2,795 research outputs found

    Hausdorff-Distance Enhanced Matching of Scale Invariant Feature Transform Descriptors in Context of Image Querying

    Get PDF
    Reliable and effective matching of visual descriptors is a key step for many vision applications, e.g. image retrieval. In this paper, we propose to integrate the Hausdorff distance matching together with our pairing algorithm, in order to obtain a robust while computationally efficient process of matching feature descriptors for image-to-image querying in standards datasets. For this purpose, Scale Invariant Feature Transform (SIFT) descriptors have been matched using our presented algorithm, followed by the computation of our related similarity measure. This approach has shown excellent performance in both retrieval accuracy and speed

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)
    • …
    corecore