, observations in a single image can be stacked horizontally, resulting in the
system

λ1,1x̄1,1 λ1,2x̄1,2 . . . λ1,N x̄1,N

λ2,1x̄2,1 λ2,2x̄2,2 . . . λ2,N x̄2,N

...
...

. . .
...

λF,1x̄F,1 λF,2x̄F,2 . . . λF,N x̄F,N


︸ ︷︷ ︸

Λ⊙M̄

=


P1
P2
...

PF


︸ ︷︷ ︸

P

[
X̄1 X̄2 . . . X̄N

]︸ ︷︷ ︸
X̄

,

(3.6)

29



Chapter 3 Structure-from-Motion

where P ∈ R(3F )×4, X̄ ∈ R4×N are the unknown matrices containing the camera
calibrations (typically uncalibrated) and 3D points, respectively, and the matrix Λ ∈
RF ×N contains all the unknown projective scales λij . The matrix M̄ ∈ R(3F )×N

contains the concatenations of all the 2D point tracks in homogeneous coordinates,
and

(
Λ⊙ M̄

)
∈ R(3F )×N represents the scaled version of M̄ by the corresponding

projective depths, i.e., each 3×1 block consists of λijx̄ij . The factorization problem
comes from, as seen in (3.6), the matrices P and X̄ being indeed a rank-4 factoriza-
tion of the matrix

(
Λ⊙ M̄

)
. The issue, however, is the fact that Λ is also unknown,

making it not possible to factorize
(
Λ⊙ M̄

)
into P and X̄.

There are some way to circumvent this issue as we will see next, either by having
some assumptions regarding Λ, or by estimating Λ and the pair P and X̄ in alternat-
ing fashion.

Affine Factorization

When an affine camera model is considered, as seen in Section 2.2, the depths λij

are assumed to be equal and constant. In that case, and if all N points are visible in
all F views, the system in (3.6) can be simplified to [53]

M =


x1,1 x1,2 . . . x1,N

x2,1 x2,2 . . . x2,N

...
...

. . .
...

xF,1 xF,2 . . . xF,N

 =


P(1:2)

1
P(1:2)

2
...

P(1:2)
F


︸ ︷︷ ︸

P

[
X̄1 X̄2 . . . X̄N

]︸ ︷︷ ︸
X̄

, (3.7)

where P ∈ R(2F )×4 is now a vertical concatenation of the first two rows of each
of the camera matrices Pi. Since the left-hand side of (3.7) is now known, one can
directly obtain the factors P and X̄ through a rank-4 truncation of the SVD of M.
In fact, the problem can be further simplified to a rank-3 truncation of the SVD of
M by centering the input data and eliminating the translation vector of each Pi, as
described in [53]. Solving for P and X̄ using SVD of M allows us to obtain an affine
reconstruction of the scene, which can then be updated for a metric reconstruction
through autocalibration and/or using additional information about the scene. One
can then feed this reconstruction as initialization for bundle adjustment.
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Projective Factorization

In situations in which an affine reconstruction is not accurate enough to model the
scene and a projective reconstruction is needed instead, other methods need to be
applied in order to solve the factorization problem in (3.6). As observed in [54],
if the projective depths Λ are known, the factorization problem can be solved in a
similar way to the affine factorization by replacing M by

(
Λ⊙ M̄

)
. The camera

matrices (now a 3F × 4 matrix) and the 3D points X̄ can then be obtained through
a rank-4 truncation of the SVD of

(
Λ⊙ M̄

)
. Conversely, if a factorization P and X̄

is known, the depths in Λ can be estimated by comparing the reprojected PiX̄j with
x̄ij . This suggests that an iterative algorithm can be used [3], where starting from
an initial guess for Λ, one can perform the following steps to obtain a projective
reconstruction of the scene:

1. For the current estimation of Λ, construct the matrix
(
Λ⊙ M̄

)
and retrieve P

and X̄ through a rank-4 truncation of the SVD of
(
Λ⊙ M̄

)
;

2. For all points, estimate λij that minimizes the errors ∥λijx̄ij −PiX̄j∥2 from
P and X̄ obtained in the previous step, and construct Λ from the estimated λij ;

3. Repeat steps 1 and 2 until convergence.

The initial guess λij = 1 is reasonable in practice as long as the distance from the
3D points to the camera centers is approximately constant for all views. Due to scale
ambiguities, normalization of the depths λij should be done for the initial guess and
after step 2. One issue with the proposed algorithm is that it has no convergence
guarantees to a global minimum, meaning that it can result in poor reconstructions
(maybe even not good enough to initialize bundle adjustment). An additional prob-
lem, shared with the affine factorization, is that it requires all points to be visible in
all views. This constraint is not desirable in practice, since it restrains us from recon-
structing sequences, like for instance, captured by a vehicle moving through the city,
where points at the beginning of the sequence are not observed after some camera
motion.

pOSE models

Besides the already mentioned factorization methods, many other alternating [55],
[56] and splitting [57], [58] methods were proposed to solve problems such as (3.6).
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However, robustness to noise, robustness to local minima (when starting from a ran-
dom solution), or slow convergence near the optimum have been some of the contin-
uous problems within these frameworks.

More recently, Hong et al. [1], [59] suggested a different approach for a rank-4
factorization in the context of SfM that has been shown to be very reliable in terms of
robustness to initialization from a random starting solution. The core of their work
consists of a reformulation of the reprojection residual vector as a linear residual
on the reprojected point zij = PiX̄j , to which they call Object Space Error (OSE)
defined as

ℓOSE =
∑

ij

wij

∥∥∥z(3)
ij xij − z(1:2)

ij

∥∥∥2
(3.8)

Note that occluded points can be modeled with this framework through the use of
wij , just like in the bundle adjustment. The removal of the division by z(3) in each
residual vector avoids the cost barrier issue verified with bundle adjustment around
z(3) = 0, making it possible for points to flow from negative to positive values of
z(3) more easily. Using this loss to estimate P and X̄ would result in an unbiased
estimation, however, it can be easily observed that setting zij = 0 results in a trivial
solution to the problem. To avoid such solution, the authors propose to add a loss
term to the objective based on an affine camera model, defined as

ℓAffine =
∑

ij

wij

∥∥∥xij − z(1:2)
ij

∥∥∥2
. (3.9)

The total objective of the proposed framework [1] consists of a linear combination
of the OSE and affine terms, resulting in a pOSE loss defined as

ℓpOSE = (1− η)ℓOSE − ηℓAffine (3.10)

where η ∈ [0, 1] determines the weight of each term, and it is shown empirically that
a low value of η ≈ 0.05 results in accurate reconstructions.

The problem can be written in the general least squares form

minimize
P,X̄

∥A(PX̄)− b∥2
(3.11)

where A is a linear operator on the elements of PX̄ and b a vector, both based on
the pOSE objective (3.10). The author proposes to solve (3.11) using VarPro [59], a
second-order optimization method that uses Levenberg-Marquardt [3], [35] to update
the reduced problem on P only, i.e., in each iteration the 3D points are solved for
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in closed form as a function of P, and the Jacobians of the residuals in terms of P
are approximated using such formulation. The authors show that not only are they
able to achieve accurate reconstruction using the pOSE objective and VarPro, but
also the method demonstrated remarkable robustness to initialization from random
camera matrices with a convergence rate to a global minimum of above 90% in many
benchmark datasets.

Given that this pOSE formulation can be written in the general form (3.11), it al-
lows us to extend the framework to different problem instances in terms of modeling
(e.g. point visibility, camera models, scene rigidity) and regularization (the affine
term in (3.10) can be seen as regularization, but other terms can be added or replace
it, as we will see). Besides this extra flexibility, pOSE formulations have similar
computational complexity to bundle adjustment, since they can take advantage of the
same sparsity properties and matrices’ structure. On the negative side, since all data
is used from the beginning, pOSE methods (and factorization methods in general)
are more sensitive to outliers in the 2D point correspondences, which can seriously
undermine their usefulness in real case scenarios.

3.5 Non-rigid Structure-from-Motion

So far we have been considering a rigid 3D scene, i.e., the 3D points of the scene are
static between views and only the cameras are moving. However, in many cases, the
scene contains moving or deforming objects which need to be modeled accordingly
in other to obtain an accurate reconstruction. This problem is referred to as Non-rigid
Structure-from-Motion (NRSfM) and in this section, I will briefly explain how we
can incorporate non-rigidity into Global Structure-from-Motion methods. To clarify,
I will focus on instances of NRSfM in which there are no two (or more) images
capturing the scene at the same instant, as in Figure 3.1. In other words, each image
captures the non-rigid scene at a different state of deformation. This consists of a
harder problem since if two or more cameras captured the scene at each instant, one
could approach the problem as rigid SfM for those subsets of cameras.

Non-rigid Factorization

One of the first attempts to address the problem was proposed by Bregler et al. [61].
In their work, they suggest the assumption that, for each view, the scene can be
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Figure 3.1: Few images from the Back dataset [60], a sequence used for Non-rigid Structure-
from-Motion. A single camera captures a man moving his back while sitting on
a chair. The colorful pattern of the shirt is used to easily generate the 2D point
tracks needed for the SfM algorithm. For each time instant, only one viewpoint is
available.

described as a linear combination of K shape basis as

Xi =
K∑

k=1
cikSk, i = 1, . . . , F, (3.12)

where Sk ∈ R3×N , k = 1, . . . , K are the shape bases and cik is a scalar coefficient
corresponding to the kth shape basis in the ith image. Under an orthographic camera
model, we can write

M =


x1,1 x1,2 . . . x1,N

x2,1 x2,2 . . . x2,N

...
...

. . .
...

xF,1 xF,2 . . . xF,N

 =


R(1:2)

1

(∑K
k=1 c1kSk

)
R(1:2)

2

(∑K
k=1 c2kSk

)
...

R(1:2)
F

(∑K
k=1 cF kSk

)

+


t(1:2)

1
t(1:2)

2
...

t(1:2)
F

 (3.13)

and similarly to [53], the translations can be removed by subtracting the 2D centroid
for each camera view, resulting in

x1,1 x1,2 . . . x1,N

x2,1 x2,2 . . . x2,N

...
...

. . .
...

xF,1 xF,2 . . . xF,N

 =


c11R(1:2)

1 . . . c1KR(1:2)
1

c21R(1:2)
2 . . . c2KR(1:2)

2
...

. . .
...

cF 1R(1:2)
F . . . cF KR(1:2)

F


︸ ︷︷ ︸

Π

S1
...

SK


︸ ︷︷ ︸

S

. (3.14)
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where Π ∈ R2F ×3K and S ∈ R3K×N . As it is possible to see from (3.14), under
these assumptions the problem goes from a rank-3 factorization in the rigid case to a
rank-3K factorization in the non-rigid case. An affine reconstruction can be obtained
through SVD of the left-hand side matrix of (3.14), truncated to rank 3K, followed
by correction step that estimates Ri, i = 1, . . . , F based on the rotation constraints
of the left matrix on the right-hand side of (3.14).

More than a decade later, Dai et al. published a method [62] that constrained the
problem further. One of the key contributions of the paper was the denoted “Inter-
section theorem”, which states that the correction matrix2 needed to find the rotation
matrices after SVD must lie in the intersection between the 2K2 − K dimensional
null-space of a matrix and rank-3 positive semi-definite matrix cone. The problem
can be solved with SDP and allows more accurate estimations of rotation matrices
than [61]. Additionally, after estimating the rotation matrices, the authors propose a
method to find S and the coefficients cik through an additional rank-K factorization
of X♯, a re-arranged version of X = [XT

1 , . . . , XT
F ]T as defined in (3.12).

Low-rank Penalty Functions

Under the restrictive assumptions mentioned before, the methods referred to in the
previous section tend to work reasonably well. However, some of those assumptions
are not verified in many practical cases. In particular, the assumption that the shape
can be decomposed into K shape bases is very impractical when K is not known.
Additionally, one might want to give different weights to different shape bases (e.g.
enforce k < K bases to be dominant and the remaining to model smaller deforma-
tions), which wouldn’t be possible with the previously referred approach.

Let’s say that one wants to set that the scene can be defined by at most K shape
basis, i.e.,

minimize
Z∈R2F ×N

∥M− Z∥2
F

such that rank(Z) ≤ 3K
. (3.15)

Note that parameterizing Z = ΠS with Π ∈ R2F ×3K and S ∈ R3K×N would
enforce similar rank constraints by construction. A common relaxation of problems
like (3.15) [63]–[66] is to replace the rank constraint by a regularization term on the
singular values of Z

minimize
Z∈R2F ×N

∥M− Z∥2
F + f(σ(Z)) (3.16)

2Analogous to the ambiguity transformation mentioned in Section 3.1 for the rigid case.
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where f : R|Z| → R with |Z| = max(2F, N ). Since singular values are non-
differentiable functions of Z, splitting methods like ADMM [67] are usually pre-
ferred to solve (3.16) given that, for some choices of f , the proximal operator can be
obtained in closed form. Furthermore, the formulation (3.16) happens to be convex if
f is convex and absolutely symmetric [68]. One such function is the Nuclear Norm
[69] f(σ(Z)) = ∥Z∥∗ =

∑
l σl(Z) which equally penalizes all singular values of Z.

This is the regularization chosen by [62] when trying to find a rank-K factorization of
X♯ for the Non-Rigid SfM problem described in the previous section. Even though
the nuclear norm has some desirable properties, such as convexity, the fact that it
equally penalizes all singular values causes shrinking bias [70], [71]. It has also been
shown [72] that in the context of Structure-from-Motion and under the presence of
noise it usually gives a weak regularization.

In [66], the authors extend [62] by considering weighted nuclear norm as a reg-
ularization term for the factorization of X♯. The weighted nuclear gives different
weights to the singular values, reducing the shrinking bias effect. The authors pro-
pose a scene-specific regularization in which the weights of the singular values de-
pend on the input sequence and current camera rotation estimations, resulting in more
accurate shape reconstructions.

All the methods mentioned so far with rank constraint relaxation are solved using
a first-order method, usually ADMM, as already mentioned. Its alternating nature,
regardless of its simplicity and fast iterations, can make convergence near optima
slow by requiring too many steps [67]. In that regard, second-order methods like
Gauss-Newton or Levenberg-Marquardt are preferred given their fast convergence
in the optimum neighborhood, usually at the cost of slower iterations. The issue
is that in order to be able to apply second-order methods to (3.16) a differentiable
parametrization of singular values is needed. In [69] it was shown that for a matrix
X = BCT the nuclear norm can be represented as

∥X∥∗ = min
X=BCT

∥B∥2
F + ∥C∥2

F

2
(3.17)

which means that the problems

minimize
Z

∥M− Z∥2
F +

∑
l

σl(Z) (3.18)

and

minimize
B,C

∥M−BCT ∥2
F + ∥B∥

2
F + ∥C∥2

F

2
(3.19)
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3.5 Non-rigid Structure-from-Motion

are actually equivalent. The bilinear factorization problem (3.19) can be solved with
second-order methods since both terms are differentiable in B and C. It is also
possible to show that, even though the formulation is no longer convex given the
bilinear product if a local minimum satisfies rank(BCT ) < k, with k being the
number of columns of B and C, then it is globally optimal [73], [74]. The works
[75] and [74] also extended these results to other norms and penalties with similar
conclusions, opening up the possibility of applying second-order methods to a wide
range of rank penalties. Many of these concepts and results were explored in papers
D and E of this thesis.
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CHAPTER 4

Summary of included papers

In this Chapter, I provide a summary of the five included papers based on the content
presented in Section 2 and 3. Paper A concerns the study of global optimality con-
ditions for the point set registration problem using Lagrange duality. The remaining
four papers - B, C, D, and E - concern factorization-based methods for Structure-
from-Motion, each focusing on a different problem instance. Paper B extends pOSE
methods for images with radial distortion by dropping the radial component of the
OSE, resulting in a radial distortion invariant pOSE model. Paper C replaces the
regularization term of pOSE methods, which are based on an affine camera model,
with an exponential term on the projective depths of the 3D points. The proposed
regularization, when combined with OSE, penalizes large depths less than pOSE,
resulting in more accurate reconstruction while maintaining a wide basin of con-
vergence. Paper D extends pOSE models to Non-rigid Structure-from-Motion by
adding an additional regularization on the singular values of the reconstructed ma-
trix. Additionally, the singular values are parameterized as functions of the bilinear
factors, allowing optimization with second-order methods which ultimately leads to
more accurate reconstructions than competing first-order methods. Finally, Paper E
extends the results from Paper D to a wider class of low-rank non-convex penalties.
In order to obtain a differentiable formulation, it replaces the non-convex penalties
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Chapter 4 Summary of included papers

with a surrogate which can be approximated by a quadratic function and optimized
using second-order methods.

4.1 Paper A - “Point Set Registration and Global
Optimality”

In this paper, we study the global optimality conditions of the Point Set Registration
problem, briefly introduced in Section 3.3. To recall, point set registration consists
of aligning two or more sets of 3D points with an unknown target point cloud. Such
problems can arise in the context of Structure-from-Motion with RGB-D cameras,
like Microsoft Kinect, with time-of-flight technology that outputs an additional depth
channel containing the depth of each image pixel. This information can be combined
with the camera system calibration and 2D point correspondences to generate 3D
point tracks over the images, resulting in a point cloud per image. The problem is
formulated as follows

min
Y,R,t

∑
i,j

wij∥Yi − (RjXij + tj) ∥2

subject to Rj ∈ SO(3), j = 1, . . . , F

, (4.1)

where Xij is the ith 3D point of the jth available point cloud. The input point clouds
are denoted as source point clouds. The point Yi corresponds to the ith 3D point
of the target point cloud (unknown). The transformations {Rj , tj} which transform
from the jth source point cloud to the target point cloud are also unknown. The
variable wij determines whether the ith point is available in the jth source point
cloud.

The problem is not necessarily novel, and many solutions like [76] have been
proposed. The non-linear constraints in (4.1) can be relaxed, resulting in a dual
problem that can be formulated as an SDP [77] which is convex and can be solved
in polynomial time. However, we study the problem from a different perspective:
under which condition can we guarantee that a candidate solution to the problem
corresponds to the global minimum? In particular, we study conditions in terms of
missing data, target point cloud spatial distribution, and source point cloud noise.

Our approach is inspired by [43], which studies global optimality conditions for
the rotation averaging problem and was able to prove global optimality of a solu-
tion for low levels of noise on the source pairwise rotations. Note that the point set
registration problem is inherently more complex given the effect of missing data in
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4.2 Paper B - “Radial Distortion Invariant Factorization for
Structure-from-Motion”

the source point clouds and the structure of the bipartite graph, with the target point
cloud and 3D transformations as nodes. The main contributions of the paper can
be summarized as: 1) application of Lagrangian duality to the point set registration
problem, where given a candidate solution to the primal problem, the corresponding
dual variable can be obtained in closed form. This result allows us to verify the global
optimality of a local minimizer without solving the SDP (Theorem 1), which leads
to a significant speedup under some conditions; 2) derivation of bounds (Theorems
2 and 3) on reconstruction errors that, if fulfilled, are sufficient to guarantee global
optimality of a candidate primal solution; and 3) analysis and evaluation of the pro-
posed bounds as functions of missing data, the spatial distribution of the estimated
3D scene, and noise on the source point clouds, using synthetic and real data.

4.2 Paper B - “Radial Distortion Invariant
Factorization for Structure-from-Motion”

In this paper, we extend the pOSE model with radial distortion invariance. As ex-
plained in Section 3.4, The pOSE model as proposed by [1] utilizes as objective a
linear combination of an Object Space Error (OSE) (3.8) and a regularization term
based on an affine camera model error (3.9), weighted by the (1− η) and η, respec-
tively. We have shown that the OSE, however, consists of a linear approximation of
the reprojection error for the perspective camera model, hence does not consider lens
distortion effects. Such limitation makes pOSE unsuitable for sequences captured by
cameras with a wide field of view, which take advantage of lens radial distortion to
capture a larger scene section. We propose to replace the OSE with an equivalent
error based on a 1D radial camera model introduced in Section 2.2, which we refer
to as Radial OSE (ROSE) and is defined as

ℓROSE =
∑

ij

wij

∥∥∥∥∥ x⊥
ij

∥xij∥
· zij

∥∥∥∥∥
2

(4.2)

where x⊥
ij = (yij ,−xij) is an orthogonal vector to xij and each zij is 2-dimensional.

Our proposed loss, similarly to pOSE, consists of a linear combination of ROSE with
a regularization term based on the affine camera model

ℓRpOSE = (1− η)ℓROSE + ηℓAffine. (4.3)
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and can be minimized using VarPro, maintaining a similar basin of convergence to
pOSE while outperforming state-of-the-art factorization methods for sequences with
radial distortion. Additionally, we show that ROSE consists of a 1st order Taylor
expansion of the maximum likelihood residual x⊥

ij ·
zij

∥zij∥ around zij = xij , i.e.,
ROSE can be generalized as

ℓROSE =
∑

ij

wij

∥∥∥∥∥∥∥∥∥∥
x⊥

ij ·
vij

∥vij∥
+
(

x⊥
ij

∥vij∥
−

x⊥
ij · vij

∥vij∥3 vij

)
︸ ︷︷ ︸

J(vij)

(zij − vij)

∥∥∥∥∥∥∥∥∥∥

2

(4.4)

and for vij = xij we retrieve (4.2). This result combined with the interpretation of
affine regularization as a dampening term can also be generalized as

ℓAffine =
∑

ij

wij∥vij − zij∥2, (4.5)

results in a loss RpOSE that can be updated in an outer loop of the optimization. The
estimated solution gets closer to the ML estimator as more updates of RpOSE are
performed. Note that for vij = xij we also retrieve the original affine regularization.

In summary, the main contributions of this paper are 1) a new pOSE formulation,
named RpOSE, that can handle radially distorted images; 2) we show that the new
formulation can be robustly optimized using VarPro converging to the globally opti-
mal solution in the vast majority of cases from random starting solutions; 3) we show
that the pOSE formulations can be seen as local approximations of reprojection error
opening up the possibility of iteratively approximating the maximum likelihood for-
mulation; and 4) we proposed a Structure-from-Motion pipeline based on RpOSE,
bundle adjustment and Euclidean update step that outputs a Euclidean reconstruction
from input 2D point track in an uncalibrated setup.

4.3 Paper C - “expOSE: Accurate Initialization
Free Projective Factorization using
Exponential Regularization”

In this paper, we start by pointing out that pOSE as originally proposed in [1] pe-
nalizes 3D points with large depths in the local camera coordinate system due to
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4.3 Paper C - “expOSE: Accurate Initialization Free Projective Factorization using
Exponential Regularization”

the affine regularization term in (3.10). This is because as the depth λ increases the
first two coordinates of the 3D point z = λx̄ (for the noiseless case) also increase
in magnitude, consequently increasing quadratically the error ∥x − λx∥2 as the so-
lution gets further away from the minimum located at λ = 1. The penalization of
large depths caused by the regularization term of pOSE results in a slight deterio-
ration of the reconstruction. This is noted in the original paper [1] as the authors
plot 3D reconstruction for different values of η, with larger η resulting in a slightly
curved reconstruction. Since pOSE is used to initialize bundle adjustment, the re-
construction obtained with pOSE can be refined, hopefully resulting in an accurate
reconstruction of the scene. However, it raises the question if there could be datasets
in which pOSE does not result in a good enough initialization for bundle adjustment,
ultimately leading to poor reconstructions due to the affine regularization term.

We, therefore, propose an alternative regularization term defined as

ℓexp =
∑

ij

wije
−

x̄ij ·zij
∥x̄ij ∥ (4.6)

which pushes the projection zij along the direction x̄. This exponential regulariza-
tion when combined with an OSE - which we referred to as expOSE - achieves two
results: 1) it penalizes heavily negative depths, making it possible to initialize from
random starting solutions (unlike bundle adjustment), and 2) does not penalize large
depths like pOSE while it still counterbalances the shrinking bias of the OSE, since it
will try to make the depths as large as possible. A quadratic approximation of the ex-
ponential regularization is also formulated, making it suitable to be optimized with
VarPro. We show that expOSE indeed results in more accurate factorizations than
pOSE while keeping a similar basin of convergence, and it even challenges the accu-
racy obtained after refinement with bundle adjustment in most benchmark datasets.

Additionally, we propose a generalization of the OSE error in RpOSE (Paper B),
which consists of a decomposition of the original OSE in [1] into radial and tangential
error components, weighted by α and 1 − α, respectively. For α = 1 the OSE of
RpOSE is recovered, while α = 0.5 makes the OSE equal to the one presented in
pOSE. This decomposition allows a trade-off between the accuracy and stability of
the algorithm for sequences with radial distortion since, as mentioned in Section 2.2,
the 1D radial camera model drops part of the data by ignoring errors along the radial
direction, potentially leading to ill-posed problems (or close to).

The main contributions of the paper can be summarized as: 1) we investigate the
pOSE models’ undesirable penalization of large depths and propose expOSE; 2) we
formulate a quadratic approximation of the exponential regularization term in ex-
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pOSE to make it suitable for optimization with VarPro and show that, with random
initialization, the model achieves convergence rates similar to pOSE with signifi-
cantly higher reconstruction quality; and 3) we extend expOSE with radial distortion
robustness by decomposing the Object Space Error (OSE) into radial and tangent
components, and, just like with RpOSE in Paper B, propose an SfM pipeline that is
able to obtain a complete and accurate Euclidean reconstruction from uncalibrated
cameras.

4.4 Paper D - “Accurate Optimization of
Weighted Nuclear Norm for Non-Rigid
Structure-from-Motion”

In Section 3.5 we looked into how to use nuclear norm regularization in order to
obtain a low-rank approximation X of a matrix M. In particular, we saw that in-
stead of minimizing directly over the elements of X, we can minimize over factors
B and C such that X = BCT and replace the sum of singular values of X by
minX=BCT

∥B∥2
F +∥C∥2

F

2 . First-order optimization methods are used when minimiz-
ing directly over the elements of X, but it is well known [67] that these can have slow
convergence near the minimum due to zig-zagging between level sets, and usually
result in approximate solutions. By using the factors B and C, we end up with a prob-
lem formulation suitable to be minimized with second-order optimization methods
such as Levenberg-Marquardt or VarPro, which have better convergence properties
near minima.

In the context of Structure-from-Motion, it has been shown [72] that nuclear norm
regularization is not strong enough under the presence of noise. Kumar et al. [66]
propose the use of weighted nuclear norm as a regularization on the (re-arranged) 3D
structure X♯, introduced in Section 3.5. The authors claim that by weighting each
singular value of X♯ differently it is possible to better capture the nature of the low
dimensional space of the structure. Additionally, they proposed a method to initialize
the weights of each singular value and solve the problem using ADMM.

In this paper, we propose a pOSE factorization model with weighted nuclear norm
regularization that can be solved with second-order optimization methods. In partic-
ular, we show that the problems

minimize
Z

∥A(Z)− b∥2 +
∑

l

alσl(Z) (4.7)
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4.5 Paper E - “Bilinear Parameterization for Non-Separable Singular Value
Penalties”

and

minimize
B,C

∥A(BCT )− b∥2 +
∑

l

al
∥Bl∥2 + ∥Cl∥2

2 (4.8)

are equivalent, where Bl and Cl are the lth columns of B and C, respectively, and
al is the weights attributed to the lth largest singular value of BCT , with a1 ≤
a2 ≤ . . .. We apply (4.8) to Non-Rigid Structure-from-Motion using VarPro and
indeed show that using second-order optimization methods results in more accurate
reconstructions, also outperforming other state-of-the-art factorization methods [62],
[66].

When I joined this project the main theorems of the paper were already proved
by the other authors. My contributions consisted of studying how to apply these re-
sults to Non-Rigid Structure-from-Motion and performing all experiments and eval-
uations, as well as writing the paper along with the other authors.

In conclusion, the main contributions of the paper are: 1) we show that the prob-
lems (4.7) and (4.8) are equivalent, and the latter can be efficiently optimized using
second-order optimization methods; 2) we show that our proposed method outper-
forms (4.7) solved with ADMM in the context of Structure-from-Motion; and 3)
comparison with other state-of-the-art factorization methods for Non-Rigid Structure-
from-Motion in some benchmark datasets, with the proposed method outperforming
them in terms of accuracy of the obtained reconstruction.

4.5 Paper E - “Bilinear Parameterization for
Non-Separable Singular Value Penalties”

In this paper, we extend the regularization of the pOSE methods proposed in Paper
D to a wider range of low-rank inducing penalties. In particular, we consider non-
separable objectives of the form

fh(Z) = ∥A(Z)− b∥2 + h(σ(Z)) (4.9)

with

h(σ(Z)) =
rank(Z)∑

l=1
alσl(Z) + bl (4.10)

and where it is assumed that the weights al and bl are non-decreasing. Note that
for bl = 0,∀l the problem reduces to weighted nuclear norm. The regularization
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presented in (4.10) is not twice differentiable, so a relaxation rh(σ(Z)) is proposed
by [78], which corresponds to the quadratic envelop [79] of h(σ(Z)). Similarly to
paper D, we prove the equivalence of the resulting problems

minimize
Z

∥A(Z)− b∥2 + rh(σ(Z)) (4.11)

and
minimize

B,C
∥A(BCT )− b∥2 + rh(γ(B, C)) (4.12)

where γl(B, C)) = ∥Bl∥2+∥Cl∥2

2 . In order to be apple to apply second-order meth-
ods, VarPro in particular, in each iteration of the optimization the regularization
rh(γ(B, C)) is approximated by a quadratic form

rh(γ(Bt, Ct)) ≈
∑

l

wt
l

∥Bt
l∥2 + ∥Ct

l∥2

2 (4.13)

where wt
l can be efficiently computed at iteration t based on the current solutions Bt

and Ct as shown in [78]. The motivation to use second-order methods is similar to
the one presented in Paper D. The proposed method is applied to matrix factorization
and Non-Rigid Structure-from-Motion, outperforming state-of-the-art factorization
methods that rely on first-order optimization methods.

Contrary to other papers, where I had an active role in the works’ idea discussion,
implementation, and writing of the paper, in this work, I was mainly responsible for
the experimental section of the paper.

In summary, the main contributions of this paper consist of 1) we show that (4.11)
and (4.12) are equivalent; 2) we propose a quadratic approximation to (4.12) that
make the problem suitable for optimization with second-order methods; and 3) we
propose solving the proposed objective with a variation of VarPro that outperforms
state-of-the-art methods for matrix factorization.
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Concluding Remarks and Future Work

5.1 Conclusions

In this work we investigated ways to increase the understanding, accuracy, and relia-
bility of several different instances of Global Structure-from-Motion problems. Start-
ing with point set registration (Paper A), we propose global optimality conditions
based on Lagrange duality that allows certifying a candidate solution as globally op-
timal by evaluating bounds that depend on input data properties such as missing data,
target point cloud spatial distribution, and noise on the source point clouds. Besides
being able to certify a candidate solution as globally optimal, this work also allows
us to better understand how these input data properties affect the tightness of the
duality gap, and consequently the solvability of the problem with Semidefinite Pro-
gramming. Regarding factorization-based Structure-from-Motion, we propose how
to extend pOSE model for radial distortion invariance (Paper B) and non-rigidity
(Paper D and E). Additionally, we propose to replace the regularization term of the
original pOSE model with an exponential term (Paper C) that penalizes less large
depths than the original formulation, resulting in an improvement in the accuracy of
the estimated reconstruction. Altogether we increased the range of possible applica-
tions and accuracy of pOSE models without having to compromise their wide basin
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of convergence which makes them so attractive in the first place.
It is also worth mentioning that, despite the contributions of the proposed methods

in this thesis and other concurrent work published over the last few years, Structure-
from-Motion in general is still far from being considered a solved problem. One of
the main issues with factorization-based SfM methods is their inability to deal with
outliers in the input 2D point tracks. Conventional methods overcome this issue to
a larger degree by estimating first pairwise relations between pairs of images with
RANSAC. By using 2D point tracks as input data, factorization-based methods end
up being much more sensitive to outliers, especially when combined with high levels
of missing data. Furthermore, a better understanding of the solvability and stability
of these methods based on the input data is needed as most results are proved empir-
ically. For instance, it is well known that high levels of structured missing data can
affect the convergence (algorithm getting stuck on local minima) or even solvability
of the problem (many valid solutions might be possible to obtain due to the problem
being ill-posed). However, in general, there is no clear way to measure this or to
guarantee global optimality of the obtained solution.

In the next section, I will talk more in detail about some of these issues, as well
as how to possibly incorporate learning-based models in order to speed up and better
generalize Structure-from-Motion methods.

5.2 Future work

Dealing with outliers

When dealing with outliers, I see two main types of approaches to be considered
when trying to solve Structure-from-Motion with factorization-based methods like
pOSE or its variants. The first one would be to consider explicitly quantifying the
uncertainty of the 2D point tracks. In this case, besides the coordinates of the 2D
points in each image, we can assume that we also have available a variable that
quantifies the probability (based on some prior) that the 2D detection corresponds to
an inlier. For instance, for the OSE, the loss can be written as

ℓ =
∑

ij

wij

∥∥∥z(3)
ij xij − z(1:2)

ij

∥∥∥2
(5.1)

where now wij can take values between 0 (high uncertainty) and 1 (low uncertainty).
Note that any other quadratic loss can be used instead of OSE since the weights can
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be moved inside the squared norm as

ℓ =
∑

ij

∥∥∥√wij

(
z(3)

ij xij − z(1:2)
ij

)∥∥∥2
= ∥A(Z)− b∥2

. (5.2)

In this way, the problem can still be written in quadratic form and solved using
VarPro, as done with the pOSE methods. The problem with this approach consists
of how to properly measure the uncertainty of 2D correspondences if no good prior
knowledge of the scene is available. In this direction, some previous work estimated
location uncertainty for SIFT and SURF features [80], while more recent approaches
like LoFTR [20] output point correspondences along with their uncertainty. Even
though these uncertainties can be incorporated into SfM methods as shown in (5.2),
their uncertainty estimations tend to be suboptimal for most sequences and require
some type of scene-specific refinement.

A second approach would be to replace the loss with a robust function that penal-
izes large residuals less than the squared norm of residuals that have been considered.
Some examples of robust loss functions include Truncated Least Squares (TLS), L1-
norm, Huber norm [81], and many other robust kernels. Replacing the squared norm
with any of these robust losses will result in a non-quadratic loss, hence second-order
methods like VarPro used in most of the works in this thesis would not be applicable
anymore. A possible solution is to use Iterated Reweighted Least Squares (IRLS)
[82], which approximates the loss with a quadratic formula in each iteration of the
optimization problem. For the OSE, for instance, IRLS would result in a loss at
iteration t of the form

ℓt =
∑

ij

wt
ij

∥∥∥z(3)
ij xij − z(1:2)

ij

∥∥∥2
(5.3)

where wt
ij will depend on the robust loss function considered and on the solution

zt−1
ij . Depending on the robust loss function, IRLS can introduce undesirable local

minima which obviously would go against one of the main benefits of pOSE-like
models - its wide basin of convergence. The convergence of robust pOSE methods
with IRLS or with some more recent approaches [83], [84] is something that still
requires additional study and research.

In summary, figuring out better ways to incorporate uncertainties and robust loss
functions into Structure-from-Motion methods is an interesting research direction
that can substantially increase their usability and reliability in large-scale applica-
tions.
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Solvability and Global Optimality

Understanding the solvability of Structure-from-Motion problems is a hard prob-
lem. The major sources of complexity come from missing data, measurement noise,
and the scene’s spatial distribution, which under specific conditions might make the
problem ill-posed. Having a sense of those conditions would help us get a better
understanding of, for instance, the likelihood of getting stuck on local minima and
design better algorithms that can avoid them, or modify the input data (e.g. add
more points/views, break the sequence into smaller and more stable subsequences)
in order to avoid ill-posed configurations. Some recent works [85], [86] model the
uncertainty of cameras estimations of bundle adjustment through spectral analysis of
the inverse of the Hessian (or an approximation of it) of the objective function. Pro-
viding estimations and their corresponding uncertainties in an accurate way would
extend the possible applications of Structure-from-Motion methods, and additionally,
from these uncertainties one can get a better understanding of how certain input con-
figurations affect the final reconstruction. However, no study or theoretical analysis
of these effects has been published, to the best of my knowledge. Further research,
possibly extending these results to pOSE-like models, is a possibility for future work
and makes an interesting research direction.

Incorporating learning-based methods

As mentioned in the introduction chapter, learning-based methods have revolution-
ized computer vision over the last decade. Even though learning-based methods
for 3D reconstruction and pose estimation still underperform conventional methods,
there are, in my opinion, many ways in which the former can be integrated with the
latter.

A first way consists of learning meaningful point correspondences, similar to the
learning-based methods described in Section 2.3. When learning correspondences
through a Structure-from-Motion pipeline, one could additionally use ground-truth
camera poses to train correspondence networks, which would consist of a stronger
signal than the photometric loss (especially in low texture scenes) and cheaper to ob-
tain than ground-truth 2D correspondences. Furthermore, with this approach one can
also learn meaningful uncertainties for the point tracks in the context of Structure-
from-Motion and consequently make the method more robust to outliers, as previ-
ously discussed. A possible issue with this approach is that current SfM methods
are too computationally heavy to be integrated into an end-to-end learned model, as
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training would become significantly slower.
Building on the reasoning of the previous paragraph, a second way to incorporate

learning-based models in SfM methods is to replace part of (or the whole) conven-
tional methods with a neural network. Examples of works that aim at exactly that
for Rigid SfM are, for instance, [87], [88]. In [87], the authors propose an end-to-
end approach for camera pose and depth estimation from multiple source views and
one target view. For each source view, its corresponding image is fed to a feature
extraction network. These features are then combined with the features of the target
view in order to generate a pose cost volume and a depth cost volume. The pose
and depth cost volumes are then fed to two other networks, from which one obtains
relative camera poses (w.r.t. the target view) and a (dense) depth map, respectively.
Alternatively, in [88] the authors take an approach more similar to conventional SfM
by taking as inputs the point tracks through many views. The point tracks are fed to
permutation-equivariant layers (i.e. permutation of columns and/or row of the mea-
surement matrix M in (3.6) do not affect the final reconstruction). The output of the
permutation-equivariant layers is then used to regress camera poses and 3D point co-
ordinates, and reprojection error is used as training loss. Even though these methods
still do not compete with conventional methods in terms of accuracy, they have must
faster inference times and also are slowly reducing the performance gap, showing that
Structure-from-Motion can definitely benefit from learning components. Regarding
Non-Rigid SfM, a recent report [89] covers most of the state-of-the-art methods in
non-rigid 3D reconstruction, some of them being learning-based. In non-rigid recon-
struction, having prior knowledge about the object can help solve ambiguities related
to the motion of the camera/object, or constraint the type of deformations possible.
As one sequence might not contain enough information to solve all these ambigu-
ities, learning-based models trained from large quantities of data might serve as a
strong enough prior to a large class of objects.

51





References

[1] J. Hyeong Hong and C. Zach, “Pose: Pseudo object space error for initialization-
free bundle adjustment,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[2] R. Szeliski. “Computer vision algorithms and applications.” (2011), [Online].
Available: http://dx.doi.org/10.1007/978-1-84882-935-0.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. USA: Cambridge University Press, 2003, ISBN: 0521540518.

[4] J. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon, “Motion estimation by
decoupling rotation and translation in catadioptric vision,” Computer Vision
and Image Understanding, vol. 114, no. 2, pp. 254–273, 2010, Special issue on
Omnidirectional Vision, Camera Networks and Non-conventional Cameras,
ISSN: 1077-3142.

[5] J. Bazin, C. Demonceaux, P. Vasseur, and I.-S. Kweon, “Rotation estimation
and vanishing point extraction by omnidirectional vision in urban environ-
ment,” I. J. Robotic Res., vol. 31, pp. 63–81, Jan. 2012.

[6] B. Streckel, J.-F. Evers-Senne, and R. Koch, “Lens model selection for a mark-
erless ar tracking system,” in Fourth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’05), 2005, pp. 130–133.

[7] V. Larsson, N. Zobernig, K. Taskin, and M. Pellefeys, “Calibration-free structure-
from-motion with calibrated radial trifocal tensors,” in European Conference
of Computer Vision, 2020.

53

http://dx.doi.org/10.1007/978-1-84882-935-0


References

[8] V. Larsson, T. Sattler, Z. Kukelova, and M. Pollefeys, “Revisiting radial distor-
tion absolute pose,” in International Conference on Computer Vision (ICCV),
IEEE, 2019.

[9] A. E. Conrady, “Decentred Lens-Systems,” Monthly Notices of the Royal As-
tronomical Society, vol. 79, no. 5, pp. 384–390, Mar. 1919, ISSN: 0035-8711.

[10] D. Brown, “Decentering distortion of lenses,” 1966.

[11] A. W. Fitzgibbon, “Simultaneous linear estimation of multiple view geome-
try and lens distortion,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1,
2001, pp. I–I.

[12] S. Thirthala and M. Pollefeys, “Radial multi-focal tensors,” International Jour-
nal of Computer Vision - IJCV, vol. 96, Jun. 2012.

[13] O. Enqvist, F. Kahl, and C. Olsson, “Non-sequential structure from motion,”
in International Workshop on Omnidirectional Vision, Camera Networks and
Non-Classical Cameras, 2011.

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004,
ISSN: 1573-1405.

[15] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417, ISBN:
978-3-540-33833-8.

[16] D. Viswanathan, “Features from accelerated segment test ( fast ),” 2011.

[17] C. G. Harris and M. J. Stephens, “A combined corner and edge detector,” in
Alvey Vision Conference, 1988.

[18] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature
transform,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds., Cham: Springer International Publishing, 2016, pp. 467–
483, ISBN: 978-3-319-46466-4.

[19] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised
interest point detection and description,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 337–
33 712.

54



References

[20] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-free local
feature matching with transformers,” CVPR, 2021.

[21] E. Fix and J. L. Hodges, “Discriminatory analysis - nonparametric discrimina-
tion: Consistency properties,” International Statistical Review, vol. 57, p. 238,
1989.

[22] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans-
actions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[23] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learn-
ing feature matching with graph neural networks,” in 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4937–
4946.

[24] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in European Conf. on Computer
Vision (ECCV), A. Fitzgibbon et al. (Eds.), Ed., ser. Part IV, LNCS 7577,
Springer-Verlag, Oct. 2012, pp. 611–625.

[25] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[26] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelli-
gence, vol. 17, no. 1, pp. 185–203, 1981, ISSN: 0004-3702.

[27] A. Dosovitskiy, P. Fischer, E. Ilg, et al., “Flownet: Learning optical flow with
convolutional networks,” in 2015 IEEE International Conference on Com-
puter Vision (ICCV), 2015, pp. 2758–2766.

[28] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical
flow (extended abstract),” in Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, Z.-H. Zhou, Ed., Sister Con-
ferences Best Papers, International Joint Conferences on Artificial Intelligence
Organization, Aug. 2021, pp. 4839–4843.

[29] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical flow
using pyramid, warping, and cost volume,” 2018.

[30] M. Zhai, X. Xiang, N. Lv, and X. Kong, “Optical flow and scene flow es-
timation: A survey,” Pattern Recognition, vol. 114, p. 107 861, 2021, ISSN:
0031-3203.

55



References

[31] B. Triggs, “Autocalibration and the absolute quadric,” in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
1997, pp. 609–614.

[32] “Direct linear transformation from comparator coordinates into object space
coordinates in close-range photogrammetry,” Photogrammetric Engineering
& Remote Sensing, vol. 81, no. 2, pp. 103–107, 2015, ISSN: 0099-1112.

[33] L. Quan and Z. Lan, “Linear n-point camera pose determination,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 774–
780, 1999.

[34] X. Gao, X. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification
for the perspective-three-point problem,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 25, pp. 930–943, 2003.

[35] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle ad-
justment - a modern synthesis,” in Proceedings of the International Workshop
on Vision Algorithms: Theory and Practice, ser. ICCV ’99, Springer-Verlag,
2000, pp. 298–372.

[36] K. Konolige, “Sparse sparse bundle adjustment,” Jan. 2010, pp. 1–11.

[37] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 756–
770, 2004.

[38] R. Hartley, “In defense of the eight-point algorithm,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580–593, 1997.

[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, ISSN: 0001-0782.

[40] V. Govindu, “Combining two-view constraints for motion estimation,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2001.

[41] D. Martinec and T. Pajdla, “Robust rotation and translation estimation in mul-
tiview reconstruction,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[42] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer,
and R. Basri, “Global motion estimation from point matches,” in International
Conference on 3D Imaging, Modeling, Processing, Visualization and Trans-
mission, 2012.

56



References

[43] A. P. Eriksson, C. Olsson, F. Kahl, and T. Chin, “Rotation averaging and strong
duality,” in 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 127–
135.

[44] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques
for 3d slam: A survey on rotation estimation and its use in pose graph opti-
mization,” in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2015, pp. 4597–4604.

[45] A. Chatterjee and V. M. Govindu, “Efficient and robust large-scale rotation av-
eraging,” in 2013 IEEE International Conference on Computer Vision, 2013,
pp. 521–528.

[46] J. Fredriksson and C. Olsson, “Simultaneous multiple rotation averaging using
Lagrangian duality,” in Asian Conference on Computer Vision, 2012.

[47] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building rome
in a day,” in 2009 IEEE 12th International Conference on Computer Vision,
2009, pp. 72–79.

[48] S. Zhu, R. Zhang, L. Zhou, et al., “Very large-scale global sfm by distributed
motion averaging,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4568–4577.

[49] F. Kahl, “Multiple view geometry and the l-infinity norm,” vol. 2, Nov. 2005,
1002–1009 Vol. 2, ISBN: 0-7695-2334-X.

[50] D. Martinec and T. Pajdla, “3d reconstruction by gluing pair-wise euclidean
reconstructions, or "how to achieve a good reconstruction from bad images",”
Third International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT’06), pp. 25–32, 2006.

[51] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo
collections in 3d,” in ACM siggraph 2006 papers, 2006, pp. 835–846.

[52] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2016.

[53] C. Tomasi and T. Kanade, “Shape and motion from image streams under or-
thography: A factorization method,” International Journal of Computer Vi-
sion, vol. 9, no. 2, pp. 137–154, 1992.

57



References

[54] P. F. Sturm and B. Triggs, “A factorization based algorithm for multi-image
projective structure and motion,” in Proceedings of the 4th European Con-
ference on Computer Vision-Volume II - Volume II, ser. ECCV ’96, Berlin,
Heidelberg: Springer-Verlag, 1996, pp. 709–720, ISBN: 3540611231.

[55] A. Heyden, “Projective structure and motion from image sequences using sub-
space methods,” eng, in Proceedings of the 10th Scandinavian Conference on
Image Analysis, M. Frydrych, J. Parkkinen, and A. Visa, Eds., 1997, pp. 963–
968, ISBN: 951-764-145-1.

[56] B. Triggs, “Factorization methods for projective structure and motion,” in Pro-
ceedings CVPR IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1996, pp. 845–851.

[57] A. D. Bue, J. M. F. Xavier, L. Agapito, and M. Paladini, “Bilinear model-
ing via augmented lagrange multipliers (BALM),” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 8, pp. 1496–1508, 2012.

[58] Y. Dai, H. Li, and M. He, “Projective multiview structure and motion from
element-wise factorization,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 35, no. 9, pp. 2238–2251, 2013.

[59] J. H. Hong, C. Zach, and A. Fitzgibbon, “Revisiting the variable projection
method for separable nonlinear least squares problems,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5939–
5947.

[60] C. Russell, J. Fayad, and L. Agapito, “Energy based multiple model fitting for
non-rigid structure from motion,” in IEEE Conference on Computer Vision
and Pattern Recognition, Jul. 2011, pp. 3009–3016.

[61] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3d shape
from image streams,” in The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2000.

[62] Y. Dai, H. Li, and M. He, “A simple prior-free method for non-rigid structure-
from-motion factorization,” International Journal of Computer Vision, vol. 107,
no. 2, pp. 101–122, 2014.

[63] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, “Fast and accurate matrix comple-
tion via truncated nuclear norm regularization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2117–2130, 2013.

58



References

[64] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang, “Weighted nuclear
norm minimization and its applications to low level vision,” International
Journal of Computer Vision, vol. 121, Jul. 2016.

[65] T. H. Oh, Y. W. Tai, J. C. Bazin, H. Kim, and I. S. Kweon, “Partial sum mini-
mization of singular values in robust pca: Algorithm and applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 4,
pp. 744–758, 2016.

[66] S. Kumar, “Non-rigid structure from motion: Prior-free factorization method
revisited,” in IEEE Winter Conference on Applications of Computer Vision,
WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, IEEE, 2020,
pp. 51–60.

[67] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

[68] A. S. Lewis, “The convex analysis of unitarily invariant matrix functions,”
Journal of Convex Analysis, vol. 2, no. 1, pp. 173–183, 1995.

[69] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization,” SIAM Rev., vol. 52,
no. 3, pp. 471–501, Aug. 2010.

[70] L. Canyi, J. Tang, S. Yan, and Z. Lin, “Generalized nonconvex nonsmooth
low-rank minimization,” The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2014.

[71] V. Larsson and C. Olsson, “Convex low rank approximation,” International
Journal of Computer Vision, vol. 120, no. 2, pp. 194–214, 2016.

[72] M. V. Ornhag, C. Olsson, and A. Heyden, “Bilinear parameterization for dif-
ferentiable rank-regularization,” 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020.

[73] H. H. Bauschke, P. L. Combettes, et al., Convex analysis and monotone oper-
ator theory in Hilbert spaces. Springer, 2017, vol. 2011.

[74] B. D. Haeffele and R. Vidal, “Structured low-rank matrix factorization: Global
optimality, algorithms, and applications,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 42, no. 6, pp. 1468–1482, 2020.

[75] F. Bach, “Convex relaxations of structured matrix factorizations,” Sep. 2013.

59



References

[76] K. N. Chaudhury, Y. Khoo, and A. Singer, “Global registration of multiple
point clouds using semidefinite programming,” SIAM Journal on Optimiza-
tion, vol. 25, no. 1, pp. 468–501, 2015.

[77] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., vol. 38,
no. 1, pp. 49–95, Mar. 1996, ISSN: 0036-1445.

[78] M. Valtonen Örnhag and C. Olsson, “A unified optimization framework for
low-rank inducing penalties,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[79] M. Carlsson, “On convex envelopes and regularization of non-convex func-
tionals without moving global minima,” Journal of Optimization Theory and
Applications, to appear, 2019.

[80] B. Zeisl, P. Georgel, F. Schweiger, E. Steinbach, N. Navab, and G. Munich,
“Estimation of location uncertainty for scale invariant feature points,” Pro-
ceedings of the British machine vision conference, Jan. 2009.

[81] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of Math-
ematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[82] P. J. Green, “Iteratively reweighted least squares for maximum likelihood esti-
mation, and some robust and resistant alternatives,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), vol. 46, no. 2, pp. 149–192, 1984,
ISSN: 00359246.

[83] C. Zach and G. Bourmaud, “Descending, lifting or smoothing: Secrets of ro-
bust cost optimization,” in Computer Vision – ECCV 2018, V. Ferrari, M.
Hebert, C. Sminchisescu, and Y. Weiss, Eds., Cham: Springer International
Publishing, 2018, pp. 558–574, ISBN: 978-3-030-01258-8.

[84] C. Zach and G. Bourmaud, “Pareto meets huber: Efficiently avoiding poor
minima in robust estimation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2019.

[85] M. Polic, W. Forstner, and T. Pajdla, “Fast and accurate camera covariance
computation for large 3d reconstruction,” in Proceedings of the European
Conference on Computer Vision (ECCV), Sep. 2018.

[86] K. Wilson and S. Wehrwein, “Visualizing spectral bundle adjustment uncer-
tainty,” in 2020 International Conference on 3D Vision (3DV), 2020, pp. 663–
671.

60



References

[87] X. Wei, Y. Zhang, Z. Li, Y. Fu, and X. Xue, “Deepsfm: Structure from motion
via deep bundle adjustment,” in Computer Vision – ECCV 2020, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds., Cham: Springer International
Publishing, 2020, pp. 230–247, ISBN: 978-3-030-58452-8.

[88] D. Moran, H. Koslowsky, Y. Kasten, H. Maron, M. Galun, and R. Basri,
“Deep permutation equivariant structure from motion,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2021,
pp. 5976–5986.

[89] E. Tretschk, N. Kairanda, M. B. R, et al., State of the art in dense monocular
non-rigid 3d reconstruction, 2023.

61






