1,399 research outputs found

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Fault Detection and Fail-Safe Operation with a Multiple-Redundancy Air-Data System

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83640/1/AIAA-2010-7855-622.pd

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A FAULT TOLERANT, DATA FUSION SYSTEM FOR NAVIGATION APPLICATIONS TO A DUCTED FAN VTOL UAV

    Get PDF
    A Fault Tolerant, Data Fusion (FTDF) algorithm for a Ducted Fan Unmanned Aerial Vehicle (DFUAV) Navigation System is presented. The algorithm have two parts: Gradient Descent (GD) for the Attitude and Heading Reference System (AHRS) and an Interacting Multiple Model (IMM) for position estimation. The GD methodology was designed to fuse the gyroscope, accelerometer, and geomagnetic sensors. The IMM algorithm is able to identify and compensate for multiple sensors data failures. There are three parts in the presentation. Firstly, system identification and the Allan Variance method is used to build dynamic models and noise models for multiple Sensors and Actuators. Secondly, a GD filter is developed for application to the Inertial Measurement Unit (IMU) consisting of tri-axis gyroscopes, accelerometers and magnetometers. The GD filter implementation incorporates magnetic distortion and gyroscope bias drift compensation. The filter uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimized algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. . Finally, the IMM algorithm is used to combine data from multiple sensors simultaneously. This filter uses multiple models that incorporate sensor failures. The probabilities of these models being correct is generated by the IMM. These probabilities can be used to identify sensor failures and compensate for these failures

    Design of Fault Tolerant Control systems

    Get PDF
    This research designs a Fault Tolerant Control (FTC) approach that compensates for both actuator and sensor faults by using multiple observers. This method is shown to work for both linear time-variant and linear time-invariant systems. This work takes advantage of sensor redundancy to compensate for sensor faults. A method to calculate the rank of available sensor redundancy is developed to determine how many independent sensors can fail without losing observability. This rank is the upper bound on the number of simultaneous sensor failures that the system can tolerate. Based on this rank, a series of reduced order Kalman observers are created to remove sensors presumed faulty from the internal feedback of the estimators. Actuator redundancy is examined as a potential way to compensate for actuator faults. A method to calculate the available actuator redundancy is designed. This redundancy would allow for the correction of partial and full actuator failures, but few systems exhibit sufficient actuator redundancy. Actuator faults are instead tolerated by replacing the Kalman estimators with Augmented State Observers (ASO). The ASO adds estimates of the actuator faults as additional states of the system in order to isolate and estimate the actuator faults. Then a supervisor is designed to select the observer that correctly identifies the sensor fault set. From that observer, the supervisor collects state estimates and calculates estimates of the sensors and faults. These estimates are then used in feedback with a controller that performs pole placement on the original system

    Adaptive Estimation and Detection Techniques with Applications

    Get PDF
    Hybrid systems have been identified as one of the main directions in control theory and attracted increasing attention in recent years due to their huge diversity of engineering applications. Multiplemodel (MM) estimation is the state-of-the-art approach to many hybrid estimation problems. Existing MM methods with fixed structure usually perform well for problems that can be handled by a small set of models. However, their performance is limited when the required number of models to achieve a satisfactory accuracy is large due to time evolution of the true mode over a large continuous space. In this research, variable-structure multiple model (VSMM) estimation was investigated, further developed and evaluated. A fundamental solution for on-line adaptation of model sets was developed as well as several VSMM algorithms. These algorithms have been successfully applied to the fields of fault detection and identification as well as target tracking in this thesis. In particular, an integrated framework to detect, identify and estimate failures is developed based on the VSMM. It can handle sequential failures and multiple failures by sensors or actuators. Fault detection and target maneuver detection can be formulated as change-point detection problems in statistics. It is of great importance to have the quickest detection of such mode changes in a hybrid system. Traditional maneuver detectors based on simplistic models are not optimal and are computationally demanding due to the requirement of batch processing. In this presentation, a general sequential testing procedure is proposed for maneuver detection based on advanced sequential tests. It uses a likelihood marginalization technique to cope with the difficulty that the target accelerations are unknown. The approach essentially utilizes a priori information about the accelerations in typical tracking engagements and thus allows improved detection performance. The proposed approach is applicable to change-point detection problems under similar formulation, such as fault detection

    Adaptive Estimation and Detection Techniques with Applications

    Get PDF
    Hybrid systems have been identified as one of the main directions in control theory and attracted increasing attention in recent years due to their huge diversity of engineering applications. Multiplemodel (MM) estimation is the state-of-the-art approach to many hybrid estimation problems. Existing MM methods with fixed structure usually perform well for problems that can be handled by a small set of models. However, their performance is limited when the required number of models to achieve a satisfactory accuracy is large due to time evolution of the true mode over a large continuous space. In this research, variable-structure multiple model (VSMM) estimation was investigated, further developed and evaluated. A fundamental solution for on-line adaptation of model sets was developed as well as several VSMM algorithms. These algorithms have been successfully applied to the fields of fault detection and identification as well as target tracking in this thesis. In particular, an integrated framework to detect, identify and estimate failures is developed based on the VSMM. It can handle sequential failures and multiple failures by sensors or actuators. Fault detection and target maneuver detection can be formulated as change-point detection problems in statistics. It is of great importance to have the quickest detection of such mode changes in a hybrid system. Traditional maneuver detectors based on simplistic models are not optimal and are computationally demanding due to the requirement of batch processing. In this presentation, a general sequential testing procedure is proposed for maneuver detection based on advanced sequential tests. It uses a likelihood marginalization technique to cope with the difficulty that the target accelerations are unknown. The approach essentially utilizes a priori information about the accelerations in typical tracking engagements and thus allows improved detection performance. The proposed approach is applicable to change-point detection problems under similar formulation, such as fault detection
    • …
    corecore