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ARTICLE OPEN

Learning local, quenched disorder in plasticity and other
crackling noise phenomena
Stefanos Papanikolaou1,2,3

When far from equilibrium, many-body systems display behavior that strongly depends on the initial conditions. A characteristic
such example is the phenomenon of plasticity of crystalline and amorphous materials that strongly depends on the material history.
In plasticity modeling, the history is captured by a quenched, local and disordered flow stress distribution. While it is this disorder
that causes avalanches that are commonly observed during nanoscale plastic deformation, the functional form and scaling
properties have remained elusive. In this paper, a generic formalism is developed for deriving local disorder distributions from field-
response (e.g., stress/strain) timeseries in models of crackling noise. We demonstrate the efficiency of the method in the hysteretic
random-field Ising model and also, models of elastic interface depinning that have been used to model crystalline and amorphous
plasticity. We show that the capacity to resolve the quenched disorder distribution improves with the temporal resolution and
number of samples.

npj Computational Materials  (2018) 4:27 ; doi:10.1038/s41524-018-0083-x

INTRODUCTION
When Gibbs proposed the famous measure for quantifying the
probabilities of individual gas microstates,1 the primary interest
was on figuring out the microscopic principles that gave rise to
well defined thermodynamic state variables, even though actual
microstates kept changing through Brownian motion. Gibbs’
original inquiry has re-emerged in the context of material
deformation of crystals but also other mechanically deformable
systems: the far-from-equilibrium response to mechanical defor-
mation depends critically, especially at non-self-averaging small
scales, on the initial configuration of defects. Here, we provide a
way that can be used, in principle, to estimate the probability of
quenched microstates as a function of material parameters (plastic
strain, size, and hardening coefficients).2

The evidence for quenched disorder in initial defect micro-
structures has been accumulated through observations of abrupt
plastic events or material-crackling noise in a large variety of
materials, such as FCC and BCC crystals,3–6 amorphous solids7 and
also earthquake geological faults.8,9 This crackling noise10 has
been commonly explained by random field models11,12 or
interface depinning ones,13–18 where the major component is
homogeneous solid elasticity, but also a spatially inhomogeneous
and random distribution of local, quenched disorder (typically
entering local flow stress information)4,17,19–21 and the allowed
microstates are characterized by its stress and strain and minimize
the elastic energy functional. The evidence of crackling noise has
led to an extensive study of the local, statistical properties of
abrupt events and their properties, such as their sizes, durations,
average shapes, and their critical exponents. However, the major
concern has been the fact that while homogeneous elastic
properties are relatively straightforward to measure and test at
virtually any scale,22 the model distribution of local, quenched
disorder is elusive, despite its commonly observed signature

response of stochastic plastic bursts.3–5,7 In this paper, we propose
a feasible approach to “learn” the quenched disorder distributions
directly from load-response timeseries: We argue that the full
characteristics of the timeseries may unveil the information on the
form of the quenched disorder distribution which is not available
through typical temporally local observables (such as abrupt event
size/duration).23 While the major motivation of this work stems
from plastic deformation, this method is generally applicable
across crackling noise phenomena, defined through timeseries of
an applied field (magnetic field, force, stress) and the associated
response variable (magnetization, displacement, and strain). We
label this method as time series—machine learning (TS-ML). TS-ML
is clearly limited by the physical applicability and completeness of
the utilized model. In its current form, for clarity purposes, TS-ML
makes use of an unsupervised machine learning approach
through principal component analysis (PCA) and k-means cluster-
ing. However, other unsupervised ML approaches could be
successfully applied (see Supplementary Information for some
examples). For demonstration purposes, TS-ML is applied to a
typical model of plasticity,14 as well as to a general example of
crackling noise.24

Materials at small scales display size effects in material properties
such as the strength and hardening coefficients.21,25–30 Stochastic
yielding has been known to vanish with increasing system size.31

However, its mechanism has been debated.4,26 A plausible
phenomenological scenario that explains the overall behavior is
that the stochastic yield distribution at a representative volume has
non-trivially large tails32 at the nanoscale (that could either be a
fat-tailed/large-kurtosis distribution or special distributions such as
Weibull or Gumbel) and it gradually self-averages into the central
limit behavior as the volume increases (cf. Fig. 1). While still a
phenomenologically-driven hypothesis, the validity of this scenario
would explain the self-consistent emergence of size effects and
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stochasticity in small-scale plastic deformation, in a material and
sample independent manner.4,5,33 In contrast to this picture, it is
common in multiscale modeling of material deformation22,34 to
assume that the statistics of yield parameters in a representative
material volume are dominated solely by their averages. Such a
severe assumption is clearly not valid in a scenario where the
yielding distribution has a large variance, or it is non-Gaussian in
nature. Given that all current multiscale modeling approaches
are fundamentally based on estimates of atomistic mechanisms
that are active at the nanoscale, it is natural to consider and
pursue the validation of such a scenario. For this reason, robust
and swift methods are required for the derivation of local yield
distributions as function of sample size, prior loading history and
time.
In this paper, we propose a systematic way to solve the inverse

problem of deriving the stochastic yield distributions from
timeseries that may be the outcome of mechanical deformation
or other crackling noise experiments. We use typical methods of
unsupervised machine learning that naturally depend on physical
modeling’s completeness and the possible universality class.4,23

The method does not aim to identify novel physical mechanisms
of crackling noise; instead, it may provide a classification of parent
quenched disorder distributions despite the existence of coexist-
ing universal behavior. In the following, we perform simulations in
two characteristic models of crackling noise, the T= 0 mean-field
Random Field Ising model24 (RFIM) and the elastic long-range
dipolar interface depinning model(LRDIDM),14,35 designed for
crystalline or amorphous solids. In all these cases, we observe a
capacity of the method to cluster model data despite the similarity
of avalanche distributions, and then classify them according to the
quenched yield distribution at a testing volume. Finally, the
method may be also directly applied to actual experimental data
on uniaxially compressed Ni micropillars, following prior work6

(see Section 4 and associated Fig. S6 of the Supplementary
Information).

RESULTS
TS-ML assumes N samples that generally would include the
discrete timeseries of the applied field fij and the material
response mij with time index i∈ [1, T] and sample index j∈ [1,
N]. The complete data matrix is built through a multiscale
description of the timeseries that may be performed through
sequential estimation of the sliding window time-varying
moments of order n, at scale p and for sample j36

XðnÞ
D E

pj
¼

Xp�1

k¼0

Xðkþ1Þ2�pT

i¼k2�pTþ1

Xij � Xh ikj
� �n

; (1)

where X could be either m or/and f. Through the construction of
these moments, all fluctuations are captured (that could be
equivalently unraveled through histogram distributions (cf. Fig.
1b)). For each sample j, a vector may be constructed that contains
all moments up to a maximum resolution scale pmax and max
order nmax, with total length M= nmaxpmax. The parameters nmax

and pmax are controlled by the resolution of the timeseries and can
be estimated through: pmax ’ log2ðTÞ=2 and nmax∈ ,3,8 given that
identified moments remain non-zero for the given resolution.
Then, the effective data matrix Deff is built through these vectors
and has dimensions N ×M. Deff is used towards unsupervised
machine learning through principal component analysis (PCA) and
k-means clustering.
Machine learning (ML) has had important success in various

fields of science and engineering, but also materials science, for
example accurate predictions of phase diagrams, crystal struc-
tures, and materials properties.37 Unsupervised learning through
using PCA may work independentently of the input data types, as
soon as the data cluster into distinct, distinguishable spaces that
can be tracked by a clustering technique such as k-means.38 PCA
reduces the dimensionality of a dataset39 by identifying subspaces
that demonstrate characteristic data variation. The success of the
method depends on the capacity of data that originate in different
quenched disorder distributions, to be spatially separated into
distinct clusters in PCA space. The identification and quantification
of the clusters is done through the k-means method, which finds k
clusters that minimize the pairwise squared deviations of points in
the same cluster. It is worth noting that our utilized ML is just a
general way to statistically distinguish different signals, where the
differences are caused by quenched disorder. However, other ML
methods, may be similarly applicable (see Supplementary
Information, Section 1 and Fig. S1), or may be expected to
perform much better, such as deep learning methods.40,41 These
approaches will be studied in detail elsewhere.

The models
TS-ML is applied on two characteristic models of crackling noise: a
the elastic long-range dipolar interface-depinning model13

(LRDIDM) and b) the hysteretic Random-Field Ising Model (RFIM).24

The interactions in both models can be short or long ranged,
altering the universality class. The purpose of this paper is to
demonstrate examples, so some limiting behaviors are consid-
ered: mean–field interactions in the LRDIDM42 and a complex,
anisotropic and long-range kernel for the RFIM.14 The method is
identically applicable for quite general interaction kernels in both
models. In the LRDIDM, the Talamali et al.’s approach14 in two
dimensions and assume that plastic deformation in disordered
solids is modeled by the xx-component of the strain tensor
ϵðpÞ � ϵðpÞxx ¼ �ϵðpÞyy . The interaction due to local slip is the stress
generated by local deformations of a random medium,43 which
takes the form ~Fintðk;ωÞ= ð�cosð4ωÞ � 1Þ~ϵðk;ωÞ where k, ω are
the polar coordinates in Fourier space44 and ~ϵ; ~Fint are the
transforms of strain and interaction respectively. We initialize the
L × L system with ϵ(x)= 0 ∀ x and stress thresholds fp(x) are taken
from a uniform distribution [0, 1). The external field F is increased
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Fig. 1 Possible scenario of size effects and stochasticity in uniaxial
compression of crystalline nano and micro pillars. a Uniaxial
stress–strain curves have been shown to be increasingly stochastic
—with clear bursts—and with higher apparent strength, as the
sample/probe volume decreases, in the range where the probed
volume has effective diameter 0.5, 10, or 100 μm.3–5,7 The yield stress
in such samples ranges from 50 to 500MPa. (inset): Avalanche
bursts, quantified through their strain magnitude S, have been
shown to follow power-law distributions with a cutoff that decreases
with sample volume.3,5 b Increased strength and stochasticity at
nanopillars could possibly originate into a nanoscale quenched yield
distribution with non-trivial wide form, where the “most probable”
yield is displaced from the bulk yield point. This distribution should
evolve into a normal distribution as sample volume increases,
according to the central limit theorem. The very existence of
quenched disorder manifests in stochastic events that are common
to describe through avalanches.4 The green arrows display the
direction of increasing representative volume that is being
deformed
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adiabatically, and at each time-step, for all x that the total local
force f(x)= Fint(x)+ F− fp(x) becomes positive, there is a strain
increase dϵ(x) randomly picked from a uniform [0, 1) distribution.
The external stress is decreased by k/L2 at each time-step to cut-
off avalanches—this cutoff mechanism resembles typical machine
response at slow nominal straining.14,45 In the RFIM, the approach
follows the basic algorithm,46,47 for which the zero temperature
energy is H=�P

i H þ J þ hið Þsi , with H the applied field, J the
homogeneneous mean-field coupling, and hi the quenched
random field that follows the distribution ρ(h) (to be specified).
The local spin si gives rise to the response m ¼ PN

i¼1 si . Starting
with si=−1∀i, H is increased until si=+1∀i. In both models, it is
possible to define abrupt events in terms of the size of response
S (strain in the LRDIDM, magnetization per site in RFIM) during an
event, as well as other quantities such as duration and energy-
release.4 The distribution of S has been studied extensively13,14,24

and it is known to be described, in the pinned regime, by P(S) ~
S−τP(S/S0) where τ is ~ 1.344 for the LRDIDM and 1.5 for RFIM.24

The cut-off function P(x) typically resembles an exponential
function and S0 is a nominal maximum event size. In the
depinned regime, there are system-spanning events, and there-
fore P(S) may include an additive component Pinf that scales with
the system size. In this paper, we consider various behavioral
regimes.

Quenched disorder distributions
Various possible random distributions are considered in both
models. We consider: (a) normal distributions with mean μ and
variance σ, (b) flat in a specified range, c)Weibull with probability
density function g(f)= α

λ ðf=λÞα�1e�ðf=λÞα where δf ~ N−1/α defines
the range of the distribution. Here, α is the Weibull exponent48, d)
Gumbel distributions with g(f)= e�ðf�μÞ=βe�e�ðf�μÞ=β

=β with mean μ
+ 0.57721β and variance π2β2/6. All these distributions are very
typical in materials science, depending on the character and origin
of randomness.49

First, in order to demonstrate the applicability of TS-ML method
in realistic plastic yield problems, we consider the behavior of the
LRDIDM. As shown in Fig. 2, the input random distributions that
range from Weibull, normal, and flat (cf. Fig. 2c), give a range of
nonlinear stress–strain curves (cf. Fig. 2a), consistent with the
commonly observed behavior in crystalline and amorphous
systems.4 However, abrupt event distributions in terms of the
strain burst sizes, are characteristically independent of the
imposed distribution (cf. Fig. 2b). This result is consistent with
previous studies in various avalanche models.50

The presence of the abrupt event distribution validates TS-ML
and facilitates a self-consistent physical picture. In order for TS-ML
to be applicable (since high-order temporal moments need to be
non-trivial), the presence of noise is required in the behavior. If
such uncertainty was absent, then a simple constitutive formula

(a) (b)

(c) (d)

Normal-0.5 

Normal-1.0
Weibull-2.0
WW

Fig. 2 Learning the input quenched flow stress distribution from stress–strain curves in a model of crystal plasticity. a Sample stress-strain
curves for the continuous long-range dipolar interface depinning model (LRDIDM), originating in various local yield distributions (shown 2 for
each distribution). The stress is normalized by the stress value at 0.6%-strain. b The strain crackling event histograms P(S) display an almost
invariant power-law distribution with a large-size cutoff that is weakly influenced by the choice of quenched flow stress distributions. Disks
correspond to the flat distribution (c), squares to a normal distribution with variance 0.5, the right-pointing triangles correspond to a normal
distribution with variance 1.0, the left-pointing triangles correspond to a Weibull distribution with α= 1.0 and the upper-pointing triangles to
α= 2.0. The visible straight line segment is a power-law line guide to the eye with y ~ x−1.35, as it is expected by theory. S is measured in terms
of strain units, so it is dimensionless. c The yield threshold distributions chosen in the model (where the model values for σf are in units of G/
(2π(1− ν)) for the studied single-slip dislocation model studied4), with the colors follow the descriptions in b, d. d Projection of samples on the
3D PCA space. Clear clustering is observed and the correspondence to the variety of distributions is shown. Clustering improves with number
of samples, only 100 total samples were used for this example, with three decades of power-law events. The symbol types match the ones
shown in b, in terms of the distribution being represented. Validation of the method for this model is discussed in the Supplementary
Information, Section 2, Fig. S3
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would suffice to perform parameter fitting of the behavior. The
very presence of abrupt events in the behavior validates the
application of TS-ML, since it implies that the overall behavior is
driven by noise—thus, a noise distribution should be identified. In
crystal plasticity, the presence of such abrupt events further
validate their origin into a quench disorder distribution, therefore
TS-ML may be attempted on reasonable physical grounds. In such
a noisy case (like, for example, in the experimentally testable case
of uniaxially compressed Ni micropillars,6 studied in Section 4 of
the Supplementary Information), it makes no physical or practical
sense to apply parameter fitting for parameters such as work
hardening or yielding—these features are caused by a quenched
disorder distribution that can be identified using TS-ML. In a
natural way, work hardening is caused by the form of the
quenched disorder distribution, which can be directly associated
to the distribution of e.g., dislocation sources. If no such abrupt
events are observed, TS-ML should be regarded as unphysical/
unnnatural, since there would be no motivation for a quenched
disorder distribution in material modeling. In this sense, the self-
consistency of the physical picture may be tested. The application
of TS-ML on 100 samples (20 each random distribution) is shown
in Fig. 2, justifying the applicability of the method.
Then, the RFIM is discussed, which does not include any spatial

resolution. In this model, as shown in Fig. 3, 20 samples of seven
different distributions are produced, (see Fig. 3c), totaling
140 samples. Then, the type of imposed randomness naturally
influence the form of the M− H curves (cf. Fig. 3a), however the
avalanche distributions (cf. Fig. 3b) demonstrate either a pre-

depinning power-law behavior, or a spanning behavior, depend-
ing on the ratio of the disorder variance and the mean-field
coupling strength. Then, all these samples are clustered and
classified using TS-ML, and a very clear clustering effect that
captures completely the original quenched threshold distribution
is seen (cf. Fig. 3a).
The behavior of the RFIM is analyzed in further detail, by

considering the limits of the applicability of TS-ML (for the method
validation, see also Supplementary Information, Sections 2 and 3
and associated Figs. S3–S5). As shown in Fig. 4, the performance of
the method is influenced as the number of samples S, the
timeseries resolution R, and the number of degrees of freedom in
the crackling system N. Three relevant observables are considered:

1. The “inertia” of k-means clustering Dh i, which amounts to
the sum of distances from the center of the assigned cluster;

2. The Fβ score with β= 2 which amounts to the success of the
classification approach (k-means clustering) to identify
correctly which samples are in the clusters;51 The definition
of the F2 score amounts to a weighted average of precision
and recall: F2= 5 × precision × recall/(4 × precision+ recall),
where Precision is defined as TP/(TP+ FP), and Recall is
defined as TP/(TP+ FN). The F2-score originates from the
binary classification background, where we only have two
classes that we want to distinguish are positive and
negative. In this scenario there are four possible outcomes:
TP (True Positive)→ The object belongs to class positive and
we classified it as positive, FP (False Positive)→ The object

(a) (b)

(c)

Weibull-1.0 

Weibull-2.0WW

Normal-criticalGumbel

Normal-1.25

Normal-2.0

(d)

Weibull-1.5 WW

Fig. 3 Learning the input random field distribution through avalanche data in the RFIM. a Sample M− H timeseries. Magnetization per spin M
ranges from −1 to +1, while the magnetic field H’s units are in terms of the spin-spin Ising interaction strength.24 Different colors correspond
to different random distributions, from lighter to darker, we have the distributions of the Upper Right legend (and the associated symbols
shown in the legend): (1) Normal distribution with σ= 0.868μ, (2) Normal with σ= 1.25μ, (3) Normal distribution with σ= 2.0μ, (4) Weibull
distribution with α= 1.0, (5) Weibull distribution with α= 2.0, (6) Gumbel distribution with exponent 0.5, (7) Weibull distribution with α= 1.5.
b The magnetization crackling event distributions P(S) are shown. c The randomness probability distributions for all 7 distributions, as they are
input. d The projections of 140 samples (20 for each distribution) on the first 2 PCA components, according to the proposed method.
Consistent clustering is observed in the space spanned by only two PCA components. Clearly, the clustering is visible in the three dimensional
PCA space (not shown) as in Fig. 2. Symbol types and colors match the ones shown in b and the associated legend. Validation of the method
for this model is discussed in the Supplementary Information, Section 2, Fig. S3
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belongs to class negative and we classified it as positive, TN
(True Negative)→ The object belongs to class negative and
we classified it as negative, FN (False Negative)→ The object
belongs to class positive but we classified it as negative.

3. The variance percentage v(i) of the PCA component i. As it
can be seen, Dh i increases with resolution R (cf. Fig. 4a) and
number of samples S (cf. Fig. 4b), which amounts to
naturally “larger” clusters in the PCA space. However, F2
decreases with both R, S (cf. Fig. 4a,b), signifying that the
larger clusters are also mutually well displaced, keeping the
reliability of the method robust. Moreover, Dh i and F2
decrease drastically with the number of system degrees of
freedom N. Finally, the variance is clearly distributed among
the first three components, with more than 97% of the data
variance.

DISCUSSION
In this paper, we suggested a possible scenario for size effects in
crystal plasticity and also, we proposed an explicit method for
correlating the shape of noisy load-response curves in crackling
noise phenomena to the shape of the quenched disorder
distribution, which is the natural cause of the noise in the
response timeseries. In the case of crystalline deformation of
nanocrystals, we argued that this method and approach can
investigate in detail the uncertainty in the work hardening
behavior during statistical sampling of the deformation, in order
to provide an estimate of the originating quenched disorder
distribution that may relate to various physical quantities (e.g.,
precipitate defects or pre-existing immobile dislocation forests).
This approach can be equivalently thought as an unbiased “fitting”

approach for work-hardening curves using stochastic distributions
(instead of constitutive formulas that would only utilize average
behaviors). In this paper, we argued that in various physical
phenomena (especially ones that display crackling noise effects),
the very nature of the problem enforces the use of stochastic
distributions in order to be able to pursue multiscale modeling
using physically accurate (statistically) microscopic information.
The TS-ML method provides a unique description of the

quenched disorder distribution in the limit of a large number of
test samples, in the sense that the PCA clusters separate distinctly
and can be easily distinguished by a classifier (e.g. K-means). In
the context of our theoretical models, we provide such evidence
(cf. Fig. S3) in both the RFIM and the LRDIDM plasticity models
(cf. Fig. 4). Also, it is natural to check the cluster centers (identified
through the centers of the K-Means clusters) and how they
progress with the increase in the number of samples. As it is
discussed in the Supplementary Information (cf. Fig. S4) the
average cluster position for all clusters in the RFIM case (cf. Fig. S2)
is quite stable with the increase of the number of samples.
Analogous results are found for the LRDIDM model. Moreover,
uniqueness is critically dependent on the physical completeness
of the utilized theoretical model. In that respect, the uniqueness of
the TS-ML method can be established by the generality of its
applicability: the LRDIDM and RFIM models can be generalized by
adding short or long range interactions, valid for various
applications. We tested TS-ML for a number of additional
possibilities, such as the 3D-RFIM hysteretic model,47 the model
of ref. 35 for continuum dislocation plasticity, and also discrete
dislocation dynamics models of crystal plasticity.52 TS-ML appears
to be generally applicable towards identifying quenched disorder
distributions, appropriately defined for each model of reference.
Finally, in continuum plasticity models the threshold distribution

(a) (b)

(c) (d)

Fig. 4 k-means clustering statistics and reliability for the mean-field random field model. a Inertia Dh i (black-solid data) and F2-score
51 (red-

dashed) as function of the resolution scale parameter pmax. b Inertia Dh i and F2-score as function of the number of samples S. c Inertia hDi and
F2-score as function of the number of system degrees of freedom. d Variance ratio v(i) is shown in a sorted manner as function of the index i of
PCA components for different window resolution scale parameter pmax. In a we choose S= 448, N= 256, and the resolution parameter pmax is
varied. In b, we choose N= 256, k= 5 and S is varied. In c S= 448, k= 5 and N is varied
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edge is critical for the yield behavior during avalanches. Thus, if
two distributions have large overlap near the edge, then the limit
of number of samples needed to distinguish different quenched
disorder behaviors is prohibitively large (see SI’s Section 3 and Fig.
S5 for a characteristic example, where overlapping Gaussian
distributions lead to corresponding distinguishable but highly
overlapping PCA maps).
The validation of the method can be performed by separating

data sets into “experiment” and “simulations”, with the experi-
mental data sets being the ones that will be assessed, while all the
rest contributing to the classification scheme. As it is shown in Fig.
S3, we separated statistical samples into two equal subsets for
both the RFIM and the LRDIDM plasticity model, (“experimental”/
testing and “simulations”/training), and then the experimental
data sets are projected on the trained PCA components. The
testing data set successfully correlates in a percentage of around
90% for this size of the data set (which includes 50–100 samples
per quenched noise distribution). However, we acknowledge that
the method requires further validation, especially in the experi-
mental front: In the current work, we showed how the method
may be practically applied to actual experimental data on
uniaxially compressed Ni micropillars, following prior work6 (see
Supplementary Information, Section 4 and Fig. S6). Through this
investigation, a quenched disorder distribution with Weibull
statistics and α ’ 2) was shown to be consistent with various
theory-based suggestions, originating on Weibull statistics of
dislocation sources (single-arm etc.) (see for example ref. 53).
Overall, the method is a concrete, unsupervised classifier of noisy
stress-strain curves (and possibly other timeseries) that takes into
account all moments of the noise, beyond the average behavior.
Through this work, it has become clear that it is viable to

distinguish random threshold distributions from stochastic field-
response timeseries in typical crackling noise models. TS-ML can
be efficiently implemented in order to distinguish quenched
stochastic yield distributions in plastic deformation, that may
originate in nanoscale experimental data. For this reason, high
throughput experiments are required in order to efficiently probe
the uncertainty in well defined deformed volumes. These
distributions help define the material properties, if a generalized
definition of a “material” is used where processing and deforma-
tion history is considered as a defining characteristic. In the future,
the target would be to classify these distributions for various
experimental cases in the processing mechanics of various
materials and also various prior loading histories, aiming at
producing a library of stochastic yield distributions that can be
implemented in multiscale mechanics models,22,34 in a similar way
that interatomic potentials libraries54 exist for molecular dynamics
models.55 The crucial importance of such a physical picture is the
transition to predictive models that are based on the self-
consistent and intrinsically out-of-equilibrium statistical mechanics
of crystal and amorphous plasticity.

METHODS
For the plasticity model, a custom Python code is used, solving the model
on a 256 × 256 grid. The samples were loaded on well equilibrated strain
configurations, that were generated by repeated loading/unloading of the
samples. k is selected as 0.01 for these simulations. Typical cellular
automaton rules are used, as described in the text. For the random-field
model, the coupling J is chosen to be unity and the number of spins is
chosen to be 512. For applying PCA, the sklearn library of Python is used:
Non-linear PCA is accomplished by the application of Singular Value
Decomposition, where the data matrix may be decomposed to a diagonal
matrix of singular values S and left/right singular vectors V/U, Deff= VTSU.
The V vectors that correspond to the largest singular values, capture the
most characteristic temporal behavior. For solving the k-means problem,
Lloyds algorithm56 is used; the average complexity is given by O(knT), were
n is the number of samples and T is the number of iteration, while the
worst case complexity is given by O(Nk+2/M).57 For more details, see also

the Supplementary Information. The computational codes for the
application of TS-ML on generic stress–strain or other timeseries are
available upon e-mail request at stefanos.papanikolaou@mail.wvu.edu.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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