42 research outputs found

    A Theoretically Guaranteed Quaternion Weighted Schatten p-norm Minimization Method for Color Image Restoration

    Full text link
    Inspired by the fact that the matrix formulated by nonlocal similar patches in a natural image is of low rank, the rank approximation issue have been extensively investigated over the past decades, among which weighted nuclear norm minimization (WNNM) and weighted Schatten pp-norm minimization (WSNM) are two prevailing methods have shown great superiority in various image restoration (IR) problems. Due to the physical characteristic of color images, color image restoration (CIR) is often a much more difficult task than its grayscale image counterpart. However, when applied to CIR, the traditional WNNM/WSNM method only processes three color channels individually and fails to consider their cross-channel correlations. Very recently, a quaternion-based WNNM approach (QWNNM) has been developed to mitigate this issue, which is capable of representing the color image as a whole in the quaternion domain and preserving the inherent correlation among the three color channels. Despite its empirical success, unfortunately, the convergence behavior of QWNNM has not been strictly studied yet. In this paper, on the one side, we extend the WSNM into quaternion domain and correspondingly propose a novel quaternion-based WSNM model (QWSNM) for tackling the CIR problems. Extensive experiments on two representative CIR tasks, including color image denoising and deblurring, demonstrate that the proposed QWSNM method performs favorably against many state-of-the-art alternatives, in both quantitative and qualitative evaluations. On the other side, more importantly, we preliminarily provide a theoretical convergence analysis, that is, by modifying the quaternion alternating direction method of multipliers (QADMM) through a simple continuation strategy, we theoretically prove that both the solution sequences generated by the QWNNM and QWSNM have fixed-point convergence guarantees.Comment: 46 pages, 10 figures; references adde

    Applied Harmonic Analysis and Sparse Approximation

    Get PDF
    Efficiently analyzing functions, in particular multivariate functions, is a key problem in applied mathematics. The area of applied harmonic analysis has a significant impact on this problem by providing methodologies both for theoretical questions and for a wide range of applications in technology and science, such as image processing. Approximation theory, in particular the branch of the theory of sparse approximations, is closely intertwined with this area with a lot of recent exciting developments in the intersection of both. Research topics typically also involve related areas such as convex optimization, probability theory, and Banach space geometry. The workshop was the continuation of a first event in 2012 and intended to bring together world leading experts in these areas, to report on recent developments, and to foster new developments and collaborations

    Robust Algorithms for Low-Rank and Sparse Matrix Models

    Full text link
    Data in statistical signal processing problems is often inherently matrix-valued, and a natural first step in working with such data is to impose a model with structure that captures the distinctive features of the underlying data. Under the right model, one can design algorithms that can reliably tease weak signals out of highly corrupted data. In this thesis, we study two important classes of matrix structure: low-rankness and sparsity. In particular, we focus on robust principal component analysis (PCA) models that decompose data into the sum of low-rank and sparse (in an appropriate sense) components. Robust PCA models are popular because they are useful models for data in practice and because efficient algorithms exist for solving them. This thesis focuses on developing new robust PCA algorithms that advance the state-of-the-art in several key respects. First, we develop a theoretical understanding of the effect of outliers on PCA and the extent to which one can reliably reject outliers from corrupted data using thresholding schemes. We apply these insights and other recent results from low-rank matrix estimation to design robust PCA algorithms with improved low-rank models that are well-suited for processing highly corrupted data. On the sparse modeling front, we use sparse signal models like spatial continuity and dictionary learning to develop new methods with important adaptive representational capabilities. We also propose efficient algorithms for implementing our methods, including an extension of our dictionary learning algorithms to the online or sequential data setting. The underlying theme of our work is to combine ideas from low-rank and sparse modeling in novel ways to design robust algorithms that produce accurate reconstructions from highly undersampled or corrupted data. We consider a variety of application domains for our methods, including foreground-background separation, photometric stereo, and inverse problems such as video inpainting and dynamic magnetic resonance imaging.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143925/1/brimoor_1.pd

    Low-rank and sparse reconstruction in dynamic magnetic resonance imaging via proximal splitting methods

    Get PDF
    Dynamic magnetic resonance imaging (MRI) consists of collecting multiple MR images in time, resulting in a spatio-temporal signal. However, MRI intrinsically suffers from long acquisition times due to various constraints. This limits the full potential of dynamic MR imaging, such as obtaining high spatial and temporal resolutions which are crucial to observe dynamic phenomena. This dissertation addresses the problem of the reconstruction of dynamic MR images from a limited amount of samples arising from a nuclear magnetic resonance experiment. The term limited can be explained by the approach taken in this thesis to speed up scan time, which is based on violating the Nyquist criterion by skipping measurements that would be normally acquired in a standard MRI procedure. The resulting problem can be classified in the general framework of linear ill-posed inverse problems. This thesis shows how low-dimensional signal models, specifically lowrank and sparsity, can help in the reconstruction of dynamic images from partial measurements. The use of these models are justified by significant developments in signal recovery techniques from partial data that have emerged in recent years in signal processing. The major contributions of this thesis are the development and characterisation of fast and efficient computational tools using convex low-rank and sparse constraints via proximal gradient methods, the development and characterisation of a novel joint reconstruction–separation method via the low-rank plus sparse matrix decomposition technique, and the development and characterisation of low-rank based recovery methods in the context of dynamic parallel MRI. Finally, an additional contribution of this thesis is to formulate the various MR image reconstruction problems in the context of convex optimisation to develop algorithms based on proximal splitting methods
    corecore