11 research outputs found

    Learning local, quenched disorder in plasticity and other crackling noise phenomena

    Get PDF
    When far from equilibrium, many-body systems display behavior that strongly depends on the initial conditions. A characteristic such example is the phenomenon of plasticity of crystalline and amorphous materials that strongly depends on the material history. In plasticity modeling, the history is captured by a quenched, local and disordered flow stress distribution. While it is this disorder that causes avalanches that are commonly observed during nanoscale plastic deformation, the functional form and scaling properties have remained elusive. In this paper, a generic formalism is developed for deriving local disorder distributions from field- response (e.g., stress/strain) timeseries in models of crackling noise. We demonstrate the efficiency of the method in the hysteretic random-field Ising model and also, models of elastic interface depinning that have been used to model crystalline and amorphous plasticity. We show that the capacity to resolve the quenched disorder distribution improves with the temporal resolution and number of samples

    Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis

    Full text link
    With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporating those assumptions and domain knowledge into probabilistic graphical models, and using those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.Comment: update with the version accepted by Neuropsychologi

    High Dimensional Covariance Estimation for Spatio-Temporal Processes

    Full text link
    High dimensional time series and array-valued data are ubiquitous in signal processing, machine learning, and science. Due to the additional (temporal) direction, the total dimensionality of the data is often extremely high, requiring large numbers of training examples to learn the distribution using unstructured techniques. However, due to difficulties in sampling, small population sizes, and/or rapid system changes in time, it is often the case that very few relevant training samples are available, necessitating the imposition of structure on the data if learning is to be done. The mean and covariance are useful tools to describe high dimensional distributions because (via the Gaussian likelihood function) they are a data-efficient way to describe a general multivariate distribution, and allow for simple inference, prediction, and regression via classical techniques. In this work, we develop various forms of multidimensional covariance structure that explicitly exploit the array structure of the data, in a way analogous to the widely used low rank modeling of the mean. This allows dramatic reductions in the number of training samples required, in some cases to a single training sample. Covariance models of this form have been increasing in interest recently, and statistical performance bounds for high dimensional estimation in sample-starved scenarios are of great relevance. This thesis focuses on the high-dimensional covariance estimation problem, exploiting spatio-temporal structure to reduce sample complexity. Contributions are made in the following areas: (1) development of a variety of rich Kronecker product-based covariance models allowing the exploitation of spatio-temporal and other structure with applications to sample-starved real data problems, (2) strong performance bounds for high-dimensional estimation of covariances under each model, and (3) a strongly adaptive online method for estimating changing optimal low-dimensional metrics (inverse covariances) for high-dimensional data from a series of similarity labels.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137082/1/greenewk_1.pd

    Independent component analysis for tensor-valued data

    Get PDF
    In preprocessing tensor-valued data, e.g., images and videos, a common procedure is to vectorize the observations and subject the resulting vectors to one of the many methods used for independent component analysis (ICA). However, the tensor structure of the original data is lost in the vectorization and, as a more suitable alternative, we propose the matrix- and tensor fourth order blind identification (MFOBI and TFOBI). In these tensorial extensions of the classic fourth order blind identification (FOBI) we assume a Kronecker structure for the mixing and perform FOBI simultaneously on each direction of the observed tensors. We discuss the theory and assumptions behind MFOBI and TFOBI and provide two different algorithms and related estimates of the unmixing matrices along with their asymptotic properties. Finally, simulations are used to compare the method's performance with that of classical FOBI for vectorized data and we end with a real data clustering example. (C) 2017 Elsevier Inc. All rights reserved
    corecore