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Abstract— Reliable and effective matching of visual descriptors
is a key step for many vision applications, e.g. image retrieval.
In this paper, we propose to integrate the Hausdorff distance
matching together with our pairing algorithm, in order to obtain
a robust while computationally efficient process of matching
feature descriptors for image-to-image querying in standards
datasets. For this purpose, Scale Invariant Feature Transform
(SIFT) descriptors have been matched using our presented
algorithm, followed by the computation of our related similarity
measure. This approach has shown excellent performance in both
retrieval accuracy and speed.

I. INTRODUCTION

Image retrieval has attracted many attention during the
last years [1] and is of the highest usefulness for public
applications on the Web such as Google Image, etc. Two
main approaches exist for image retrieval. One firstly requires
image annotations or tags and then, the retrieval technique
relies on the related semantic content of the images. The
other technique is uniquely based on the image content, and
consists of the direct search of pictures as pictures, without
any semantic description nor keyword. In this paper, we adopt
the second approach which is also called content-based image
retrieval (CBIR). Indeed, CBIR constitutes an important aspect
of image mining and retrieval because sometimes it is difficult
to attach a word to picture. In particular, we focus on the
”image-to-image querying”. In that case, an image example
which is external to the database feeds the retrieval system
and results in a query for the most similar images [2]. In fact,
an image in the database could not only differ from the image
query by its orientation, position, or size, as it has been studied
in the past [3], [4], but could also be another exemplar of the
same category like in [5].

In opposite to the object recognition task [6], CBIR is
characterized by:
• a broad domain, i.e. the database containing the images

among which to search, with a very large number of
classes;

• the absence of an explicit training for feature selection
and classification;

• the difficulty to describe precisely the images because of
the variability of sensing conditions and object states.

In fact, CBIR does not specifically involve image
segmentation [7] or scene understanding [8] but requires the
identification and detection of features, since the comparison
between the query image and the data image is usually
performed in the feature space.

The most popular features are the local descriptors because
they are more robust to clutter, occlusion, and viewpoint
changes than the main global features such as color histograms
[9], [10], or color moments [11]. Some of the common
local feature descriptors are the scale invariant feature trans-
form (SIFT) [12], gradient location and orientation histogram
(GLOH) [13], histogram of oriented gradient (HOG) [14],
speeded-up robust features (SURF) [15], and DAISY [16].
These local distribution-based descriptors are computed in sur-
rounding regions of extracted keypoints by means of interest
point detectors such as Hessian detector [17], Harris [18],
Laplacian of Gaussian (LoG) [19], Difference of Gaussian
(DoG) [12], etc. or by dense sampling such as in [20].

In this work, we have merged three standard datasets to
obtain a broad database for the image query system and we
have selected scale invariant feature transform (SIFT) [12]
which is the most useful local feature descriptor [1] to encode
the image content and which is invariant to scale, rotation and
translation.

For the purpose of the image-to-image querying, once
the features are extracted from the query and the data im-
ages, respectively, the two obtained sets are then put in
correspondence. This latter action is called matching [21]
and could be based on the Hungarian algorithm [22], affine
registration [23], voting algorithm [24], or various similarity
measures [25], [26]. To decrease the computational burden,
other approaches have been developed, e.g. the computation
of distances such as the Euclidean one. However, Euclidean
distance does not incorporate image spatial information and
thus, is not enough discriminant in case of image deformation
or noise. To overcome this shortcoming, improvements have
been made like in [27] or other distances have been proposed
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Fig. 1. Overview of our proposed architecture for image-to-image querying.

such as the Hausdorff distance [28], or its variations [29], [30].
Despite Hausdorff distance efficiency to cope with rotation,
this distance is very sensitive to outliers and performs poorly
with scale changes [31].

Hence, we propose in this paper an enhanced matching
method more efficient in terms of both speed and accuracy
for the content-based image retrieval than the separate com-
putation of the traditional techniques.

The contributions of this paper are as follows:
• the matching technique which enhances our greedy pair-

ing process with the Hausdorff distance combined with
the city-block distance and the integration of a related
image similarity measure into this Hausdorff-distance en-
hanced matching, leading to a very accurate, fast retrieval
system;

• the architecture of the image-to-image querying process
based on the proposed two-step SIFT-feature matching
method.

The paper is structured as follows. In Section II, we present
our image-to-image querying approach which is based on the
matching of Scale Invariant Feature Transform (SIFT) de-
scriptors using our Hausdorff - City-Block combined distance
enhancing the pairing algorithm and on the related image
similarity measure. The resulting image retrieval system has

been successfully tested on a broad database containing real-
world standard image datasets as reported and discussed in
Section III. Conclusions are drawn up in Section IV.

II. OUR PROPOSED IMAGE-TO-IMAGE QUERYING SYSTEM

In this section, we describe our proposed system (Fig. 1),
which basically relies on the comparison of a query image
with any image of a given database. The main steps are the
detection of image features (Section II-A) and their matching
(Section II-B). Indeed, the comparison between the query
image and the candidate one is performed in the feature
space in order to be more computationally effective and to
be more robust towards noise and affine transformation, and
is followed by the computation of an associated similarity
measure (Section II-C).

A. Scale Invariant Feature Transform (SIFT) Descriptor Com-
putation

To characterize an image, we adopt the Scale Invariant
Feature Transform (SIFT) descriptors [12]. Indeed, SIFT con-
stitutes a distinctive and fast local feature descriptor which is
robust to rotation, translation, scale changes as well as some
viewpoint variations.
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The computation of SIFT consists of four stages:
1) The first stage is the scale-space extrema detection

to search for scale-invariant features across all scales
and image locations. These keypoints are identified by
finding the maxima and minima of the Difference-of-
Gaussian (DoG) function D(x, y, σ) which provides a
close approximation of the scale-normalized Laplacian
of Gaussian (LoG). The DoG function can be computed
from the difference of two nearby scales separated by a
constant factor k, and is defined as follows

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y), (1)

where G(x, y, kσ) is the variable-scale bidimensional
Gaussian and I(x, y) is the input image.

2) In this step of accurate keypoint localization, keypoints
identified in the previous step are selected based on
their stability. Their location is calculated using a Taylor
expansion up to the quadratic term of the scale-space
function D(x, y, σ), shifted to set the origin at the
central sample point

D(x) = D +
∂DT

∂x
x +

1
2
xT ∂2D

∂x2
x, (2)

where D and its derivative are evaluated at the sample
point and x = (x, y, σ)T is the offset from this point.
The location of the extremum x̂ is determined by taking
its derivative with respect to x and setting it to zero,
giving

x̂ = −∂2D

∂x2

−1
∂D

∂x
. (3)

To eliminate extrema with low contrast, the function
value of the extremum D(x̂) is calculated by substituting
(3) in (2). This gives

D(x̂) = D +
1
2

∂DT

∂x
x̂, (4)

and then, all the keypoints whose extremum is below a
threshold are rejected.
To remove keypoints which are poorly localized along
edges, the principal curvatures of each keypoint are
computed. All the keypoints whose ratio between the
principal curvatures is above a threshold are then dis-
carded.

3) The orientation assignment to each keypoint provides
rotation invariance. First, gradient magnitude m(x, y)
and orientation θ(x, y) are calculated for each Gaussian
smoothed image L(x, y) = G(x, y, σ) ∗ I(x, y), as

m = ((L(x + 1, y) − L(x − 1, y))2

+(L(x, y + 1) − L(x, y − 1))2)1/2, (5)

θ = tan−1

(
L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

)
. (6)

Then, the gradient orientations of sample points within
a region around the keypoint form an orientation his-
togram with 36 bins which cover the 360 degrees.

Each sample added to the histogram is weighted by its
gradient magnitude and by a Gaussian-weighted circular
window with a σS = 1.5k. The dominant peak in the
histogram determines the orientation of the keypoint,
whereas other local peaks within 80% of the highest
peak are used to create others keypoints at the same
scale and location but with these orientations.

4) Hence, a keypoint descriptor has been generated by
assigning a scale, a location and an orientation to each
stable keypoint. Finally, this feature vector is normalized
to the unit length to decrease the effects of illumination
changes, while its complexity is reduced in order to be
less sensitive to shape distortion.

B. Hausdorff-Distance Enhanced Matching (HDEM)

Let us give the two finite sets of SIFT local descriptors

A = {ai | i ∈ [1;#A]}, (7)
B = {bj | j ∈ [1;#B]}, (8)

with #A = card(A), the number of keypoints character-
izing the query image and #B = card(B), the number of
keypoints characterizing the data image.

First, the Hausdorff distance dH(A,B) is computed as
follows

dH(A,B) = max

(
dh(A,B), dh(B,A)

)
(9)

where dh(A,B) is the directed Hausdorff distance from A
to B defined as

dh(A,B) = max
a∈A

min
b∈B

dP (a, b), (10)

with dP (a, b), the Minkowski-form distance [32], based on
the LP norm, and defined as

dP (a, b) =
( ∑

k

(ak − bk)P

)1/P

. (11)

Then, the SIFT keypoints are matched using the Hausdorff
distance calculated by (9). Hence, the directed Hausdorff
distance dh(A,B) ranks each SIFT point of A based on its
dP (a, b) distance to the nearest SIFT point of B and then
uses the largest dP (a, b) distance which in fact results from
the most mismatched point of A. The Hausdorff distance
dH(A,B) is the maximum of the directed Hausdorff distances
dh(A,B) and dh(B,A) [28]. Thus, every SIFT point of A is
within the Hausdorff distance dH(A,B) of some SIFT point
of B and vice versa. As there is no explicit pairing of points
of A with points of B at this step, it could happen that many
points of A may be matched to the same point of B.

Next, all the matched SIFT points are paired according to
Algorithm 1 [33] involving the computed Hausdorff distance
dH(A,B) which is used this time as the pairing threshold,
avoiding thus an arbitrary threshold. The resulting doubly
matched features constitute then the set M .
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C. Computing the Retrieval Results

The image similarity measure dS(A,B) is computed as
follows

dS(A,B) =
#M

#A+#B
2

, (12)

with A and B, the sets of SIFT features of the query and the
candidate images, respectively, and M , the set of the double-
matched ones [33].

The decision that a candidate image contains similar content
to the query image one is taken based on the fact that the
similarity measure dS(A,B) is above a given threshold. In
the case when the similarity measure dS(A,B) is below the
given threshold, the candidate image is rejected.

Our matching method’s robustness to scaling, rotation, and
translation and some changes in illumination is due the use of
SIFT descriptors, while the one towards clutter, geometrical
distortions and changes in appearance has been demonstrated
in Section III.

III. RESULTS EVALUATION AND DISCUSSION

In order to test our matching approach for the image
querying application, we have used three standards datasets,
namely, the CalTech dataset - 101 categories [34], the Oxford
Flower dataset [35] and the Caltech-UCSD Birds 200 database
[36] that we have merged to obtain a broad domain of images
suitable for public applications involving image retrieval such
as search into Web.

In particular, the Caltech-101 database contains 9197 im-
ages of different objects such as butterflies, bikes, etc. and
consists of 31 to 800 images per class. Image resolution is
around 300x300 pixels.

The Oxford Flower database groups together about 8238
images of 102 types of common British flowers with a typical
resolution of 667x500 pixels. Each category contains from
40 to 358 images. This dataset presents additional challenges
of scale, pose and light variations as well as important class
similarity.

The Caltech-ICSD Birds is an image dataset with 6033
photos of 200 bird species mostly from North America, which
was primarily developed for subordinate categorization and
which owns 20 to 39 images per class. The average resolution
of these images is 375x500 pixels.

In this way, the images of our resulting database have differ-
ent size and resolution as well as large inter-class similarities
and intra-class variations. Hence, the difficulty of the image
retrieval in this overall database is very high.

The carried out experiments use the query image presented
in Fig. 2 as an example to find similar images in our overall
database. This type of querying by image example is called
approximate and it is the most common type of research in
the Web [2]. In fact, the retrieved images should contain at
least one object from the same category that the query one,
whatever their poses and without being necessary exactly the
same object.

All the experiments have been performed on a commercial
computer with a processor Intel(R) Atom (TM) CPU N270
1.60 GHz, 1 Gb RAM and using MatLab (Mathworks, Inc.)
software.

Some examples of the retrieved results using our method are
illustrated in Fig. 3 (a) and some example of rejected images
are presented in Fig. 3 (b).

To assess the accuracy of our retrieval system, we adopt the
standard criterion as follows:

accuracy =
TP + TN

TP + TN + FP + FN
, (13)

with TP , true positive, TN , true negative, FP , false
positive, and FN , false negative.

TABLE I
IMAGE RETRIEVAL ACCURACY

Similarity [25] Hausdorff [28] HDEM
79% 82% 95%

We can observe in Table I that our system based on
the embedded double matching is very accurate compared
to the state-of-the art methods [25], [28]. Furthermore, our
matching method outperforms even works such as [5] which
uses multiple kernel classifiers to distinguish between object
classes.

In order to measure the computational time performance of
our matching approach in the context of the above-described
image retrieval process, we carried out the following experi-
ment. On one hand, we compute the Minkowski-form distance
defined by (11) using the norm LP = L1. This leads to the
City-Block distance or Manhattan distance d1(a, b). On the
other hand, we compute the Minkowski-form distance using
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the norm LP = L2. Then, (11) defines the Euclidean distance
d2(a, b).

In this experiment, we can observe that the computational
time is c. 0.5 seconds and that the computational speed is
twice faster when the L1 norm is used in (11) rather than
the L2 norm. Thus, the calculation of the City Block distance
to compute the enhanced Hausdorff distance in our matching
technique allows faster image retrieval.

IV. CONCLUSIONS

In this work, the developed system for automatic image-to-
image querying is based on the enhanced matching of Scale
Invariant Feature Transform (SIFT) descriptors. Hence, the
proposed matching relies on the Hausdorff distance enhancing
a pairing process of the SIFT points detected in the query
and the data images, respectively. A related similarity mea-
sure is then computed based on these doubly matched SIFT
descriptors in order to retrieve images with similar content to
a given example. As validated, our technique is very robust
for image retrieval in large standard database while being
computationally efficient.
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Fig. 2. Example of a query image.

(a)

(b)

Fig. 3. Outcomes of our image-to-image querying system: (a) examples of retrieved images; (b) examples of rejected images.


